
David	 Gries	 Writing	 one	 loop	 in	 the	 game	 2048	 July	 2015	

Hello,	 students!	

I	 would	 like	 you	 to	 do	 one	 programming	 assignment,	 which	 should	 be	 fun.	 Email	 me	 your	 answer	 by	 next	
Sunday	 midnight,	 26	 July.	 gries@cs.cornell.edu.	 	 You	 have	 to	 write	 one	 loop.	 I	 had	 to	 write	 this	 loop	 myself	 a	
week	 ago,	 and	 I	 want	 to	 see	 how	 well	 you	 do	 with	 it.	

Visit	 the	 website	 	 http://2048game.com	 	 and	 play	 the	 game	 2048.	 (Google	 2048	 to	 find	 other	 websites	 for	
playing	 the	 game.)	 It’s	 played	 on	 a	 4	 x	 4	 board.	 You	 move	 numbers	 around	 on	 the	 board	 using	 the	 arrow	 keys:	
up,	 left,	 right,	 and	 down.	 Play	 the	 game	 for	 a	 while,	 so	 that	 you	 fully	 understand	 it.	 But	 don’t	 play	 for	 too	 long!	
It	 is	 addictive.	

Now,	 consider	 clicking	 the	 left	 arrow,	 so	 that	 a	 move	 is	 made	 to	 the	 left.	 I	 want	 you	 to	 write	 part	 of	 this	
move.	 Below,	 I	 give	 the	 specification	 of	 a	 Java	 procedure	 to	 write,	 and	 below	 that,	 I	 give	 some	 rules	 that	 the	
move	 must	 follow.	

The	 values	 are	 kept	 in	 square	 array	 b.	 So	 moving	 left	 consists	 of	 moving	 elements	 of	 each	 row	 b[i].	 We	 give	
examples	 below.	 Please	 note	 that	 the	 game	 is	 played	 on	 a	 4	 x	 4	 board,	 but	 a	 larger	 board	 could	 be	 used	 —	 5	 x5	
or	 6	 x	 6.	 So	 in	 writing	 the	 method,	 do	 not	 assume	 that	 b	 is	 a	 4	 x	 4	 array.	 It	 is	 a	 square	 array	 of	 size	 b[b.length]	
[b.length],	 and	 you	 have	 to	 write	 a	 loop	 to	 do	 the	 move.	

Note:	 If	 you	 don’t	 know	 Java,	 do	 it	 in	 some	 other	 language;	 you	 may	 have	 to	 give	 the	 length	 of	 the	 array	 as	
a	 parameter	 in	 that	 case.	

/** Perform a move in direction left on row b[i].
 * Return the points gained for this move (-1 if no move made). */
 public int moveLeft(int[][] b, int i) {

}

The following examples illustrate the rules to be moved. Remember that 0 denotes an empty cell.

1. Values get moved as far to the left as possible. (0, 8, 0, 2) becomes (8, 2, 0, 0).

2. Two neighboring equal values get added and stored as one value. This is the only time points get produced. The
points produced is that one value. (4, 4, 16, 16) becomes (8, 32, 0, 0). The number of points is 8 + 32 = 40.

3. Once a merged value has been produced, it cannot participate in another merge (during this move). Thus,
(4, 4, 0, 4) becomes (8, 4, 0, 0), with a point score of 8. Note that the leftmost two 4’s are added together. It is
wrong for this move to produce (4, 8, 0, 0). Also, (4, 4, 4, 4) would become (8, 8, 0, 0).

4. Based on the above rules, it makes sense to process the array from beginning to end.

My encounter with this problem and how I solved it.

I found a solution to the 2048 game, which played it automatically using either a minimax algorithm or alpha-
beta pruning, and we are considering using part of it as an assignment this fall in the second programming course,
OO Programming and Data Structures. However, as you can imagine, I had to rewrite parts of the program com-
pletely, with method specifications, good comments, including loop invariants, etc. The structure had to be changed
somewhat, and I built a GUI for it in Java.

I could not understand the original code in method moveLeft! So I rewrote it completely. It needed a loop, and I
figured out what the loop invariant was, wrote the loop and the rest of the method body, and it worked the first time
except for one typo that I made.

I did not develop the loop invariant formally by combining pre- and post-conditions, or exactly by any other
method we talked about in class. But I did write it carefully before writing any code. For example, one part was:

b[i][0..h-1] has its final value and cannot be changed again

Do your best with this. Try to come up with a suitable loop invariant, and if you do, you will be surprised a how
easy it is to write the algorithm. I’ll make my solution after I have seen all or yours.

It’s also OK to test your method if you have an available IDE around to help you. I suggest you do that.

