
David	
 Gries	
 Writing	
 one	
 loop	
 in	
 the	
 game	
 2048	
 July	
 2015	

Hello,	
 students!	

I	
 would	
 like	
 you	
 to	
 do	
 one	
 programming	
 assignment,	
 which	
 should	
 be	
 fun.	
 Email	
 me	
 your	
 answer	
 by	
 next	

Sunday	
 midnight,	
 26	
 July.	
 gries@cs.cornell.edu.	
 	
 You	
 have	
 to	
 write	
 one	
 loop.	
 I	
 had	
 to	
 write	
 this	
 loop	
 myself	
 a	

week	
 ago,	
 and	
 I	
 want	
 to	
 see	
 how	
 well	
 you	
 do	
 with	
 it.	

Visit	
 the	
 website	
 	
 http://2048game.com	
 	
 and	
 play	
 the	
 game	
 2048.	
 (Google	
 2048	
 to	
 find	
 other	
 websites	
 for	

playing	
 the	
 game.)	
 It’s	
 played	
 on	
 a	
 4	
 x	
 4	
 board.	
 You	
 move	
 numbers	
 around	
 on	
 the	
 board	
 using	
 the	
 arrow	
 keys:	

up,	
 left,	
 right,	
 and	
 down.	
 Play	
 the	
 game	
 for	
 a	
 while,	
 so	
 that	
 you	
 fully	
 understand	
 it.	
 But	
 don’t	
 play	
 for	
 too	
 long!	

It	
 is	
 addictive.	

Now,	
 consider	
 clicking	
 the	
 left	
 arrow,	
 so	
 that	
 a	
 move	
 is	
 made	
 to	
 the	
 left.	
 I	
 want	
 you	
 to	
 write	
 part	
 of	
 this	

move.	
 Below,	
 I	
 give	
 the	
 specification	
 of	
 a	
 Java	
 procedure	
 to	
 write,	
 and	
 below	
 that,	
 I	
 give	
 some	
 rules	
 that	
 the	

move	
 must	
 follow.	

The	
 values	
 are	
 kept	
 in	
 square	
 array	
 b.	
 So	
 moving	
 left	
 consists	
 of	
 moving	
 elements	
 of	
 each	
 row	
 b[i].	
 We	
 give	

examples	
 below.	
 Please	
 note	
 that	
 the	
 game	
 is	
 played	
 on	
 a	
 4	
 x	
 4	
 board,	
 but	
 a	
 larger	
 board	
 could	
 be	
 used	
 —	
 5	
 x5	

or	
 6	
 x	
 6.	
 So	
 in	
 writing	
 the	
 method,	
 do	
 not	
 assume	
 that	
 b	
 is	
 a	
 4	
 x	
 4	
 array.	
 It	
 is	
 a	
 square	
 array	
 of	
 size	
 b[b.length]	

[b.length],	
 and	
 you	
 have	
 to	
 write	
 a	
 loop	
 to	
 do	
 the	
 move.	

Note:	
 If	
 you	
 don’t	
 know	
 Java,	
 do	
 it	
 in	
 some	
 other	
 language;	
 you	
 may	
 have	
 to	
 give	
 the	
 length	
 of	
 the	
 array	
 as	

a	
 parameter	
 in	
 that	
 case.	

/** Perform a move in direction left on row b[i].
 * Return the points gained for this move (-1 if no move made). */
 public int moveLeft(int[][] b, int i) {

}

The following examples illustrate the rules to be moved. Remember that 0 denotes an empty cell.

1. Values get moved as far to the left as possible. (0, 8, 0, 2) becomes (8, 2, 0, 0).

2. Two neighboring equal values get added and stored as one value. This is the only time points get produced. The
points produced is that one value. (4, 4, 16, 16) becomes (8, 32, 0, 0). The number of points is 8 + 32 = 40.

3. Once a merged value has been produced, it cannot participate in another merge (during this move). Thus,
(4, 4, 0, 4) becomes (8, 4, 0, 0), with a point score of 8. Note that the leftmost two 4’s are added together. It is
wrong for this move to produce (4, 8, 0, 0). Also, (4, 4, 4, 4) would become (8, 8, 0, 0).

4. Based on the above rules, it makes sense to process the array from beginning to end.

My encounter with this problem and how I solved it.

I found a solution to the 2048 game, which played it automatically using either a minimax algorithm or alpha-
beta pruning, and we are considering using part of it as an assignment this fall in the second programming course,
OO Programming and Data Structures. However, as you can imagine, I had to rewrite parts of the program com-
pletely, with method specifications, good comments, including loop invariants, etc. The structure had to be changed
somewhat, and I built a GUI for it in Java.

I could not understand the original code in method moveLeft! So I rewrote it completely. It needed a loop, and I
figured out what the loop invariant was, wrote the loop and the rest of the method body, and it worked the first time
except for one typo that I made.

I did not develop the loop invariant formally by combining pre- and post-conditions, or exactly by any other
method we talked about in class. But I did write it carefully before writing any code. For example, one part was:

b[i][0..h-1] has its final value and cannot be changed again

Do your best with this. Try to come up with a suitable loop invariant, and if you do, you will be surprised a how
easy it is to write the algorithm. I’ll make my solution after I have seen all or yours.

It’s also OK to test your method if you have an available IDE around to help you. I suggest you do that.

