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Abstract

A major difficulty in evaluating incomplete local search style
algorithms for constraint satisfaction problems is the need
for a source of hard problem instances that are guaranteed
to be satisfiable. A standard approach to evaluate incomplete
search methods has been to use a general problem genera-
tor and a complete search method to filter out the unsatisfi-
able instances. Unfortunately, this approach cannot be used
to create problem instances that are beyond the reach of com-
plete search methods. So far, it has proven to be surprisingly
difficult to develop a direct generator for satisfiable instances
only. In this paper, we propose a generator that only out-
puts satisfiable problem instances. We also show how one can
finely control the hardness of the satisfiable instances by es-
tablishing a connection between problem hardness and a new
kind of phase transition phenomenon in the space of prob-
lem instances. Finally, we use our problem distribution to
show the easy-hard-easy pattern in search complexity for lo-
cal search procedures, analogous to the previously reported
pattern for complete search methods.

Introduction
In recent years, we have seen the rapid development of both
complete and incomplete search methods for constraint sat-
isfaction (CSP) and Boolean satisfiability (SAT) problems.
These methods are now applied successfully in a range of
applications within artificial intelligence and computer sci-
ence in general. An important factor in the development of
new search methods is the availability of good sets of bench-
mark problems to evaluate and fine-tune the algorithms.
There are two main sources of benchmark problems. One
class of benchmarks is based on real-world applications and
the other is from random instance generators. Real-world
instances are arguably the best source, but unfortunately are
often in short supply. Moreover, there is a risk that algo-
rithms are being tuned towards specific application domains
for which good benchmarks are available. Random prob-
lem generators therefore provide a good additional source
of problem instances. These generators also have the ad-
vantage of a more direct control over the problem character-
istics, such as size and expected hardness. Hard random in-
stances have led to the development of new stochastic search
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methods such as Walksat (Selman et al. 1996) and the break-
out procedure (Morris 1993), and have been used in detailed
comparisons of local search methods for graph coloring and
related graph problems (Johnson et al. 1989). The results of
various competitions for CSP and SAT algorithms show that
there is a fairly direct correlation between the performance
on real-world benchmarks and on hard random instances
(DIMACS 1993, 1996; Beijing, 1996; Johnson et al. 1989).
It is important to note that randomly generated problem in-
stances are not necessarily unstructured. Structure may be
introduced by translating random problems from one do-
main into another, or by considering problem domains that
by definition exhibit regular structure (Gomes and Selman
1997, Walsh 1999).

Current problem generators are based on recent devel-
opments in our understanding of the nature of computa-
tionally hard problem instances. In particular, a clear con-
nection has been established between so-called phase tran-
sition phenomena and the computational hardness of NP-
complete problems (Cheeseman et al. 1991, Mitchell et al.
1992, Hogg et al. 1996). Phase transition phenomena cap-
ture the surprisingly sharp transitions from the solvable to
the unsolvable in the space of problem instances, as a func-
tion of certain problem parameters such as the ratio of the
number of constraints to the number of variables. In ran-
dom distributed problem instances, at low ratios (relatively
few constraints) one encounters mostly satisfiable instances,
while at high ratios most instances are unsatisfiable. In terms
of complexity, one observes a easy-hard-easy pattern, where
assignments are easily found in the sat-phase, while incon-
sistency is easily shown in the unsat-phase. At the phase
transition, where roughly half the instances are satisfiable
and half the instances are unsatisfiable, one finds a concen-
tration of computationally hard problem instances. The abil-
ity to varying the hardness of the problem instances makes it
possible to study precisely how different search algorithms
scale in terms of problem difficulty.

A key limitation of current problem generators concerns
their use in the evaluation of incomplete local search meth-
ods. This is because the generators generally produce a mix-
ture of solvable (satisfiable) and unsolvable (unsatisfiable)
instances. When a local search style method does not find a
solution, it can be difficult to determine whether this is be-
cause the algorithm fails to find a solution or because the
instance itself is unsolvable. The standard way of dealing
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with this problem is to use a complete search method to fil-
ter out the unsatisfiable cases. However, this limits the size
and difficulty of problems instances that can be considered.
Ideally, one would use problem generators that generate sat-
isfiable instances only. However, developing such genera-
tors has been surprisingly difficult.

As an example, let us consider generating hard satisfiable
3CNF formulas. In order to obtain satisfiable instances only,
it is natural to use a strategy where one creates formulas in
the phase transition region (ratio of clauses to variables of
around 4.25) that are “forced” to have at least one satisfy-
ing assignment. To do so, consider the following strategy:
generate a random truth assignment T , and then generate a
formula with N variables and 4.25N random clauses, where
one rejects any clause that violates T . This method will
in principle generate all possible satisfiable formulas with
a clause-to-variable ratio of 4.25 that have T among their
solution. What is somewhat surprising however is that the
sampling of these formulas is far from uniform: the gen-
erator is highly biased towards formulas with many assign-
ments, clustered around T . When fed to local search meth-
ods such as Walksat, these formulas are much easier than
formulas of comparable size obtained by filtering satisfiable
instances from a 3SAT generator. More sophisticated ver-
sions of the forced-formula scheme (Asahiro et al. 1993,
Van Gelder 1993) provide improvements but also lead to bi-
ased samples.

There are also a number of theoretical results that show
that is is difficult to “hide” a combinatorial object in a larger
combinatorial structure. For example, it can be shown that
one can easily find cliques over a certain size that are hidden
in a random graph, and similar results are known for hiding
graph colorings (Frieze and McDiarmid 1997). The problem
of hiding information in larger combinatorial structures is
of interest to the computer science theory community since
successful techniques for doing so may eventually lead to
more effective cryptographic methods.

Cryptographic problems do suggest one way of creating
hard satisfiable problem instances (Impagliazzo et al. 1989).
For example, Crawford and Kearns (1993) created SAT en-
codings of the “noisy” parity problem. The instances are
guaranteed to have a satisfying assignment but are extremely
hard to solve using current SAT procedures. In recent work
Massacci (1999) also provides a way of translating the DES
crypto protocol into a SAT instance. One can obtain very
hard satisfiable instances this way. Since the best algorithms
known for dealing directly with the original crypto problem
involve exhaustive search, one finds that the best SAT meth-
ods are also reduced to an essentially exhaustive search of
the space of truth assignments. This means that in practice
these problems are in a sense too hard for the development
and evaluation of SAT procedures. Furthermore, the crypto-
graphic encodings do not provide a fine-grained way to vary
problem hardness in order to studying how the algorithms
scale. In general, it seems reasonable to assume that in prac-
tical applications one does not expect to find hidden crypto
problems, unless one is dealing specifically with a crypto-
graphic application.

In this paper, we will introduce a method for the genera-
tion of (empirically) hard satisfiable problem instances. We
also show how one can finely control the hardness of the

satisfiable instances by establishing a connection between
problem hardness and a new kind of phase transition phe-
nomenon in the space of problem instances. As we dis-
cussed above, traditional phase transition phenomena in-
volve a sudden transition from a satisfiable to an unsatis-
fiable phase of the problem instance space. Since our gener-
ator only outputs satisfiable instances, such a transition does
not occur. However, under the right parameterization, we
also observe an easy-hard-easy pattern in the space of satis-
fiable instances, just as is the case for complete search meth-
ods. (For related work, see Clark et al. (1996).) This makes
it possible to tune the generator to output hard problem in-
stances.

We can link the hardness area to a phase transition which
corresponds to a clear threshold phenomenon in the size of
the “backbone” of the problem instances. Informally speak-
ing, the backbone measures the amount of shared structure
among the set of all solutions to a given problem instance.
The size of the backbone is measured in terms of the per-
centage of variables that have the same value in all possible
solutions. We will observe a transition from a phase where
the size of the backbone is almost 100% to a phase with a
backbone of size close to 0%. The transition is sudden and
we will show how it coincides with the hardest problem in-
stances both for incomplete and complete search methods.

Quasigroups with holes
Most traditional benchmark problems are based on ran-
domly generated instances with little or no global structure.
In Gomes and Selman (1997), we introduced the so-called
quasigroup completion problem in order to obtain bench-
mark instances with more interesting structural properties.

The best way to view the quasigroup completion problem
is in terms of the completion of a Latin square (which tech-
nically defines the multiplication table of the quasigroup).
Given N colors, a Latin square is defined by an N by N
table, where each entry has a color and where there are
no repeated colors in any row or column. N is called the
order of the square. Gomes and Selman considered the
problem of whether a partially colored Latin square can be
completed into a full Latin square by assigning colors to
the open entries of the table. This problem is referred to
as the quasigroup completion problem (QCP). QCP is NP-
complete (Colbourn 1984) and has an interesting phase tran-
sition phenomenon with an associated easy-hard-easy pat-
tern as a function of the fraction of number of preassigned
colors. The domain has been used to study the effectiveness
of a variety of local consistency measures for constraint sat-
isfaction procedures (Stergiou and Walsh 1999, Walsh 1999,
Regin 1994).

The quasigroup completion task has interesting global
structure but does not lend itself well for the evaluation of
local search methods because we again have a mix of satis-
fiable and unsatisfiable instances. However, we will intro-
duce a new generator based on the quasigroup domain that
gives a natural unbiased way for obtaining only satisfiable
instances, with good computational properties, namely by
starting with a full quasigroup and “punching” holes into it.
We use a recent result on generating uniformly distributed
random complete quasigroups for generating our initial full



quasigroup.
The problem of generating uniformly distributed Latin

squares is non-trivial. Jacobson and Matthews (1996) show
how by simulating an ergodic Markov chain whose station-
ary distribution is uniform over the space of N by N Latin
squares, one can obtain squares that are (approximately) uni-
formly distributed. The Markov chain Monte Carlo method
starts with a complete Latin square. (There is an efficient
method for generating a fixed Latin square of any size.) Sub-
sequently, the method randomly “perturbs” the initial Latin
square to obtain a new square; repeated random perturba-
tions lead us through a chain of squares. The difficult part is
to design sequences of perturbations that lead from one valid
Latin square to another while ensuring that one can reach
any arbitrary Latin square in the chain with equal probabil-
ity in the stationary distribution. The method proposed by
Jacobson and Matthews corresponds to a random walk on
a finite, connected, nonbipartite undirected graph and there-
fore it is ergodic, with stationary distribution assigning each
vertex a probability proportional to its degree.

The Jacobson and Matthews approach provides us with
a good starting point for obtaining interesting satisfiable
computational instances. We propose the following gener-
ator: (1) Generate a complete Latin square according to the
Markov chain Monte Carlo approach proposed by Jacobson
and Matthews; (2) punch a fraction p of “holes” in the Latin
square (i.e., uncolor some of the entries) in a uniformly dis-
tributed manner. The resulting partial Latin square is now
guaranteed to be satisfiable and moreover, as we will see
below, we can finely control its expected hardness by tun-
ing the value of p. We call this new problem the “quasi-
group with holes” (QWH) problem.1 As we will describe
below, the instances can be solved directly (in order to test
e.g., a constraint-logic programming algorithm) or translated
into a Boolean CNF encoding (in order to test general SAT
solvers). It is interesting to note that while the quasigroup
domain lends itself naturally to a satisfiable instance gener-
ator with good computational properties, it is not clear how
a similar generator could be developed for, e.g., k-SAT or
graph coloring.

The quasigroup with holes problem is NP-hard. This
follows from the following argument. Assume one had a
polynomial algorithm that could solve QWH. Such an algo-
rithm could be used to solve the quasigroup completion task
(QCP), by simply running the algorithm with a polynomial
time bound. The bounded algorithm would either solve our
completion problem or terminate at the time bound, indicat-
ing no solution exists. However, this is impossible because,
as noted above, QCP is NP-complete.

In the next sections, we will identify a clear easy-hard-
easy pattern for both complete and incomplete search meth-
ods on these problem instances. Note that because we are
dealing with a distribution of satisfiable instances only, we
obtain a clear full easy-hard-easy diagram for a incomplete
search method. Clark et al. (1996) provide initial results on
a such a pattern for local search using standard benchmarks.
However, given the rareness of satisfiable instances on the

1We thank Mark Stickel for some preliminary discussions on
the use of the quasigroups with holes (Stickel, personal communi-
cations, May 1998).

unsat side of the phase transition it is difficult to establish a
clear full pattern. We will also show that the hardness re-
gion of our satisfiable problem instances coincides with a
new kind of phase transition. This transition differs from the
standard sat/unsat transition because we now have only sat-
isfiable instances, but like the standard transition, it is based
on an underlying structural property — namely, the back-
bone.

Problem hardness
In order to solve QWH instances, we explored a range of
algorithms. We used an ILOG constraint solver working di-
rectly on the constraint satisfaction encoding of the problem.
In the ILOG solver, we incorporated, aside from the standard
constraint propagation methods, the all-diff constraint (Ster-
giou and Walsh 1999; Regin 1994). We also implemented
(in C) a local search procedure working directly on the con-
straint representation. Finally, we converted the problem in-
stances into Boolean satisfiability encodings and used state-
of-the-art SAT solvers, both complete and incomplete meth-
ods. To our surprise, the approach via a SAT encoding is
more efficient than using the direct CSP approaches; ap-
parently, the increase in the size of the encoding when go-
ing to SAT does not hurt overall performance. Given the
space limitations of this paper, we will only include the data
for our best performing procedures, the backtracking SAT
solver Satz (Li and Anbulagan 1997) and the local search
SAT solver Walksat (Selman et al. 1996). (Both solvers are
available from SATLIB (Hoos 1999).) Our data for the CSP
approach is qualitatively the same. The QWH instances thus
provide a good benchmark for both CSP and for SAT meth-
ods. Experimental data, instances, and generator (both SAT
and CSP representation) are available from the authors.

In Fig. 1, we show the computational cost profiles for an
incomplete (Walksat; left panel) and a complete (Satz; right
panel) search method for the QWH problem. Along the hor-
izontal axis, we vary the fraction of holes in the quasigroup.
More specifically, we take the ratio of the number of holes
to the total number of entries in the Latin square, i.e., N 2,
where N is order of the square. The vertical axis gives the
median computational cost. For Walksat, the cost is mea-
sured in terms of the total number of variable flips; for Satz
we measured the total number of backtracks.

The figure shows a clear easy-hard-easy pattern for both
the incomplete and the complete search methods. Over a
range of different sizes (N = 30, 33, 36) we see a rapid (in
fact, exponential) increase in search cost in the hardest re-
gion. Close observation shows that there is a slight shift in
the location of the peaks. We will return to this issue below,
when we discuss a way of rescaling the figures to precisely
line up the peaks.

Aside from having a clear easy-hard-easy pattern, the
main point of interest in Fig. 1 is the profile for the incom-
plete search method. We see a clear example of an easy-
hard-easy pattern for an incomplete search method. Because
previous problem generators give a mixture of sat and un-
sat cases, such an easy-hard-easy pattern has generally been
reported so far only for complete methods, which can han-
dle both types of instances. Our figure shows that the no-
tions of under-constrained, critically constrained, and over-
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Figure 1: Computational cost profiles for incomplete (Walksat) and complete (Satz) search methods for QWH.

constrained (Hogg et al. 1996) are also predictive of the
performance of incomplete search methods.
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Figure 2: Backbone phase transition with cost profile.

A New Type of Phase Transition
One of the key advances in our understanding of problem
hardness has been the connection between the easy-hard-
easy pattern in search complexity and phase transition phe-
nomena (Cheeseman 1991; Mitchell et al. 1992; Kirkpatrick
and Selman 1994; Hogg et al. 1996; Hayes 1996). In par-
ticular, a clear connection has been established between the
hardest problem instances and the phase transition region,
where instances shift from being mostly satisfiable to being
mostly unsatisfiable. One of the interesting aspects of this
connection is that properties of the SAT/UNSAT phase tran-
sition can be analyzed quite independently from any particu-
lar solution procedure. In fact, this has led to a large number
of papers on the SAT/UNSAT phase transition per se.

For the QWH instances, we do not have a SAT/UNSAT
phase transition, since all our instances are guaranteed to be
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Figure 3: Backbone for different orders.

satisfiable. Nevertheless, we can use recently introduced no-
tions from the study of phase transition phenomena to link
the peak in search complexity to a phase transition in struc-
tural properties of our problem instances. To do so, we will
consider so-called backbone variables.

Monasson et al. (1999) introduced the notion of the back-
bone of a SAT problem to refer to the fraction of its vari-
ables that are fully constrained: that is, which take on the
same values in all solutions. The backbone fraction (ratio
of backbone variables to the total number of variables) is a
property of CSP and SAT problems that is well-defined for
satisfiable distributions.

Fig. 2 shows the backbone fraction as a function of the
fraction of holes in the QWH problem. We also included
the normalized cost of local search. The figure shows a
sharp phase transition phenomenon in the backbone fraction,
which coincide with the hardness peak in local search.2

2The figure gives data for N = 36. The hardness peak for
our complete search method also lies in the phase transition region
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The reasons for the correlation between problem hardness
and the appearance of the backbone are not fully understood
at this time. One intuition is that backtracking search algo-
rithms have the worst performance when they make an in-
correct choice near the root of the search tree: that is, when
they make a variable-value assignment that appears in no
solution. For the algorithm to have a significant chance of
making such a bad choice a non-negligible fraction of the
variables must appear in the backbone. When the back-
bone fraction nears 1, however, the problems are so over-
constrained that incorrect choices near the root are quickly
detected and corrected. For local search procedures, an ex-
planation might be developed by considering the relation-
ship between the backbone and set of solutions to the in-
stances. When the backbone is small, there are many so-
lutions widely distributed in the search space, and so local
search may quickly find one. When the backbone is near
1, the solutions are tightly clustered, so that that all clauses
“vote” to push the search in the same direction. A partial
backbone, however, may indicate that solutions are in differ-
ent clusters that are widely distributed, with different clauses
pushing the search in different directions. Making these in-
tuitions precise, however, awaits future research.

Re-parameterization
As we noted above, there is a slight shift in the location of
the hardness peak as a function of N . There is a similar shift
in the location of the backbone phase transition. This points
to the fact that the original parameterization in terms of the
fraction of holes does not exactly capture the dimensionality
of our problem.3 Fig. 3 shows the shift in the backbone tran-
sition for a larger range of problem sizes (N = 30, . . . , 57). 4

but is shifted slightly to the right. We are currently investigating
whether that shift is real or part of the uncertainty in our data.

3Note that a similar shift is also present in the original quasi-
group completion problem.

4Computing the full backbone is prohibitively expensive. The
figure gives a good approximation of the backbone fraction com-
puted by using forward-checking to estimate the fraction of fixed
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Figure 5: Normalized computational cost.
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Figure 6: Re-parameterized computational cost.

Some experimentation with different parameterization
leads us to Fig. 4. This figure shows the backbone plotted
against the number holes over N 1.55. Note that we originally
used “number of holes over N 2”. We are currently working
on an analytical derivation of the re-parameterization.

Finally, Figs. 5 and 6 show how our rescaling also cor-
rects for the shift in the complexity peak of our local search
method. To show the original shift, Fig. 5 gives the search
complexity for three different sizes of the QWH problem,
where the cost has been normalized to 1. Fig. 6 shows how
the peaks collapse onto each other after rescaling. The peaks
for the complete search method (right panel in Fig. 1) also
align after such a rescaling.

variables. This estimate is a few percentage off from the true value,
but the shifting behavior appears identical to that of the full back-
bone, based on experiments for smaller values of N .



Conclusions
We propose a problem generator for satisfiable instances.
The generator samples from satisfiable quasigroups of a
given size with a given number of holes. The hardness of
the QWH problem instances can be tuned by varying the
fraction of holes in the quasigroup instances. The main ad-
vantage of this generator is that it generates satisfiable in-
stances only and is therefore well-suited for use in the study
and evaluation of incomplete search methods.

Several earlier attempts at designing such a generator
(e.g., by forcing a given solution during the problem gener-
ation) were unsatisfactory. Using our generator, we showed
that a local search method does exhibit the easy-hard-easy
pattern, as observed previously for complete search meth-
ods. Based on the notion of under-constrained, critically
constrained, and over-constrained regions identified with
complete search methods, it was believed that an easy-hard-
easy pattern would emerge for local search methods but this
was difficult to confirm empirically because satisfiable in-
stances in the over-constrained region are extremely rare for
standard problem generators.

We also show how the hardest region of the satisfiable
instances coincides with a new kind of phase transition
in terms of the backbone of the problem instances. The
backbone characterizes the amount of shared structure be-
tween solutions. Finally, we present an empirically obtained
re-parameterization of the phase transition and complexity
peak of the quasigroup with holes problem. Our generator
outputs instances suitable for both CSP and SAT style meth-
ods. The generator should therefore be of use in the future
development of stochastic local search style CSP and SAT
methods.
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