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Abstract

Recently, there has been much interest in enhancing
purely combinatorial formalisms with numerical informa-
tion. For example, planning formalisms can be enriched
by taking resource constraints and probabilistic informa-
tion into account. The Mixed Integer Programming (MIP)
paradigm from Operations Research provides a natural tool
for solving optimization problems that combine such nu-
meric and non-numeric information. The MIP approach re-
lies heavily on linear program relaxations and branch-and-
bound search. This is in contrast with depth-first or itera-
tive deepening strategies generally used in AI. We provide a
detailed characterization of the structure of the underlying
search spaces as explored by these search strategies. Our
analysis indicates that the traditional approach of identify-
ing dominating search strategies for a given problem do-
main is inadequate. We show that much can be gained from
combining search strategies for solving hard MIP problems,
thereby leveraging the strength of different search strategies
regarding both the combinatorial and numeric components
of the problem.

1. Introduction

Integrating numerical information into standard AI for-
malism is becoming of increasing importance. For exam-
ple, in planning, one would like to incorporate resource con-
straints or a measure of overall plan quality. Other examples
are in the area of probabilistic reasoning, where one needs
to maximize the probability of the most desirable outcome.

The resulting optimization problems appear to have a
novel character in that both the combinatorial aspect of the
problem and the optimization part are computationally chal-
lenging. More concretely, in the area of planning, we en-
counter problems for which it is difficult to find a plan that
satisfies the hard constraints of the planning task even when
ignoring resource constraints. And, of course, finding better

plans, with, say, more balanced vehicle loads, is even more
difficult. The resulting problems appear to call for a combi-
nation of techniques developed for constraint satisfaction to
tackle the difficult combinatorics of the problem combined,
with techniques from operations research (OR), such as lin-
ear program relaxation methods, to handle the numerical
optimization aspect of the problem.

A key notion in OR is the use of anobjective function,
with the goal of minimizing or maximizing this function.
An objective function is essential in OR models, for two
reasons: On one hand, it provides a criterion to guide the
search for solutions. Furthermore, it is a way of consider-
ing soft constraints. OR experts dealing with real-world ap-
plications use the approach of encoding constraints through
the objective function, avoiding the use of hard constraints
as much as possible. A goal constraint is an objective that
is desirable but, if necessary, it can be violated.

In AI, we see more emphasis on feasibility, as opposed
to optimization, because problems generally involve a large
number ofhard constraints that are not amenable to being
transformed into soft constraints. For example, in a plan-
ning formalism, all pre-conditions of an operator generally
need to be satisfied in order for the operator to be applica-
ble. We can translate such problems into an OR-style mixed
integer programming (MIP) paradigm. The resulting MIP
problems have a hard feasibility component, which appears
to require new solution strategies. Still this is a promising
direction to pursue because the MIP formulation provides
a natural way for adding soft constraints, or in general nu-
merical information, to problems. In planning, for example,
one can formulate an objective function to minimize the im-
balance in vehicle loads ([3], [11], [9], and [13].).

Interestingly, because of the different foci of AI and OR,
one on feasibility and the other on optimization, the search
paradigms pursued in AI and OR are quite different and
specifically taylored towards their respective problem en-
codings.

OR has traditionally focused on problem formulations
where linear program relaxations provide a significant



amount of information to prune a branch and bound search.
Such methods are less suited for problems, where no good
relaxations exist, such as problems with a clear combinato-
rial component. CSP techniques are more effective at such
combinatorial searches. The underlying search paradigm in
the CSP approach is a depth first search strategy, enhanced
with local propagation and often dynamic variable order
strategies. As a result of these different search paradigms,
we find that AI search methods tend to branch very quickly,
often searching millions of nodes, whereas OR methods
explore few nodes but spend a significant amount of time
pruning nodes by solving IP relaxations [5].1

The challenge we address in this paper is to find a way
of synergistically combining AI and OR search methods to
solve problem instances with both a difficult feasibility and
optimization part. Our focus is on the characterization of
problem distributions and runtime profiles. We present a
detailed analysis of the properties of these distributions on a
range of hard Mixed Integer Programming problems. Based
on our findings, we then present a framework for dynami-
cally mixing solution strategies to optimize overall perfor-
mance. Our experiments are done with a state-of-the-art
commercial MIP solver, called CPLEX. The mixed strate-
gies can be directly incorporated into the CPLEX solver.

The paper is structured as follows. In the next section,
we review branch-and-bound methods as used for solving
MIP problems. In the following sections, we present our
data on run time distributions for various search strategies.
We then present a general framework for combining these
search strategies. We illustrate our approach with an opti-
mization problem (with a hard feasibility component) from
the logistics planning domain as well as problems from the
MIPLIB library [2]. We consider both the issue of feasibil-
ity and optimality of solutions.

2. Branch-and-Bound for MIP

The standard approach in OR for solving MIP problems
is to use a branch-and-bound search. First, a linear program
(LP) relaxation of the problem instance is considered. In
such a relaxation, all variables of the problem are treated
as continuous variables. If the solution to the LP relaxation
problem has non-integer values for some of the integer vari-
ables, we have to branch on one of those variables. This way
we create two new subproblems (nodes of the search tree),
one with the floor of the fractional value and one with the
ceiling. (For the case of binary (0/1) variables, we create

1One may wonder why the OR approaches do not work well on purely
combinatorial problems. The reason is that the LP relaxation may provide
little or no information to guide the search. A concrete example are at-
tempts to solve the propositional satisfiability using IP/LP techniques. The
problem is that in the standard IP formulations the LP relaxation sets all
0/1 variables to 0.5.

an instance with the variable set to 0 and another with the
variable set to 1.) The standard heuristic for deciding which
variable to branch on is based on the degree of infeasibility
of variables (“max infeasibility variable selection”). That
is, we select the variable whose non-integer part in the so-
lution of the LP relaxation is closest to 0.5. Informally, we
pick the variable whose value is least “decided”.

Following the strategy of repeatedly fixing integer vari-
ables to integer values will lead at some point to a subprob-
lem with an overall integer solution (provided we are deal-
ing with a feasible problem instance). (Note we call any
solution where all the integer variables have integer values
an “integer solution”.) In practice, it often happens that the
solution of the LP relaxation of a subproblem already is an
integer solution, in which case we do not have to branch
further from this node.

Once we have found an integer solution, its objective
function value can be used to prune other nodes in the tree,
whose relaxations have worse values. This is because the
LP relaxation bounds the optimal solution of the problem.
For example, for a minimization problem, the LP relaxation
of a node provides a lower-bound on the best possible inte-
ger solution.

Another critical issue that determines the performance
of branch-and-bound is the way in which the next node to
expand is selected. The standard approach, in OR, is to go
with a best-bound selection strategy. That is, from the list
of nodes (subproblems) to be considered, we select the one
with the best LP bound. (This approach is analogous to an
A? style search. The LP relaxation provides an admissible
search heuristic.)

The best-bound node selection strategy is particularly
well-suited for reaching an optimal solution (because of the
greedy guidance), which has been the traditional focus of
much of the research in OR. One significant drawback of
this approach is that it may take a long time before the pro-
cedure finds an integer solution, because of the breadth first
flavor of the search. Also, the approach has serious mem-
ory requirements because the full fringe of the tree has to be
stored.

Given problems that have a difficult feasibility part, the
best-bound approach may take too long before reaching an
integer solution. (Note that an integer solution is required
before any nodes can be pruned.) In our experiments, we
therefore also considered a depth-first node selection strat-
egy. Such a strategy often quickly reaches an integer so-
lution, but may take longer to produce an overall optimal
value.

3. Characterizing Search Spaces

As discussed in the introduction, we are interested in
problems that combine both a hard feasibility aspect with
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Figure 1. Comparison of runtime profiles for
depth-first and best-bound search strategies
on a logistics planning problem.

a hard optimality component. We obtained examples based
on logistics planning problems, formulated as MIP prob-
lems. These formulations extend the traditional AI planning
approach by combining the hard constraints of the planning
operators, initial state, and goal state, with a series of soft
contraints capturing resource utilization. For example, one
can require that trucks are loaded as close as possible to
their maximum capacity. Some initial experimentation with
the CPLEX MIP solver showed that these problem instances
have indeed a non-trivial feasibility as well as a non-trivial
optimization part.2

In addition to the logistics problems, we also considered
the problems in the MIPLIB problem library [2]. This is a
set of 59 benchmark problems, widely used within the OR
community. We ran extensive experiments on these prob-
lems to look for interesting search behavior. However, we
found that the vast majority of the problems have a non-
interesting feasibility part. (A feasible integer solution can
often be found in less than 1 second.) These problems there-
fore are mainly of interest for proving optimality of solu-
tions. We include below data on proving optimality of a pro-
totypical problem instance from the library. The instance is
calledmisc07 ; it has 259 0/1 variables, 1 continuous vari-
able, and 212 linear inequality constraints.

In our experiments, we used a state-of-the-art MIP pro-
gramming package, called CPLEX. CPLEX provides a set
of libraries that allows one to customize the branch-and-
bound search strategy. For example, one can vary node se-
lection, variable selection, variable setting strategies, the LP
solver, etc. We used the default settings for the LP solver,

2We thank Henry Kautz and Joachim Walser for providing us with MIP
formulations of the logistic planning problems.
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Figure 2. Heavy-tailed behavior of depth-first
search.
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Figure 3. Comparison of runtime profiles for
proving optimality for misc07 from MIPLIB.

which is for the first node primal-simplex and for subse-
quent nodes dual-simplex. We modified the search strate-
gies to include some level of randomization.

Randomized search strategies have been shown to to be
more robust than deterministic ones when dealing with a
variety of problem instances ( [1], [12], and [8]). We ran-
domized the variable selection strategy by introducing noise
in the ranking of the variables, based on maximum infea-
sibility. Note that the completeness of the search method
is maintained. This is in contrast to the situation for lo-
cal search. We have experimented with several other ran-
domization strategies. For example, in CPLEX one can as-
sign an apriori variable ranking, which is fixed throughout
branch-and-bound. We experimented by randomizing this
apriori ranking. We found, however, that the dynamic ran-
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Figure 4. No heavy-tailed behavior for proving
optimality.

domized variable selection strategy, as described above, is
more effective.

In figure 1, we compare the runtime profile of a depth-
first strategy with a best-bound strategy. The search is ter-
minated when an optimal or near-optimal (<10% from opti-
mal) solution is found, but without the requirement of prov-
ing optimality.3 The figure shows the cumulative distribu-
tion of solution time (in number of expanded nodes). For
example, within 500 nodes, the depth-first search finds a
solution on approximately 40% of the runs. Each run had
a time limit of 5000 seconds. As we see from the figure,
the depth-first search initially outperforms the best-bound
search. However, after more than 1500 node expansions,
the best-bound becomes more effective. For example, best-
bound finds a solution on approximately 75% of the runs
with 2000 node expansions or less. In contrast, depth-first
search can only find solutions on 55% of the runs with the
same number of node expansions. This data is consistent
with the observation above that best-bound may take some
time to find an intial integer solution. However, once such a
solution is found, optimization becomes more effective.

We now consider the runtime distributions more closely.
Figure 2 gives a log-log plot of the the complement of the
cumulative distribution for the depth-first procedure. For
example, from this plot, we see that after 10,000 nodes, ap-
proximately 30% of the runs have not yet found the solu-
tion. The figures shows a near linear behavior over sev-
eral orders of magnitude. This is an indication of so-called
heavy-tailed behavior which often characterizes complete
search methods [7]. In a sense, the time till solution behaves

3One should be careful to distinguish between finding an optimal inte-
ger solution and proving that this is indeedtheoptimal solution. Our inter-
est lies in problems where the proof of optimality can be beyond reach of
any procedure; however, we can often still find good quality solution.
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Figure 5. Strategy when using two processors
(or by interleaving to two processes) for logis-
tics planning.

in a very erratic manner: very long runs occur much more
frequently than one might expect. Best-bound also appears
to exhibit heavy-tailed behavior, but less dramaticly than
that for depth-first search.

This erratic search behavior is related to the feasibility
part of the search. For example, when we move to prov-
ing optimality, the cost distributions are no longer heavy-
tailed. This can be seen from figures 3 and 4. These fig-
ures show the distributions for proving optimality of the
misc07 problem from the MIPLIB library. In compari-
son to the previous figures, it is apparent that the runtime
for proving optimality exhibits much less variance both for
best-bound and for depth-first. (The sharp drop-off in the
log-log plot in figure 4 is a clear indication of the absence
of heavy-tails.) Our experiments for proving optimality on
other instances from the MIPLIB library also did not reveal
heavy-tails. We conjecture that indeed proving optimality
does not produce heavy-tails since the entire search space
has to be explored. This is consistent with the results by
Frostet al. [4] on constraint satisfaction problems. They
show that standard (not heavy-tailed) distributions, such as
the Weibull and log-normal distribution, underly the cost of
proving inconsistency.

4. Dynamic Strategies

In the previous section we have shown that there are
several interesting trade-offs between depth-first branch-
and-bound versus best-bound branch-and-bound. In par-
ticular, depth-first search performs better early on in the
search, whereas best-bound is better on longer runs. We
also demonstrated large variations in search cost when look-
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Figure 6. Strategy when using six processors
(or running interleaved) for logistics planning
problem.

ing for a “good” feasible solution.
These results indicate that choosing a single search strat-

egy — which is the standard current practice — may not be
the most effective approach when dealing with these types
of MIP problems. In fact, as we will show below, one can
obtain better results by combining strategies, either by in-
terleaving them or by running them in parallel.

Our analysis extends the portfolio framework, as first
studied by Hubermanet al. [10] in the context of graph
coloring methods, and by Gomes and Selman [6] for CSP
approaches. In this section, we show the applicability of
this framework for the general paradigm of mixed integer
programming.

In figure 5, we consider the case of using two proces-
sors to solve our feasibility problem for the logistics domain
(the same instance as the one considered in figures 1 and 2).
The plot gives the expected run time and standard deviation
for different ways of combining a branch-and-bound search
procedure using depth-first search and best-bound search,
assuming two processors. From this plot we see that the
best choice, in terms of minimizing expected running time
and standard deviation, corresponds to running branch-and-
bound with best-bound on both processors. The expected
run time of such a strategy is approximately 700 nodes with
a standard deviation of around 750. Contrast these values,
for example, with the much higher values corresponding to
the strategy of running branch-and-bound with depth-first
on both processors (average 4397 and standard deviation of
14112).

Figures 6, 7, and 8 show how the mixing strategies
change as we increase the number of processors or the
amount of interleaving. For example, for the case of six
processors, the best strategies are 3DF/3BB, 4DF/2BB, and
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Figure 7. Strategy when using twenty pro-
cessors (or running interleaved) for logistics
planning problem.

5DF/1BB. (We use the notation xDF/yBB to mean running
x depth-first processes and y best-bound processes.) These
strategies give both a low expected run time and a low stan-
dard deviations. There is no clear dominant strategy among
those three. In this set, one has to trade a decrease in ex-
pected run time for an increase in variance. It is interest-
ing to observe that this analysis shows that in the case of 20
processes, the best strategy corresponds to only using depth-
first search (i.e., 20DF/0BB). Figure 8 shows how these pro-
files change depending on the number of processors.

Finally, figure 9 shows the various profiles for proving
optimality for themisc07 problem instance. The main as-
pect to note is that in this case the shape of the profiles does
not change as the number of processors increases. This is
due to the fact that the underlying cost distributions show
much less variation. (They are not heavy-tailed.) Nevether-
less, mixing strategies is still advantageous, depending on
whether one wants to minimize expected cost or variance.

5. Conclusions

We have studied search methods for solving mixed inte-
ger programming problems. We focused on problems that
include both a hard feasibility part and a relatively difficult
optimization component. Such problems arise in AI appli-
cation when one adds numerical information or soft con-
straints to a problem with a hard combinatorial component
(such as a planning problem). We have shown that there
is not one dominant strategy for finding optimal or near-
optimal solutions. In fact, depth-first search can effectively
complement best-bound strategies, as used in a branch-and-
bound approach. We have also presented a framework for
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combining different search strategies, taking into consider-
ation the tradeoffs between expected run time and overall
variance. Our results show that, by interleaving processes,
one can reduce variance and expected run time. Given the
wide use of MIP formulations, we hope that our results will
have an impact in the area.
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