
The Impact of Balancing on Problem Hardness in a Highly Structured Domain ∗

Carlos Ansótegui1, Ramón Béjar2, César Fernàndez2, Carla Gomes3, Carles Mateu2

1 carlos@iiia.csic.es, IIIA-CSIC, Barcelona, SPAIN
2 {ramon,cesar,carlesm}@diei.udl.es, Dept. of Computer Science, Universitat de Lleida, SPAIN

3 gomes@cs.cornell.edu, Dept. of Computer Science, Cornell University, USA

Abstract

Random problem distributions have played a key role
in the study and design of algorithms for constraint sat-
isfaction and Boolean satisfiability, as well as in our
understanding of problem hardness, beyond standard
worst-case complexity. We consider random problem
distributions from a highly structured problem domain
that generalizes the Quasigroup Completion problem
(QCP) and Quasigroup with Holes (QWH), a widely
used domain that captures the structure underlying a
range of real-world applications. Our problem domain
is also a generalization of the well-known Sudoku puz-
zle: we consider Sudoku instances of arbitrary order,
with the additional generalization that the block re-
gions can have rectangular shape, in addition to the
standard square shape. We evaluate the computational
hardness of Generalized Sudoku instances, for different
parameter settings. Our experimental hardness results
show that we can generate instances that are consider-
ably harder than QCP/QWH instances of the same size.
More interestingly, we show the impact of different bal-
ancing strategies on problem hardness. We also provide
insights into backbone variables in Generalized Sudoku
instances and how they correlate to problem hardness.

Introduction
In recent years we have seen a tremendous development of
both complete and incomplete search methods for constraint
satisfaction (CSP) and Boolean satisfiability (SAT) prob-
lems. An important factor in the development of new search
methods is the availability of good sets of benchmarks prob-
lems used to evaluate and fine-tune the algorithms. Random
problem distributions have played a key role in the study
and design of algorithms, as well as in our understanding of
problem hardness, beyond standard worst-case complexity.
Problem distributions, such as random k-SAT, have tradi-
tionally been used to study the typical case complexity of
combinatorial search problems. However, real-world prob-
lem instances have much more structure than that found in
random SAT instances. In order to study the impact of struc-
ture on problem hardness, Gomes and Selman introduced
the Quasigroup Completion completion problem (QCP) as
a benchmark problem for evaluating combinatorial search
methods: the structure underlying this domain can be found

∗Research partially supported by projects TIN2004-07933-
C03-03, TIN2005-09312-C03-01 and TIC2003-00950 funded by
the Ministerio de Educación y Ciencia.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

in a range of real-world applications, such as timetabling,
routing, and design of statistical experiments (Gomes & Sel-
man 1997). QCP (and its variants) has become a widely used
benchmark domain and it has led researchers to the discov-
ery of interesting phenomena that characterize combinato-
rial search and consequently to the design of new search and
inference strategies for such domains. Examples include,
the so-called heavy-tailed phenomena, randomization and
restarts strategies, e.g., (Gomes, Selman, & Crato 1997;
Gomes et al. 2004; Refalo 2004; Hulubei & O’Sullivan
2006), the design of efficient global constraints, e.g., (Shaw,
Stergiou, & Walsh 1998; Régin & Gomes 2004), and trade-
offs in different CSP and SAT based representations (see e.g.
(Dotú, del Val, & Cebrián 2003; Ansótegui et al. 2004)).

We consider random problem distributions from a highly
structured problem domain that generalizes QCP and Quasi-
group with Holes (QWH). Our problem domain also gen-
eralizes the popular Sudoku puzzle: In Sudoku the goal is
to complete a partially filled 9x9 matrix, with 9 symbols,
without repeating a symbol in a row, column, and in each
of its 9 3x3 sub-matrix regions. Like QCP and QWH, Su-
doku’s structure is that of a Latin square, with the additional
constraint that all 9 symbols must appear in each of its 9 sub-
regions of size 3x3. Although some Sudoku instances can be
challenging for humans, they can be easily solved by current
state-of-the art CSP or SAT solvers, even when only using
polytime inference methods, without search (Simonis 2005;
Lynce & Ouaknine 2006). So, our goal is to produce chal-
lenging Generalized Sudoku Problem (GSP) instances for
CSP and SAT based search algorithms.

A Generalized Sudoku instance has an arbitrary order n
with block regions that can have rectangular or square shape
and it can have more than one solution or it can even be un-
satisfiable. We show that our Generalized Sudoku problem
(GSP) is NP-complete. We also provide a method for gen-
erating GSP instances that are guaranteed to have solutions.
We refer to this variant as Generalized Sudoku with Holes
(GSWH) problem, inspired by the QWH problem (Achliop-
tas et al. 2000; Barták 2005). GSWH instances are gener-
ated by “punching” holes into a complete GS instance. A
key question concerning GSWH is the impact of different
hole punching strategies on problem hardness. We present
a method that produces highly balanced GSWH instances:
The idea is to balance the number of holes between the re-
gions of the Sudoku, in addition to balancing the number of
holes between rows and columns. Our results show that our
GSWH instances are harder to solve than QWH instances;

furthermore, we also show that hardness increases as a func-
tion of the squareness of the block regions. In other words,
GS instances with square block regions are harder than GS
instances with rectangular block regions, for the same or-
der. Concerning hole patterns, our highly balanced method
of punching holes produces instances substantially harder
than balanced QWH instances (Kautz et al. 2001). An
open question, raised by our results, is to what extent our
method produces harder instances because it increases the
“bandwidth” of the corresponding bipartite graph associated
with the hole pattern. Finally, we also show an interesting
correlation across different constrainedness regions between
an approximation of the number of so-called backbone vari-
ables and the complexity of GSWH.

Generalized Sudoku Problems
A valid complete Generalized Sudoku (GS) instance of or-
der s on s symbols, is an s × s matrix, with each of its s2

cells filled with one of the s symbols, such that no symbol is
repeated in a row, column, or block region. A block region is
a set of s pre-defined cells; block regions don’t overlap, and
therefore there are exactly s block regions in a GS instance
of order s. In the case of square region blocks, each block
has

√
s ×

√
s cells (

√
s has to be an integer); in the case of

rectangular regions, each block has n × l cells (n columns,
l rows), always with n · l = s. One can also consider block
regions of arbitrary shape. These generalizations provide us
with a range of interesting problems, starting from quasi-
group with holes (QWH) (Achlioptas et al. 2000) (when the
block regions correspond to single rows) to standard gener-
alized Sudokus (when the regions are squares). In this paper
we consider GS instances with rectangular and square block
regions.

The Generalized Sudoku problem (GSP) is defined as fol-
lows: Given a partially filled Generalized Sudoku instance
of order s can we fill the remaining cells of the s × s ma-
trix such that we obtain a valid complete Generalized Su-
doku instance? GSP is NP-complete, given that it is a gen-
eralization of Sudoku, known to be NP-complete (Yato &
Seta 2002). To show the NP-completeness of GSP, when the
regions are strictly of rectangular shape, with dimensions
n × l = s, we use a reduction from completing a partial
Latin square (LS) of side l that can be seen as a generaliza-
tion of the one in (Yato & Seta 2002). The idea is that now
we use a GS of side n · l with set of symbols (a, b) with
0 ≤ a < l, 0 ≤ b < n; the set of symbols associated with
the LS is still the subset (a, 0). To embed the LS into the
GSP instance, we fill position S(i, j) of the GSP instance
with the symbol:

(i + bj/nc mod l, j + bi/lc mod n) (1)
Observe that in this (totally filled) GSP instance the set of
symbols placed in the positions:

B = {(i, j) | 0 ≤ i < l, j mod n = 0} (2)
is the subset (a, 0) and that the positions in B form a LS
of side l with that subset of symbols. Then, we embed the
partial LS of side l by mapping symbol i of the LS to symbol
(i, 0) of the GSP and changing the contents of the set of
positions B to embed the partial LS in this way:

S(i, j) =
{

(LS(i, j/n), 0) (i, j) ∈ B,LS(i, j/n) 6=⊥
⊥ (i, j) ∈ B,LS(i, j/n) =⊥

(3)

So, the (partially filled) GSP instance with rectangular block
regions will have solution if and only if the partial LS has
solution.

Generating complete Generalized Sudokus
To generate a GS instance, we follow the approach of build-
ing a Markov chain whose set of states includes, as a subset,
the set of complete Generalized Sudokus. We use the second
Markov chain defined in (Jacobson & Matthews 1996) that
considers only “proper” Latin squares as states. Because any
GS is also a Latin square of the same order, this chain obvi-
ously includes a subchain with all the possible GSs. So, for
any pair of complete GSs there exists a sequence of proper
moves, of the type mentioned in Theorem 6 of (Jacobson &
Matthews 1996), that transforms one into the other.

However, if we simply use the Markov chain by making
(proper) moves uniformly at random, starting from an initial
complete GS, most of the time we will reach Latin squares
that are not valid GSs. To cope with this problem, we se-
lect the move that minimizes the number of “violated” cells,
i.e. cells with a color that appears at least once more in the
same region of the cell. To escape local minima, we se-
lect the move uniformly at random every certain number of
moves1. So, to generate a random GS, we start from an ini-
tial GS2, and we perform the moves described above until
we have generated a certain number of valid GSs. Observe
that this method does not necessarily generate a GS instance
uniformly at random, because we do not always select the
next move uniformly at random. However, as we will see in
the experimental results, the method provides us with very
hard computational instances of the GSWH problem, once
we punch holes in the appropriate manner.

Balanced Hole Patterns

8x2 Sudoku 4x4 Sudoku

Figure 1: Examples of Singly balanced hole patterns for Su-
doku problems, that allow decomposition in smaller (and
easier) problems. Empty cells are in gray.

Kautz et al. (Kautz et al. 2001) introduced a method for
balancing the hole pattern of a QWH instance, such that the

1In our experiments, this number has been fixed to 20, because
it works reasonable well with all the orders of Generalized Sudokus
that we have tested.

2Note that we can trivially generate a Generalized Sudoku of
arbitrary order, with arbitrary rectangular or square regions, using
equation 1.

number of holes in each row and column is equal. We refer
to such a method as ”Singly balanced”. It turns out that this
way of balancing does not lead to the hardest Generalized
Sudoku instances. To see why, consider the following hole
pattern for a Sudoku problem with regions of dimensions
n × l and such that n mod l = 0. We punch holes in all
the cells of a same region, in such a way that in every region
row (n in total) the number of regions with holes is 1 and in
every region column (l in total) this number is n/l. This cre-
ates an instance with the same number of holes (n) in every
row and column, but that can be decomposed in l smaller
independent subproblems that only involve n/l regions each
one. Observe that for (standard) Sudoku instances, n/l = 1,
so we get a set of n trivial subproblems. Figure 1 shows two
examples of this hole pattern, one for 8x2 Sudokus and the
other for 4x4 Sudokus.

So, the distribution of holes between different regions can
make a difference in the difficulty of the problem. So one
would like to balance the holes also between different re-
gions. Even if the method of (Kautz et al. 2001) will tend
to distribute the holes approximately uniformly between the
regions, it will not always ensure that we have exactly the
same number of holes in every region when the total num-
ber of holes is a multiple of the size of the Sudoku. For that
reason, we propose a method for ensuring both balance con-
ditions: same number of holes in every row and column and
same number of holes in each block region.

Our new ”doubly balanced” method is again based on a
Markov chain, where every state is a hole pattern H with
h holes that satisfies both balance conditions. In order to go
from one hole pattern to another we use a “switch” (Kannan,
Tetali, & Vempala 1997). This kind of move was introduced
to build a Markov chain where every state is a regular bipar-
tite graph (with vertices with a given degree), the Markov
chain is connected, and it includes all possible such graphs.
A hole pattern with the same number of holes in each row
and column can be seen as a regular bipartite graph. A
switch is defined by two entries (i, j), (i′, j′) of the GSP in-
stance, such that there is a hole in (i, j) and (i′, j′) but not in
(i, j′) and (i′, j). If we change both holes to positions (i, j′)
and (i′, j) the row and column hole number does not change.
So, we use this Markov chain, but we restrict the moves to
those moves that also maintain the number of holes present
in each region, i.e., moves such that the regions of (i, j) and
(i′, j′) are either in the same region row or region column,
or both. Such moves always exist, even for a hole pattern
with only one hole in each region. So, we have the follow-
ing code for generating a hole pattern H with q = h/(n · l)
holes in each row, column and region, using a GS S(i, j) to
create the initial pattern considering each symbol as a hole,
and then performing s moves trough the Markov chain:

H = { (i, j) | S(i, j) ∈ [1, q] }
Repeat s times:

T = { switch((i, j), (i′, j′)) of H |
bi/lc = bi′/lc ∨ bj/nc = bj′/nc }

pick a uniformly random switch((i, j), (i′, j′)) from T

H = (H − {(i, j), (i′, j′)}) ∪ {(i, j′), (i′, j)}

We also considered a different method for punching holes:
This method is based on the rectangular model presented
also in (Kautz et al. 2001). The rectangular model selects a
set of columns (or rows) and punches holes in all the cells of

4

1

3

9

2

6

7

8

5

9

6

7

8

5

3

2

4

1

2

8

5

1

7

4

9

6

3

x

x

5

2

8

4

1

7

3

9

6

3

9

6

2

8

5

1

7

4

7

4

1

6

3

9

5

2

8

Figure 2: Grayed cells represent the initial assignment. The
cells marked with × cannot be completed after the two first
columns are completed in the way shown

these columns: in the case of QWH, this method produces
tractable instances (Kautz et al. 2001); they can be solved
using an algorithm based on bipartite graph matching. An
open question is whether a similar hole pattern in the case of
GSP instances also corresponds to a tractable class. Figure 2
shows an example of a solvable 3x3 GSP instance, with a
rectangular hole pattern. The initial assignment is indicated
by the grayed cells. After two rounds of the bipartite graph
matching algorithm, a possible outcome corresponds to the
first two columns in the way shown; this configuration can-
not be completed into a valid Sudoku (even though there ex-
ists a valid completion of the initial partially filled instance).
So, the rectangular hole pattern could still provide hard in-
stances for Sudoku. For that reason, we propose a rectangu-
lar model for Generalized Sudoku, that distributes a set of
c hole columns between the different region columns of the
Generalized Sudoku, in a uniform way. The uniform distri-
bution of the hole columns tries to minimize the clustering
of holes.

Encodings and Solvers
In this work we consider the best performing encodings for
the QCP analyzed in (Ansótegui et al. 2004), and we ex-
tend them with the suitable representation of the additional
alldiff constraints for the regions in the Generalized Sudoku
Problem (GSP). We consider a GSP instance on s symbols.

The SAT encoding extends the SAT 3-dimensional (3D)
encoding proposed in (Kautz et al. 2001) for the QCP. The
encoding uses s Boolean variables per cell; each variable
represents a symbol assigned to a cell, and the total num-
ber of variables is s3. The clauses corresponding to the 3D
encoding represent the following constraints:

1. at least one symbol must be assigned to each cell (alo-
cell);

2. no two symbols are assigned to the same cell (amo-cell);

3. each symbol must appear at least once in each row (alo-
row);

4. no symbol is repeated in the same row (amo-row);

5. each symbol must appear at least once in each column
(alo-column);

6. no symbol is repeated in the same column (amo-column).

Finally, for each region i the clauses we add represent the
following constraints:
7. each symbol must appear at least once in each region i

(alo-regioni).
8. no symbol is repeated in the same region i (amo-regioni).

The same SAT encoding is considered in (Lynce & Ouak-
nine 2006).

The CSP encoding extends the “bichannelling model” of
(Dotú, del Val, & Cebrián 2003). It consists of:
• A set of primal variables X = {xij | 1 ≤ i ≤ s, 1 ≤

j ≤ s}; the value of xij is the symbol assigned to the cell
in the ith row and jth column.

• Two sets of dual variables: R = {rik | 1 ≤ i ≤ s, 1 ≤
k ≤ s}, where the value of rik is the column j where
symbol k occurs in row i; and C = {cjk | 1 ≤ j ≤
s, 0 ≤ k ≤ s} where the value of cjk represents the row
i where symbol k occurs in column j.

The domain of all variables is {1, . . . , s}, where these values
represent respectively symbols, columns, and rows. Vari-
ables of different types are linked by channeling constraints:
• Row channeling constraints link the primal variables with

the row dual variables: xij = k ⇔ rik = j.

• Column channeling constraints link the primal variables
with the column dual variables: xij = k ⇔ cjk = i.

The concrete CSP encoding we use in our experimental
investigation is a Binary CSP represented with nogoods.

Finally, for each region we add the nogoods representing
the alldiff constraint over the set of primal variables involved
in each region of the Sudoku problem.

For the experimental investigation we considered four
state-of-the-art SAT solvers: Satz (Li & Anbulagan 1997),
zChaff (Moskewicz et al. 2001), MiniSAT (Eén &
Sörensson 2003), and Siege3.

We also considered a CSP solver, a variation of the MAC
solver by Régin and Bessière (Bessière & Régin 1996)
(MAC-LAH) proposed in (Ansótegui et al. 2004) that incor-
porates the technique of failed literals and the Satz’s heuris-
tic in terms of a CSP approach.

Complexity Patterns
Singly Balanced
We consider first the complexity of solving GSWH instances
generated with the Singly Balanced method. Our first set of
results shows the complexity of Solving GSWH instances
with different region shapes, comparing it with the com-
plexity of solving QWH instances. Figure 3 shows the re-
sults for GSWH with regions 15x2, 10x3 and 6x5 (size 30)
and QWH also of size 30 (the encoding used for QWH is
the 3D). We employ 100 instances per point and MiniSAT
solver with 5,000 seconds cutoff. We observe similar com-
plexity patterns for all problems, the difference being that as
the shape of the block region gets closer to a square, the peak
in complexity increases. So, for the same size, the easiest
instances are from QWH and the hardest ones are the ones
from GSWH, with regions that are almost square.4 Observe

3Available at http://www.cs.sfu.ca/˜ loryan/personal
4Since 30 is not a perfect square, we cannot have perfectly

square regions.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 300 350 400 450 500 550 600 650

T
im

e
(s

ec
on

ds
)

Number of holes

QWH 30
Sudoku 15x2
Sudoku 10x3

Sudoku 6x5

Figure 3: Empirical complexity patterns for singly balanced
GSWH instances with different region shapes, but same size

that the difference between QWH and GSWH with square
regions is about three orders of magnitude for this size. A
possible partial explanation of this fact is the following. For
a GSWH instance with regions n × l and l fixed, when we
fix a given cell, the larger n, the more cells in a same region
become constrained in each of the regions that intersect with
the row of the fixed cell. So, when fixing a cell, for a large n
some regions will become more constrained than others, and
this may be an advantage for simplifying the problem where
look-ahead heuristics can take advantage of. By contrast, for
square regions, fixing a cell constrains the same number of
cells (if the current hole pattern is balanced) in all the re-
gions that intersect with the row or the column of the fixed
cell. So, again it seems that balance is making a difference
in the complexity of this problem.

We observe the same qualitative behavior when using dif-
ferent SAT algorithms. The main difference is in the mag-
nitude of the peak of the complexity curve. Figure 4 shows
a plot with the performance of different algorithms in the
critically constrained area for different GSWH problems.
The plot shows, for different sizes and different algorithms,
the percentage of solved instances from a test-set of 200 in-
stances, when using a cutoff of 104 seconds. For small sizes,
all algorithms solve almost all the instances. But as the size
increases, the solver MiniSAT clearly outperforms the other
solvers.

Doubly Balanced
Next, we consider the Doubly balanced method for punch-
ing holes. When using this method, the typical hardness of
the GSWH instances seems to be very similar to the singly
balanced method, for small sizes; however, as we increase
the size of the instances, we see a dramatically difference
in computational hardness. This is probably due to the fact
that the singly balanced method tends to distribute the holes
uniformly between regions in such a way that the difference
with respect to the doubly balanced method is not signifi-
cant for small instances. This can be quantified by looking
at the percentage of solved instances from a test-set with 500
instances, for both methods, when working with a cutoff of
5.000 seconds. Table 1 shows these values. The values are
almost the same for 5x5 Sudokus, but for the instances of

 0

 20

 40

 60

 80

 100

15x2
16x2

7x4
10x3

17x2
18x2

6x5
11x3

8x4
12x3

7x5
6x6

9x4

%
 s

ol
ve

d
in

st
an

ce
s

Sudoku block size

minisat
siege

satz
zchaff

MAC-LAH

Figure 4: Empirical complexity patterns for singly balanced
GSWH instances with different region shapes

singly balanced doubly balanced
region holes % solved % solved

5x5 344 98.8 98.8
7x4 414 71.6 67.4

17x2 504 48.6 37.8
18x2 572 33.8 24.9
6x5 480 18.6 11.6

Table 1: Comparison of percentage of solved GSWH in-
stances generated with both methods for putting holes, for
instances in the peak of hardness

higher orders, we observe an increase in the hardness of the
instances. This is reflected in the decrease in the number of
solved instances, for a given cutoff, when using the doubly
balanced method, in comparison to the singly balanced one.

So, our doubly balanced method generates harder in-
stances than the ones produced by balanced QWH, they are
also guaranteed to be satisfiable, and therefore they consti-
tute a good benchmark for the evaluation of local and sys-
tematic search methods.

Rectangular model

For the rectangular model, in which holes are punched
across entire rows (or columns), our empirical results with
Satz do not seem to show a clear exponential scaling cost as
the size is increased. Figure 5 shows the results of solving
7x4 GSWH instances with the rectangular and the doubly
balanced model methods. We observe that the complexity
of solving the 7x4 problem is much higher for the balanced
model. Also, the fact that for Satz, with the problems tested
so far, the hardest instances of the rectangular model are the
ones obtained with the maximum number of holes (an empty
Sudoku) seems to indicate that this pattern is not inherently
hard. A key question is whether this pattern corresponds to
a tractable class.

 0.1

 1

 10

 100

 1000

 10000

 380 400 420 440 460 480 500

M
ed

ia
n

tim
e

(s
)

Number of holes

Sudoku 7x4

Double balanced
Rectangular

Figure 5: Comparison of the hardness of instances gener-
ated using the doubly balanced method versus the rectangu-
lar model.

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 300 320 340 360 380 400 420 440 460 480

N
um

be
r

of
 v

ar
ia

bl
es

Number of holes

5x5
9x3

15x2
7x4

10x3

Figure 6: Look-ahead backbone and normalized complexity
patterns for Sudokus with different regions

Backbone
In this section we discuss results about the correlation be-
tween the backbone of the satisfiable GS instances and com-
putational hardness. It is known that computing the ex-
act backbone is an intractable problem so we consider only
an approximation of the full backbone. In particular, we
use the look-ahead backbone provided by Satz. This is the
set of variables that Satz discovers to have a unique value
by checking all possible assignments with unit propagation
and fixing every discovered backbone variable, until no new
backbone variable is discovered.

In our approximation of the backbone, we consider the
fraction of fixed variables by Satz over the number of vari-
ables of the (satisfiable) encoded instance. Our satisfiable
instances are obtained after preprocessing our instances for
discarding the cells that are discovered to have a unique pos-
sible value due to the initial partial assignment and the prop-
agation of the Sudoku constraints. Figure 6 shows the evo-
lution of the backbone together with the complexity of solv-

ing instances, for different region shapes, but normalized so
that the value at the peak of hardness coincides with the
maximum number of look-ahead backbone variables. We
observe that this approximated backbone fraction starts to
increase until it reaches a point where it decreases abruptly
and then it again starts to increase, but this time more slowly.
The point where it reaches the minimum value is around the
value where the hardness starts to increase towards its peak.
So, this point of “suddenly” decrease in the backbone frac-
tion can be used as a sign for the beginning of the hard re-
gion of the problem. It is remarkable that even though the
backbone is hard to approximate (Kilby et al. 2005), in this
problem this approximated backbone provides a valuable in-
formation.

We have obtained an approximated location of this mini-
mum point through a doubly exponential regression model,
using the location of this minimum value for all possible Su-
doku problems with different region forms (n× l), from size
26 to 49. The model obtained is:

holes = e0.537 ∗ n1.57 ∗ l1.72

The coefficient of regression (R2) is 0.989, thus indicating
that the model is quite good. We have also obtained an anal-
ogous regression model, but for the location of the hardness
peak. For this model we used data obtained experimentally
with Satz, but only for problems with sizes ranging from 26
to 30. The model obtained is:

holes = e−0.217 ∗ n1.8 ∗ l1.97

Again, we obtain a high value for R (R2 = 0.997). Observe
that for the hardest problems (n = l), the relative difference
between these two points is only O(n1.14), much smaller
than the whole range of possible holes (n4). So, as n in-
creases, the width of the hard part of the phase transition
seems to decrease, in a normalized scale.

Conclusions
In this paper we show how different strategies for generat-
ing Generalized Sudoku instances, based on the shape of the
block regions and the balance of the initial empty cells, can
dramatically impact the computational hardness of the in-
stances. Our Generalized Sudoku problem generator pro-
duces instances that are several orders of magnitude harder
than other structured instances of comparable size. We be-
lieve our Generalized Sudoku generator should be of use in
the future development of systematic and stochastic local
search style CSP and SAT methods.

References
Achlioptas, D.; Gomes, C.; Kautz, H.; and Selman, B.
2000. Generating satisfiable problem instances. In Proc. of
AAAI-00, 193–200.
Ansótegui, C.; del Val, A.; Dotú, I.; Fernández, C.; and
Manyà, F. 2004. Modelling choices in quasigroup comple-
tion: Sat vs csp. In Proc. of AAAI-04.
Barták, R. 2005. On generators of random quasigroup
problems. In Proc. of ERCIM 05 Workshop, 264–278.
Bessière, C., and Régin, J.-C. 1996. Mac and combined
heuristics: Two reasons to forsake fc (and cbj?) on hard
problems. In CP, 61–75.

Dotú, I.; del Val, A.; and Cebrián, M. 2003. Redundant
modeling for the quasigroup completion problem. In CP03.
Eén, N., and Sörensson, N. 2003. An extensible sat-solver.
In Proceedings of SAT 2003.
Gomes, C., and Selman, B. 1997. Problem structure in the
presence of perturbations. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence (AAAI-97),
221–227. New Providence, RI: AAAI Press.
Gomes, C.; Fernández, C.; Selman, B.; and Bessière, C.
2004. Statistical regimes across constrainedness regions.
In Proceedings CP’04.
Gomes, C. P.; Selman, B.; and Crato, N. 1997. Heavy-
tailed distributions in combinatorial search. In Proceed-
ings of the Third International Conference of Constraint
Programming (CP-97). Linz, Austria.: Springer-Verlag.
Hulubei, T., and O’Sullivan, B. 2006. The impact of search
heuristics on heavy-tailed behaviour. Constraints 11(2).
Jacobson, M. T., and Matthews, P. 1996. Generating uni-
formly distributed random latin squares. Journal of Com-
binatorial Design 4:405–437.
Kannan, R.; Tetali, P.; and Vempala, S. 1997. Simple
markov-chain algorithms for generating bipartite graphs
and tournaments. In Proc. of the eighth annual ACM-SIAM
Symposium on Discrete Algorithms, 193–200.
Kautz, H.; Ruan, Y.; Achlioptas, D.; Gomes, C.; Selman,
B.; ; and Stickel, M. 2001. Balance and filtering in struc-
tured satisfiable problems. In Proc. of IJCAI-01, 193–200.
Kilby, P.; Slaney, J.; Thiebaux, S.; and Walsh, T. 2005.
Backbones and backdoors in satisfiability. In Proc. of
AAAI-05, 193–200.
Li, C. M., and Anbulagan. 1997. Look-ahead versus look-
back for satisfiability problems. In Proc CP’97, 341–355.
Lynce, I., and Ouaknine, J. 2006. Sudoku as a sat problem.
In Proc. of Ninth International Symposium on Artificial In-
telligence and Mathematics.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.
In Proceedings of 39th Design Automation Conference.
Refalo, P. 2004. Impact-based search strategies for con-
straint programming. In Proceedings CP’04.
Régin, J. C., and Gomes, C. 2004. The cardinality matrix
constraint. In Proceedings CP’04.
Shaw, P.; Stergiou, K.; and Walsh, T. 1998. Arc consis-
tency and quasigroup completion. In Proceedings of the
ECAI-98 workshop on non-binary constraints.
Simonis, H. 2005. Sudoku as a constraint problem. In
Proc. of Fourth International Workshop on Modelling and
Reformulating Constraint Satisfaction Problems, CP 2005,
13–27.
Yato, T., and Seta, T. 2002. Complexity and completness of
finding another solution and its application to puzzles. In
Proc. of National Meeting of the Information Processing
Society of Japan (IPSJ).

