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Abstract

In recent years we have seen significant progress in the area of
Boolean satisfiability (SAT) solving and its applications.As
a new challenge, the community is now moving to investigate
whether similar advances can be made in the use of Quanti-
fied Boolean Formulas (QBF). QBF provides a natural frame-
work for capturing problem solving and planning in multi-
agent settings. However, contrarily to single-agent planning,
which can be effectively formulated as SAT, we show that a
QBF approach to planning in a multi-agent setting leads to
significant unexpected computational difficulties. We iden-
tify as a key difficulty of the QBF approach the fact that QBF
solvers often end up exploring a much larger search space
than the natural search space of the original problem. This is
in contrast to the experience with SAT approaches. We also
show how one can alleviate these problems by introducing
two special QBF formulations and a new QBF solution strat-
egy. We present experiments that show the effectiveness of
our approach in terms of a significant improvement in perfor-
mance compared to earlier work in this area. Our work also
provides a general methodology for formulating adversarial
scenarios in QBF.

Introduction
There has been tremendous progress in our ability to solve
large Boolean satisfiability (SAT) problems. State-of-the-art
SAT solvers can solve instances with hundreds of thousands
of variables and over one million clauses (Berre & Simon
2004). These solvers are now used in a range of applications,
such as hardware and software verification and AI plan-
ning. In recent years, a new frontier in automated reasoning
has emerged. This new challenge is focused on Quantified
Boolean Formulas (QBF), their use in encodings and the de-
velopment of QBF solvers. The potential of QBF is quite
significant. For example, in such encodings one can capture
multi-agent planning, general (unbounded) model-checking
problems for verification, and planning with no apriori re-
striction on plan length. The price one pays for this higher
level of expressiveness is that solving QBF is a PSPACE-
complete problem — a problem believed to be considerably
harder than NP-complete problems. Recent SAT competi-
tion results indeed show that building practical QBF solvers
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is more challenging than one might expect given the tremen-
dous strides made in the design of SAT solvers. In particular,
relatively small QBF problems are often beyond the reach of
QBF solvers (Berreet al. 2004).

The goal of the work in this paper is to obtain better in-
sights into what exactly causes many QBF formulas to be
surprisingly difficult to solve. The central issue we identify
is thatQBF solvers are often forced to explore much larger
combinatorial spaces than the natural search space of the
original problem. We will discuss the source of this phe-
nomenon in detail below, but at a high-level the issue can
be explained as follows. In QBF, we generally have an al-
ternation of existentially and universally quantified Boolean
variables followed by a CNF expression (called the “matrix”
of the formula). A formula is satisfiable if and only if there
is a series of assignments to the existentially quantified vari-
ables such that for all possible assignments of the universally
quantified variables the matrix is satisfied (each clause has
at least one satisfied literal). QBF is closely connected to ad-
versarial scenarios where playerA tries to set the existential
variables so as to satisfy the matrix and the other playerB
(corresponding to the universal variables) tries to invalidate
the matrix. A QBF is satisfiable if playerA “wins” — i.e.,
finds a strategy for setting the existentially quantified vari-
ables such that no matter what setting playerB chooses the
matrix can be satisfied. If no such strategy exists forA, B
wins and the QBF is unsatisfiable.

This interpretation of QBF suggests a natural correspon-
dence between QBFs and adversarial planning and game
playing (Papadimitriou 1995). However, this correspon-
dence hides an important difficulty: When encoding an ac-
tual adversarial planning problem or game, one has to add
constraints (clauses) to the matrix that capture the legal ac-
tions for each player. More precisely, a violated clause will
represent a violation of one or more of the basic rules of the
game. The existential player, who is trying to satisfy the
matrix, will “work hard” to satisfy those constraints. As a
consequence, a QBF solver will pursue legal actions for the
existential player A. (More technically, as soon as A makes
an illegal move, there will be a violated clause in the matrix
and the solver backtracks.) Unfortunately, the situation for
the player B, the universal player, is quite different. This
player is trying to violate clauses, so as to “break” (partial)
assignments that may satisfy the constraints. Player B (via



Madhusudan, Nam, & Alor 2003 Model A Model B
N steps QuBEJ Semprop Quaffle Best QBF solver CondQuaffle Best QBF solver CondQuaffle
4 7 2030 >2030 > 2030 7497 3 0.03 0.03
4 9 – – – – 28 0.06 0.04
8 5 32429 > 32429 > 32429 – 1 0.37 0.37
8 7 – – – – 800 5 5
8 13 – – – – – – 2838

Table 1: Results for Evader/Pursuer on an N×N board for Madhusudanet al. (2003); and our models A and B with the best
performing QBF solver (non cond.) and our new conditional solver (CondQuaffle). Time in seconds. “–” for> 10 hours.

the QBF solver) is therefore almost naturally drawn to make
moves that violate the rules of the game or environment (so-
called “illegal” actions or moves). In order to prevent B from
doing so, one therefore has to formulate the matrix in such a
way that all clauses become satisfied as soon as B attempts
an illegal action. We will discuss how this can be done in
a QBF encoding. However, unfortunately, current state-of-
the-art solvers have often great difficulty recognizing thefact
that all clauses in the matrix become satisfied as soon as
B makes an illegal move. In particular, “top-down” search
QBF solvers, instantiating the quantified variables from left
to right, are often forced to explore many more existential
and universal variable instantiations before they recognize
that the matrix is actually “automatically” satisfied because
of an illegal action by B. Most current QBF solvers perform
a top-down search. Other QBF solution strategies appear to
encounter related problems; we are exploring this further.

In order to alleviate these problems, we introduce two spe-
cial QBF formulation schemes for encoding adversarial sce-
narios. We evaluate these encodings in detailed experiments
using eight state-of-the-art QBF solvers: QMRES, Quantor,
Skizzo, Semprop, QuBE (two versions), and Quaffle (two
versions). We also introduce a new QBF solution strategy,
called a conditional QBF solver. We implement this strategy
by extending Quaffle. Our experiments show a significant
improvement over previous QBF approaches to adversarial
planning in our benchmark domain.

Our work was inspired by the original call by Toby Walsh
to push research on QBF solvers by experimenting with
QBF encodings for actual games (Walsh 2003). We were
also inspired by work on this challenge by Ian Gent and col-
leagues (Gent & Rowley 2003). Finally, as a starting point
and a baseline to benchmark our results, we consider the
work by (Madhusudanet al. 2003), who studied these issues
to evaluate the potential for QBF solvers for model check-
ing, used in hardware and software verification. They in-
troduce a basic two-player benchmark, the Evader/Pursuer
game, as a starting point. Given the apparent “simplicity” of
this setting, the reader may wonder what relevance this work
may have for QBF solving for general model checking and
multi-agent adversarial planning: The key issue, as noted
in (Madhusudanet al. 2003), is that one will first have to
overcome the difficulties of QBF solvers on such basic sce-
narios, before we can expect real progress in richer settings.
Moreover, given the generality of the cause underlying the
difficulty for QBF solvers we identify, it seems likely that
these insights will also point the way to tackle QBF solving
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Figure 1: Evader/Pursuer scenario.qw has to reachg with-
out being captured byrb.

in larger scale applications.
Preview of ResultsAs the reader will see below, the de-

tailed steps that lead to a full QBF encoding of adversarial
games are quite involved. We therefore first briefly preview
our final experimental results. We consider the so-called
Evader/Pursuer game. Figure 1 shows the basic setting. Two
players make alternating moves on a N×N board. The goal
is for the starting playerqw to reach the goal squareg with-
out being captured by the other playerrb. The horizontal
and vertical moves ofqw are restricted to one or two squares
at each turn. The diagonal moves are restricted to a sin-
gle square.rb can move one square either horizontally or
vertically at a time. Note that the evader cannot capture the
pursuer. Variations of this game have been used in many dif-
ferent settings to study the complexity of basic multi-agent
interactions. Mahusudan et al. (2003) were the first to con-
sider its QBF formulation with several QBF solvers. Their
results provide a baseline for our work.

Table 1 gives a summary of our results. The table also
contains the results of Madhusudanet al. (2003) for sev-
eral QBF solvers on their problem encodings. (Note that for
Semprop and Quaffle they only report that these solvers per-
form worse than QuBEJ.) So, for example, on a 4×4 board
of the Evader/Pursuer game allowing 7 steps total (4 moves
by qw and 3 moves byrb), the table shows that QuBEJ on
the Madhusudan et al. encodings takes 2,030 seconds. When
going to 9 steps, the instances cannot be solved in under 10
hours. On an 8×8 board, Madhusudanet al. can solve only
up to 5 step games.

Table 1 shows how our approach alleviates much of these
difficulties, thereby significantly improving the reach of the
QBF approach. We consider two encoding strategies, Model
A and Model B. Each are designed to avoid much of the ex-
ploration of “illegal” moves. We see that especially our con-
ditional QBF solver (“CondQuaffle”) performs quite well.



More specifically, for our best encodings (Model B), the
4×4 board with 7 step problem is quite easy indeed, and is
solved in only 0.03 seconds. Moreover, even the 8×8 case
with 13 steps becomes solvable.

QBF for Adversarial Games
The task of designing a QBF formulation for adversarial set-
tings can be surprisingly complex and prone to mistakes. In
order to manage the complexity of our encodings, we pro-
ceed in three phases. First, we provide an encoding of the
game that ignores the adversarial aspect. In effect, we view
the game as aplanning problem, where both players cooper-
ate. The encoding encapsulates all constraints of the game,
in terms of what the legal moves are. In a second phase, we
take the plan formulation and construct a general Quantified
Boolean Formula (QBF) that captures the adversarial form
of the game up tok steps, for a predefined value ofk. In the
third and final phase of our design, we convert the general
QBF formula into QBF in conjunctive normal form (CNF)
to obtain the standard form readable by most QBF solvers.
As we will see, depending on how we implement the third
and last step we obtain encodings with dramatically different
computational properties.

Phase I: Non-adversarial plan formulation
Let us denote the players byP = {qw, rb}, let p ∈ P . (By
analogy to chess, which is the larger game setting we con-
sider later, we denoteqw as the white queen andrb as the
black rook.) LetC = {c1, . . . , cN×N} stand for the cells of
the board, letk ∈ N be the bound on time steps, letN be the
order of the board, and0 ≤ s, s′ ≤ k and0 ≤ i, j ≤ n − 1.

Variables We introduce variables representing locations
and moves at each time step: (1) Location variables:
l(p, ci, s), p is located atci at time steps. (2) Move vari-
ables: m(p, ci, cj, s), p moves fromci to cj at time step
s (ci 6= cj). If s is an even time step (White step) then
p = qw, otherwisep = rb. Note we precompute all the
possible moves.

Let Ls andM s be the set of location and move variables
at time steps, respectively. We havek sets of typeM s,
while we havek + 1 sets of typeLs (the (k + 1)

th repre-
sents the locations after the last move).

Axioms
We illustrate our axiomatization by giving examples of each
axiom group. For the full axiomatization, we refer to the full
version of this paper.

Initial Conditions Axioms The encoding below is demon-
strated for the Black player, the other case being similar mu-
tatis mutandis. Letrb be atci at time step0. We encode
the initial location for the Black player, denoted byIb, as
follows:

Ib ≡ l(rb, ci, 0)) ∧ (
∧

j 6=i

¬l(rb, cj , 0)) (1)

Action Axioms Informally, the player can take two main ac-
tions “to move” or “to wait.” For each move,m(p, ci, cj , s),

we generate a set of axioms encoding preconditions and
move effects:
Action Axioms I (Preconditions)
We have different preconditions depending on the type of
move. For example, the preconditions for horizontal and
vertical moves of two squares (only applicable to the White
queen) are:

m(qw, ci, cj , s) → (l(qw, ci, s) ∧ ¬l(rb, c
′, s)) (2)

Wherec′ ∈ C is the cell betweenci andcj. At time step
s, if qw moves fromci to cj , thenqw must be atci andrb

cannot be on its way.
Action Axioms II (Move effects)

m(p, ci, cj , s) → (l(p, cj , s + 1) ∧ ¬l(p, ci, s + 1)) (3)

If p moves fromci to cj at time steps, thenp is located atcj

and is not located atci at time steps + 1.

Frame Axioms For each location variable,l(p, ci, s), we
generate a set of standard frame axioms. For example, for
each player, we will have axioms that state that if a player is
at a certain location at timet and does not move it remains at
that location at timet + 1; also, if a player is not at a certain
location at timet and doesn’t move to that location at time
t + 1, the player will not be at that location at timet + 1.

Goal AxiomsThe goal for White, denoted byGs
w, is to place

the white queen at the goal position, while the goal for Black
is to prevent this either by capturing the queen or by blocking
its path to the goal position. We denote the goal of capturing
the white queen asGs′

b . So, we have

Gs
w ≡ l(qw, cg, s), Gs′

b ≡
∨

i6=g(l(qw, ci, s
′) ∧ l(rb, ci, s

′)),

wheres is an odd time step ands′ is an even time step.
We can now state the overall goal,G, to be achieved by

the White queen as:

G ≡
∨k

s=0 Gs
w ∧

∧

s′<s ¬Gs′

b
(4)

I.e., White wins the game if it reaches the goal square and is
not captured by Black on the way. (Note that this also covers
the case where White is blocked from the goal by Black.)

Mutual Exclusion We need to express that a player can-
not take more than one action at each time step. Let
ms

1, . . . , ms
|Ms| be the move variables encoding potential

moves at time steps (M s are the move variables at times).
To ensure mutual exclusion at time steps is to add

(

|Ms|
2

)

clauses, known asat-most-one (AMO) clauses:
∧

(i,j),i6=j

(¬ms
i ∨ ¬ms

j) (5)

The action “wait” is applied by setting to false every move
variable at time steps.

Transitions Let Mes, Prs, Mfs and Frs be the clauses encod-
ing mutual exclusion, preconditions, move effects and frame
axioms, respectively, at time steps. We define the concept



of transition at time steps, denoted by Trs, as the union of
the previous sets:

Trs ≡ Prs ∧ Mes ∧ Mf s ∧ Frs (6)

We also define the concepts of White’s and Black’s transi-
tions, denoted by Trw and Trb, as the set of clauses encoding
the White’s and Black’s transitions, respectively.

Trw ≡ Tr0 ∧ Tr2 ∧ . . . ∧ Trk−1

Trb ≡ Tr1 ∧ Tr3 ∧ . . . ∧ Trk−2 (7)

Phase II: The game as a QBF
Quantified Boolean Logic (QBL) extends Boolean logic by
allowing quantification over Boolean variables. Ifφ is a
propositional formula (the “matrix”) over a set of Boolean
variablesB andσ is a sequence of∃b and∀b, one for every
b ∈ B, thenσφ is a Quantified Boolean Formula (QBF).
In our case, we need to produce a QBF such that for an
odd number of time steps (k) and a set of initial conditions
(Iw andIb), there exists a series of White’s actions (corre-
sponding to White’s transitions (Trw)) such that for all legal
counter moves by Black (corresponding to Black’s transi-
tions (Trb)), the goal stateG is satisfied.

Formula ( 8) is a QBF describing our game.

∃L0M0L1∀M1∃L2M2L3 . . . ∀Mk−2∃Lk−1Mk−1Lk

Iw ∧ Ib ∧ Trw ∧ (Trb → G) (8)

This formula is constructed such that it is satisfiableif and
only if there is a series of winning sequences of moves for
White, no matter what counter moves Black makes (more
details below). A QBF is satisfiable if there exists a series of
assignments to the existential variables such that for all pos-
sible assignments of the universal variables the matrix part
of the QBF is satisfied. The setting of the existential vari-
ables can depend on the instantiation of the universal vari-
ables that precede it. In a sense, we’re playing a “game” on
the matrix part of the formula, where one player tries to set
the existential variables so as to satisfy the matrix, and its
opponent instantiates the universal variables, searchingfor
ways to “unsatisfy” the matrix. The order of the quantifiers
is clearly important.

To understand (8), first consider the quantifiers. The
moves for Black are universally quantified.1 The location
variables (describing the state of the board) and the variables
modeling White’s moves are quantified existentially. Now,
in order for the matrix to be satisfied, the initial conditions
and the White’s transitions (Iw ∧ Ib ∧ Trw) have to be satis-
fied. On the other hand,(Trb → G) says that we only need
to guarantee that the goal (G) has to be satisfied as long as
the Black player plays according to the rules of the game,
i.e., to satisfy Trb. Informally, a player can perform anille-
gal action (from the perspective of the game), by breaking

1Note that we have a slight abuse of notation:∀M1 is a short
for ∀m1

1∀m1
2...∀m1

|M1|, whereM1 = {m1
1, m

1
2, ..., m

1
|M1|} is the

set of all potential moves for Black at time step1; ∃LsMsLs+1

should be read as∃Ls∃Ms∃Ls+1; and each existential quantifier
is again really a sequence of quantifiers, one for each element in
the setsLs, Ms, andLs+1.

the mutual exclusion, i.e., by trying to perform more than
one action at the same time step (see 5), or by breaking the
precondition axioms, for example, by moving a piece from a
locationci without being onci. Contradictions should only
arise due tolegal actions that do not satisfy the goal or due
to illegal actions of the White player: On the one hand, if the
White player performs anillegal action, Trw becomes unsat-
isfiable and therefore the matrix is unsatisfiable (“if White
cheats Black wins”). On the other hand, if the Black player
performs anillegal action, Trb becomes unsatisfiable, then
(Trb → G) is satisfiable and we know thatIw ∧ Ib ∧ Trw
is also satisfiable and therefore the matrix is satisfiable (“if
Black cheats White wins”).

Phase III: The game as a QBF in CNF form
Generally, QBF solvers require the matrix of the QBF to be
in CNF form. The most straightforward way to translate the
matrix in QBF (8) into CNF form is by applying the impli-
cation and distributivity rules. However, the resulting con-
junctive normal form can be exponentially larger compared
to the size of the original matrix, mostly due to the trans-
lation of the term(Trb → G). The standard approach to
avoiding such a blow up is to introduce new variables.

For example, let’s consider a simplified version of (Trb →
G), whereG is logically equivalent to the Boolean vari-
able g, the number of time steps is five (k = 5) and the
Black transitions (Trb) only include theh1 =

(

|M1|
2

)

and

h3 =
(

|M3|
2

)

mutual exclusion clauses at time step1 and3,
respectively (see (5)):

((¬m
1
1 ∨ ¬m

1
2) ∧ . . . ∧ (¬m

1
|M1|−1 ∨ ¬m

1
|M1|) ∧

(¬m
3
1 ∨ ¬m

3
2) ∧ . . . ∧ (¬m

3
|M3|−1 ∨ ¬m

3
|M3|)) → g (9)

If we apply the implication and distributivity rules to (9)
we obtain2h1+h3 clauses. The idea is to map the mu-
tual exclusion clauses to a set of auxiliary Boolean vari-
ablesme1

1, . . . , me1
h, me3

1, . . . , me3
h and add the mappings

as equivalences (Tseitin 1967):

(me
1

1
∧ . . . ∧ me

1

h1
∧ me

3

1
∧ . . . ∧ me

3

h3
) → g

(me
1

1
↔ (¬m

1

1
∨ ¬m

1

2
)) ∧ . . . ∧ (me

1

h1
↔ (¬m

1

|M1|−1
∨ ¬m

1

|M1|
))

(me
3

1
↔ (¬m

3

1
∨ ¬m

3

2
)) ∧ . . . ∧ (me

3

h2
↔ (¬m

3

|M3|−1
∨ ¬m

3

|M3|
))

(10)

When we translate (10) into CNF form we obtain3(h1 +
h3) + 1 clauses. We refer to the new introduced variables
in (10) asindicator variables, in the sense that they “indi-
cate” the validity of the logic expression they represent. So,
me1

1 “watches” the exclusion betweenm1
1 andm1

2, i.e.,, it is
is True iff m1

1 andm1
2 arenot simultaneously True.

In contrast to SAT where adding new variables does
not necessarily increase the potential search space, since
Boolean propagation takes care of the dependencies (Thif-
fault et al. 2004), the new variables lead to a significant
performance penalty for QBF solvers. Consider a partial in-
terpretation that covers the universal variables representing
the moves at time step1 and makesm1

1 andm1
2 evaluate to

true, i.e., there has been at least one illegal action at timestep



1. Then, in formula (10), top-down search QBF solvers, like
Quaffle and QuBE, are only able to satisfy the clauses in the
first and second line, and are forced to continue the search
until they assign all universal variables at the third level.
This leads the solvers to explore a large search space con-
taining many “illegal” moves. Similar unnecessary search
occurs at every level of universal quantifiers. In a more de-
tailed analysis, provided in the full version of this paper,we
show thatall state-of-the-art solvers encounter similar diffi-
culties when this particular structure is gradually extended
to obtain the complete formula encoding the game.

Below, we present a formulation for which the top-down
search QBF solver can avoid much of the unnecessary
search. The idea is to introduce “grouped” indicator vari-
ables at each time step that flag whether an illegal move has
occurred. Consider formula (10). We introduce a new indi-
cator variable me1 logically equivalent to the conjunction of
all me1

i variables. This new variable watches for any pos-
sible exclusion violation at step 1. (True iff no such vio-
lation at step 1.) We can then add the negation ofme1 to
all clauses at later time steps. When an exclusion violation
occurs at step 1, the clauses at later levels are immediately
satisfied. (Below we use trs variables, which watch for all
possible constraint violations.) For a similar approach ina
static CSP domain, see (Gentet al. 2004). We extend this
idea to dynamic scenarios in which it is critical to factor in
the dependence of constraint violations as a function of ear-
lier moves. To achieve this we introduce a hierarchy of such
grouped indicator variables.

Model A: Grouped Indicator Variables
Formula (11) is a QBF in CNF form describing our game.

∃L0M0L1∀M1∃I1
dL2M2L3 . . .∀Mk−2∃Ik−2

d Lk−1Mk−1Lk

[a] Iw ∧ Ib

. . .
6

6

6

4

[b] ¬Gs−1
b ∧ Mes−1 ∧ Prs−1 ∧ Mf s−1 ∧ Frs−1

[c] Gs
w ∧ Mes ∧ Prs

[d] ¬ias ↔ (¬gs
w ∧ mes ∧ prs)

7

7

7

5 ∨ ¬trs−2

[e] trs ↔ (¬ias ∧ trs−2)
‰

[f ] Mfs ∧ Frs
[g] ¬Gs+1

b ∧ Mes+1 ∧ Prs+1 ∧ Mf s+1 ∧ Frs+1

ı

∨ ¬trs

. . .
[h] Gk

w ∨ ¬trk−2

Is
d ≡ mes

1, . . . , mes
h, mes, prs

1, . . . , prs
t , prs, ias, gs

w, trs

h =
`

|Ms|
2

´

, t = |Ms| , s is an odd time step
(11)

We include this QBF for completeness. However, because
of limited space, the description below is rather compact.
See the full version of the paper, for a detailed description.

QBF (11) extends the prefix in QBF (8) by adding after
each block of universal quantifiers, an existential quantifica-
tion on the indicator variables, denoted byIs

d , that indicate
if there has been an action at the universal time steps. Par-
ticularly, mes

1, . . . , mes
h andprs

1, . . . , prs
t indicate if there

is an illegal action at the level of the mutual exclusion and
preconditions, respectively. We have: (1)[a], [b], [f ] and[g]
include the initial conditions, preconditions, move effects,

frame and goal axioms and mutual exclusion, as described
above, translated into CNF form. (2)[c] includes the goal
for the White player, the mutual exclusion and the precon-
ditions for the Black player, translated into CNF form. Due
to the translation, we obtain the indicator variablesIs

d . We
consider the satisfaction of White’s subgoal,gs

w evaluates to
true, as a special case of an illegal action of the Black player,
i.e., if the White player has already won, any future action of
the Black player should be considered illegal. (3) At equiva-
lences in[d] and[e], ias indicates if there has been an illegal
action exactly at time steps, and trs indicates if the transi-
tions up to time steps do not involve an illegal action. (4)
Finally, [h] states that if there has not been any illegal transi-
tion, the win of White depends only on its last action at time
step (k−1), that has to allow White to be at the goal position
at time stepk.

Model B: Full Assignment to Universal Variables
Our model A formulation in QBF (11) guarantees that when
there is an interpretation for the universal variables at a cer-
tain time step and contains one or more illegal actions, the
QBF solvers implementing a top-down search can easily de-
rive the empty formula (satisfied matrix) and backtrack im-
mediately. The number of universal variables at a given time
steps is |M s| and the number of possible interpretations is
2|M

s|. Ideally, QBF solvers should be able to derive the
empty formulaas soon as a partial interpretation to the uni-
versal variables already contains an illegal action (instead of
only after there is a full interpretation). However, due to a
similar phenomena as discussed earlier, current QBF solvers
are unable to prune effectively and are forced to explore
potentially all the2|M

s| interpretations. We can avoid this
problem by encoding the mutual exclusion, over the move
variables at time steps and the action of waiting, using a
logarithmic mapping that employsdlog2(|M

s| + 1)e auxil-
iary Boolean variables. In effect, these variables providea
much more compact encoding of the possible moves at level
s.

Conditional QBF Solver and non-CNF QBF
Both models A and B are equipped with indicator variables
to flag the occurrence of illegal actions. Because of the spe-
cific structure of our formula, a top-down QBF solver2 can
use these variables to determine satisfiability of the matrix
as soon as one of the indicator variables is set to False as we
discussed earlier. In practice, clause learning and other QBF
techniques may make this detection less efficient. Moreover,
in model A we still have some unnecessary branching as dis-
cussed in the section on Model B. We therefore introduce a
so-called conditional top-down QBF solver. Assuming that
no local inconsistency is detected, the solver will backtrack
immediately when an indicator variable is set to False, sig-
nalling that the matrix is satisfiable. We have extended Quaf-
fle to implement this strategy. We call our solver CondQuaf-
fle. CondQuaffle takes as input a QBF instance and a list of
the indicator variables, and it prevents the underlying QBF

2A top-down QBF solver instantiates the quantified variables
from left to right. Almost all current QBF solvers are top-
down (Berreet al. 2004).



N mod. k (steps) QMRES Quantor Skizzo Semprop QuBEJ QuBER Quaffle(cs) Quaffle(c) CondQuaffle(c)
4 A 7 – – 7467 – – – – – 3
4 A 9 – – – – – – – – 28
4 A 15 – – – – – – – – 24713

4 B 7 – – 408 26 2 368 0.14 0.03 0.03
4 B 9 – – 219 207 7 18134 0.18 0.06 0.04
4 B 13 – – – 11191 288 – 0.23 0.08 0.07
4 B 15 – – 2865 – 2135 – 0.24 0.08 0.07

8 B 5 – – 114 1.52 0.12 583 0.69 0.37 0.37
8 B 7 – – 410 79 69 27604 139 5 5
8 B 9 – – 1894 1251 1278 – 922 33 32
8 B 11 – – 5240 15708 16824 – 21564 – 337
8 B 13 – – – – – – – – 2838
8 B 15 – – – – – – – – 33369

Table 2: Models A and B, 4x4 and 8x8 boards. CondQuaffle(c) is our new QBF strategy applied to Quaffle(c). Time in seconds.
“–” for > 10 hrs.

inst. m k QMRES Quantor Skizzo Semprop QuBEJ QuBER Quaffle(cs) Quaffle(c) CondQuaffle(c)
1 B 5 – – – 3817 1324 – 449 90 91
2 B 7 – – – – 2722 – 4590 – 535
3 B 5 – – – – – – – – 1705
4 B 7 – – – – – – – – –

Table 3: Model B, 8x8 boards. Chess endgame instances. CondQuaffle(c) is our new QBF strategy applied to Quaffle(c). Time
in seconds. “–” for> 10 hrs.

solver (Quaffle) from continuing search if an indicator vari-
able is set to False.

Our conditional solver approach can also be viewed as ef-
fectively implementing a non-CNF QBF solution strategy.
In particular, a promising general strategy for designing a
non-CNF QBF solver would be to read in as input a formula
of, e.g., form (8); translate this into CNF, while introducing
the appropriate indicator variables; and solve the resulting
CNF formula using an extended CNF QBF solver that in-
corporates the special semantics of the indicator variables as
described above for CondQuaffle. Such a non-CNF solver
could avoid the illegal search space but but can still take ad-
vantage of the many special techniques developed for CNF
style QBF solvers (which in turn use techniques from CNF
SAT solvers).

Experimental Results
To evaluate our encodings, we consider a series of instances
of the Evader/Pursuer game using the same parameter set-
tings as Madhusudanet al. (2003). We considered both
Model A and Model B encodings and our new QBF strat-
egy, the conditional solver.3 The QBF solvers we use for
the experimental investigation are: QMRES (Pan & Vardi
2004), Quantor (Biere 2004), sKizzo (Benedetti 2004),
Semprop (Lets 2002), two variants of QuBE (Giunchiglia
et al. 2001): QuBEJ (with backjumping) and QuBER
(QuBEJ + learning), and three variants of Quaffle (Zhang
& Malik 2002): Quaffle(c) (with conflict analysis) Quaf-
fle(cs) (with sat analysis) and CondQuaffle (Quaffle(c) +

3Code and data available from the authors.

indicator-pruning, our new solver). Our experiments ran on
a 0.5GHz Pentium III with 0.5 GB memory; Madhusudanet
al. (2003), see Table 1, ran on a 1GHz Pentium III with 1.5
GB memory. Whenever a solver crashed or gave a wrong an-
swer we reported as a result the timeout of the corresponding
experiment.

Table 1 provides a summary of our results. See the “Pre-
view of Results” (in Introduction) for a discussion of the ta-
ble. We significantly outperform the results in (Madhusudan
et al. 2003). Model B is the best performing approach, in
which almost all unnecessary search in the space of illegal
moves has been successfully eliminated. This results in a
much better scaling to larger boards and more time steps.
Note that even our Model A, using our conditional QBF
solver (CondQuaffle), solves all but one of8 × 8 instances
in Table 1.4

Table 2 gives more detailed performance results on our set
of instances for a total of eight state-of-the-art QBF solvers
and our conditional solver. We see how Model B allows us to
solve a series of non-trivial8 × 8 Evader/Pursuer instances
with up to 15 moves total. Our CondQuaffle solver is the
most effective. But even Quaffle itself and several of the
other QBF solvers also perform quite well on Model B. This
again suggests that we have succeeded in eliminating much
of the illegal move search space. On the largest instances,

4Our Model A formulation without the conditional solver does
not perform competitively. Note that model A is much larger than
model B. Furthermore, the exploration of illegal moves within a
single time level, as discussed in the description of Model B, is
still significant. The improvements obtained with CondQuaffle on
Model A confirm this.



it appears that clause learning and other mechanisms may
actually hamper the best QBF solvers by “obscuring” the
role of indicator variables. Resolving this issue is a clear
challenge for future solver development. Note that our con-
ditional solver is not hampered by this phenomenon because
the indicators are used directly for backtracking.

Our ultimate challenge is to use a QBF approach to solv-
ing hard endgame problems for Chess and other forms of
adversarial planning. Table 3 provides preliminary results
for our Model B encodings for non-trivial chess endgame
instances with five pieces on a 8×8 board. Again, our con-
ditional solver performs best. These instances were com-
pletely out of reach for our earlier encodings (model A and
earlier variants). More importantly, the results show thatour
QBF approach is quite promising, given that these instances
are much more complex than the Evader/Pursuer problems.

Conclusions
We have considered QBF encodings of adversarial scenar-
ios. Standard QBF formulations lead to significant compu-
tational inefficiencies. We identified an important source of
these difficulties in that QBF solvers tend to explore search
spaces much larger than the natural search space of the orig-
inal problem. This is quite unlike the experience with SAT.
We introduced two new formulations (Models A and B) to
alleviate much of the unnecessary search. Our encoding
strategy is based on a principled three phase methodology
for capturing adversarial scenarios as QBF. We also intro-
duced a conditional QBF solution strategy which can be eas-
ily integrated with existing solvers and directly boosts their
performance, by avoiding the illegal search space. We dis-
cussed how such a conditional solver can be viewed as es-
sentially implementing a non-CNF QBF solution strategy.
Finally, we presented detailed experimental results on the
Evader/Pursuer game showing a significant performance im-
provement over earlier work, thereby increasing the reach of
the QBF approach. We also presented promising results of
our approach on a richer domain, Chess endgame instances.
We believe our findings concerning the unnecessary explo-
ration of the illegal search space and our conditional solution
strategy will provide a framework for further improvements
in QBF approaches.
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