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Abstract. We investigate mathematical formulations and solution tech-
niques for a variant of the Connected Subgraph Problem. Given a con-
nected graph with costs and profits associated with the nodes, the goal
is to find a connected subgraph that contains a subset of distinguished
vertices. In this work we focus on the budget-constrained version, where
we maximize the total profit of the nodes in the subgraph subject to a
budget constraint on the total cost. We propose several mixed-integer
formulations for enforcing the subgraph connectivity requirement, which
plays a key role in the combinatorial structure of the problem. We show
that a new formulation based on subtour elimination constraints is more
effective at capturing the combinatorial structure of the problem, pro-
viding significant advantages over the previously considered encoding
which was based on a single commodity flow. We test our formulations
on synthetic instances as well as on real-world instances of an important
problem in environmental conservation concerning the design of wildlife
corridors. Our encoding results in a much tighter LP relaxation, and
more importantly, it results in finding better integer feasible solutions as
well as much better upper bounds on the objective (often proving opti-
mality or within less than 1% of optimality), both when considering the
synthetic instances as well as the real-world wildlife corridor instances.

1 Introduction

A large class of decision and optimization problems can be captured as finding a
connected subgraph of a larger graph satisfying certain cost and revenue require-
ments. In different realizations of the Connection Subgraph Problem costs and
profits are associated with either edges, nodes or both. Examples of this family
of problems are the Minimum Steiner Tree, Maximum-Weighted Connected Sub-
graph and Point-to-Point Connection Problem. Such problems arise in a large
number of applications – e.g. network design, system biology, social networks
and facility location planning.

Here, we are concerned with a variant of the Connected Subgraph Problem
where we are given a graph with costs and profits associated with nodes and
one or more designated nodes called terminals and we seek to find a connected
subgraph that includes the terminals with maximal profit and total cost within a
specified budget which we refer to as the Budget-Constrained Steiner Connected



Subgraph Problem with Node Profits and Node Costs. This problem is known
to be NP-hard even for the case of no terminals [2]. Removing the connectivity
constraint, we have a 0-1 knapsack problem. On the other hand, the connectivity
constraint relates it to other important classes of well-studied problems such as
the Traveling Salesman Problem and the Steiner Tree problem. The connectivity
constraint plays a key role in the combinatorics of this problem and we propose
new mathematical formulations to better capture the structure of the problem
w.r.t. the connectivity constraint.

Our work is motivated by an important instance of this problem that arises
in Conservation Planning. The general problem consists of selecting a set of land
parcels for conservation to ensure species viability. This problem is also known
in the literature in its different variants as site selection, reserve network design,
and corridor design. Biologists have highlighted the importance of addressing
the negative ecological impacts of habitat fragmentation when selecting parcels
for conservation. To this effect, ways to increase the spatial coherence among
the set of parcels selected for conservation have been investigated ( see [14] for
a review). We look at the problem of designing so-called wildlife corridors to
connect areas of biological significance (e.g. established reserves). Wildlife cor-
ridors are an important conservation method in that they increase the genetic
diversity and allow for greater mobility (and hence better response to predation
and stochastic events such as fire, as well as long term climate change). Specifi-
cally, in the wildlife corridor design problem, we are given a set of land parcels,
a set of reserves (land parcels that correspond to biologically significant areas),
and the cost (e.g. land value) and utility (e.g. habitat suitability) of each parcel.
The goal is to select a subset of the parcels that forms a connected network
including all reserves. This problem is clearly an instance of the Connected Sub-
graph Problem with node profits and node costs, where the nodes correspond to
parcels, the terminal nodes correspond to the reserves and the edges correspond
to adjacency of parcels. Conservation and land use planners generally operate
with a limited budget while striving to secure the land that results in the corri-
dor with best habitat suitability. This results in the budget-constrained version
of the connected subgraph problem.

The connected subgraph problem in the context of designing wildlife corridors
was recently studied in [2, 7]. Conrad et al. [2] designate one of the terminals as
a root node and encode the connectivity constraints as a single commodity flow
from the root to the selected nodes in the subgraph. This encoding is small and
easy to enforce. They present computational results which show an easy-hard-
easy runtime pattern with respect to the allowed budget on a benchmark of syn-
thetic instances [7]. Further, when solving large scale real world instances of this
optimization problem, the authors report extremely large running time. Here,
we try to improve the state-of-the-art for this problem by proposing alternative
formulations. We show that the easy-hard-easy pattern in runtime solution for
finding optimal solutions observed for synthetic instances aligns with a similar
pattern in the relative integrality gap of the LP relaxation of the model. This
observation suggests that formulations that have tighter LP relaxations might



also lead to faster solution times for finding optimal solutions. To this effect, we
propose two additional formulations.

One possible alternative which we explore in this paper is to establish the
connectivity of each selected node to the root node by a separate commodity flow.
This results in a multi-commodity flow encoding of the connectivity constraints.
Although the multi-commodity flow encoding is larger than the single commodity
encoding (yet still polynomial size), it can result in a stronger LP relaxation of
the problem.

A completely different avenue is to adapt ideas from the vast literature on the
Steiner Tree Problem. Encodings of the connectivity requirement with respect
to edge decisions successfully applied to the Steiner Tree problem involve ex-
ponential number of constraints. The Steiner Tree variants involve costs and/or
profits on edges and hence such models explicitly model binary decisions of in-
cluding or excluding edges from the selected subgraph. In particular, for the
Steiner Tree Problem with Node Revenues and Budgets, Costa et al. [4] sug-
gest using the directed Dantzig-Fulkerson-Johnson formulation [5] with subtour
elimination constraints enforcing the tree structure of the selected subgraph. For
variants of the Connection Subgraph Problem that involve edge costs or edge
profits one needs to model explicitly decisions about inclusion of edges in the
selected subgraph. Given a graph G = (V,E), in the problem variant we study
we only need to make explicit decisions of which nodes to include (i.e., V ′ ⊆ V )
and connectivity needs to be satisfied on the induced subgraph G(V ′) that only
contains edges of G whose endpoints belong to V ′. Nevertheless, we adapt the
directed Dantzig-Fulkerson-Johnson formulation to our problem, therefore con-
sidering the graph edges as decision variables instead of the nodes, which in
general results in dramatically increasing the search space size from 2|V | to 2|E|.
Although at first glance this change seems counterproductive, the added strength
that results from explicitly enforcing the connectivity of each selected node to
a predefined terminal, in fact, results in a tighter formulation. This formula-
tion involves an exponential number of connectivity constraints that cannot be
represented explicitly for real life sized instances. To address this, we present a
Bender’s decomposition approach that iteratively adds connectivity constraints
to a relaxed master problem [1, 12].

We provide computational results on the three different encodings of the
connectivity constraints: 1) the single-commodity flow (SCF) encoding [2]; 2) a
multi-commodity flow (MCF) encoding; 3) a modified directed Dantzig-Fulkerson-
Johnson (DFJ) formulation using node costs. On a benchmark of synthetic in-
stances consisting of grid graphs with random costs and revenues, we show that
indeed the multi-commodity encoding provides better LP relaxation bounds than
the single commodity flow, and that the directed Dantzig-Fulkerson-Johnson
formulation provides the best bounds. Most importantly, the advantage of the
bounds provided by the directed Dantzig-Fulkerson-Johnson formulation over
the single-commodity flow encoding are greatest exactly in the hard region. The
tighter bounds turn out to have a critical effect on the solution times for finding
optimal integer feasible solutions. Despite the large size of the DFJ encoding, it



works remarkably well for finding integer feasible solutions. The easy-hard-easy
pattern with respect to the budget exhibited strongly by the SCF encoding is
much less pronounced when using the DFJ encoding – this encoding is consid-
erably more robust to the budget level. We show that the DFJ encoding finds
optimal solutions two orders of magnitude faster than the SCF encoding in the
interval of budget values that are hardest. This result is particularly relevant
when solving real-world instances because the hard region usually falls over a
budget interval close to the minimum cost solution to find a connected subgraph
– i.e. it helps find solutions for tight budgets.

We test our formulations on real problem instances concerning the design of
a Grizzly Bear Wildlife Corridor connecting three existing reserves [2]. We show
that, for critically constrained budgets, the DFJ encoding proposed here can find
optimal or close to optimal solutions, dramatically speeding up runtime. For the
same problem instances and budget levels, the single flow encoding can only
find considerably worse feasible solutions and has much worse objective upper
bounds. For example, for a budget level which is 10% above the minimum cost
required to connect all reserves, the DFJ encoding finds an optimal soltuion and
proves optimality in 25 mins, while the SCF encoding after 10 hours has found
an inferior solution and has proven an optimality gap of 31%. Similar behavior
is observed for a budget of 20% above the minimum cost. Working budgets close
to the minimum cost solution is a very likely scenario in a resource-constrained
setting such as conservation planning. Hence, with the little money available, it
is important to find the best possible solutions. The new DFJ encoding proposed
here allows us to find optimal solutions to large scale wildlife corridor problems
in exactly the budget levels that are most relevant in practice and that are out of
reach in terms of computational time for the previously proposed formulations.

The DFJ encoding is better at capturing the combinatorial structure of the
connectivity constraints which is reflected in the tightness of the LP relaxation
as well as in the fact that it finds integer feasible solutions much faster and with
very strong guarantees in terms of optimality (often proving optimality or within
less than 1% of optimality), both when considering the synthetic instances as
well as the real-world wildlife corridor instances.

2 Related Work

One of the most studied variant of the Connected Subgraph Problem is perhaps
the Steiner Tree which involves a graph G = (V,E), a set of terminal vertices
T ⊂ V , and costs associated with edges. In the Minimum Steiner Tree Problem
the goal is to select a subgraph G′ = (V ′ ⊆ V,E′ ⊆ E) of the smallest cost
possible that is a tree and contains all terminals (T ⊆ V ′). Although including a
budget constraint has important practical motivation, budget-constrained vari-
ants of the Steiner tree problem are not as nearly widely studied as the minimum
Steiner tree or the prize-collecting variant. The variant that is more relevant here
is the Budget Prize Collecting Tree Problem where in addition to costs associ-
ated with edges, there are also revenues associated with nodes. The goal is to



select a Steiner tree with total edge cost satisfying a budget constraint while
maximizing the total node revenue of the selected tree. Levin [10] gives a (4+ǫ)-
approximation scheme for this problem. Costa et al. [3, 4] study mathematical
formulations and solution techniques for this problem in the presence of addi-
tional so-called hop constraints. They use a directed rooted tree encoding with an
exponential number of connectivity constraints and a Branch-and-Cut solution
technique. One can easily see that the Budget Prize Collecting Tree Problem is a
special case of the Budget-Constrained Steiner Connected Subgraph with Node
Profits and Node Costs by replacing each edge with an artificial node with the
corresponding cost and adding edges to the endpoints of the original edge. We
adapt some of the vast amount of work on tight formulations for the variants
of the Steiner Tree problem with edge costs to the more general node-weighted
problem.

Restricted variants of Budget-Constrained Steiner Connected Subgraph Prob-
lem with Node Profits and Node Costs have been addressed previously in the
literature. Lee and Dooly [9] study the Maximum-weight Connected Subgraph
Problem where profits and unit costs are associated with nodes and the goal is to
find a connected subgraph of maximal weight and at most a specified R number
of nodes. In the constrained variant they consider a designated root node that
needs to be included in the selected subgraph.

Moss and Rabani [13] also study the connected subgraph problem with
node costs and node profits and refer to this problem as the Constrained Node
Weighted Steiner Tree Problem. They also only consider the special case where
there is either no terminals or only one terminal - a specified root node. For
all three optimization variants - the budget, quota and prize-collecting, Moss
and Rabani [13] provide an approximation guarantee of O(log n), where n is the
number of nodes in the graph. However, for the budget variant, the result is
a bi-criteria approximation, i.e. the cost of the selected nodes can exceed the
budget by some fraction. Finding an approximation algorithm for the budget-
constrained variant is still an open question, as well as dealing with multiple
terminals. Demaine et al. [6] have recently shown that one can improve the
O(log n) approximation guarantee to a constant factor guarantee when restrict-
ing the class of graphs to planar but only in the case of the minimum cost Steiner
Tree Problem with costs on nodes (but no profits). It is an open research ques-
tion whether for planar graphs one can design a better approximation scheme
for the budget-constrained variant. This is of particular interest because the
Wildlife Corridor Design problem corresponds to finding a connected subgraph
in a planar graph.

3 Mathematical Formulations

The Connected Subgraph Problem with Node Profits and Node Costs is specified
by a connected graph G = (V,E) along with a set of terminal nodes T ∈ V , a
cost function on nodes c : V → R, and a profit function on nodes u : V → R.
The goal is to select a subset of the nodes V ′ ⊆ V such that all terminal nodes



T are included (T ⊆ V ′) and the induced subgraph G(V ′) is connected. In
the Budget-Constrained variant, given a budget C we seek to find a connected
subgraph such that the total cost of the nodes in V ′ do not exceed the budget
C, while maximizing the total profit of the selected nodes.

In the following formulations, for each vertex i ∈ V , we introduce a binary
variable xi, representing whether or not i is included in the connected subgraph.
Then, the objective function, the budget constraint and the terminal inclusion
constraint are stated as:

maximize
∑

i∈V

uixi, (1)

s.t.
∑

i∈V

cixi ≤ C (2)

xt = 1, ∀t ∈ T (3)

xi ∈ {0, 1}, ∀i ∈ V (4)

In the following subsections we outline three different ways of enforcing the
connectivity constraints — the selected vertices should induce a connected sub-
graph of the original graph G.

3.1 Connectivity as Single Commodity Flow

Conrad et al. [2], Gomes et al. [7] use a single-commodity network flow encoding
where each undirected edge {i, j} ∈ E is replaced by two directed edges (i, j)
and (j, i). Let us call the set of directed edges A. They introduce a source vertex
0, with maximum total outgoing flow n = |V |. One arbitrary terminal vertex is
chosen as root r ∈ T , and a directed edge (0, r) is defined to insert the flow into
the network. Each selected node acts as a “sink” by consuming one unit of flow,
and a node can be selected only if it has positive incoming flow. Connectivity
of the selected nodes is ensured by enforcing flow conservation constraints at all
nodes.

More formally, for each (directed) edge (i, j) ∈ A, there is a non-negative vari-
able yij to indicate the amount of flow from i to j and the following constraints
are enforced:

x0 + y0r = n (5)

yij ≤ nxj , ∀(i, j) ∈ A (6)
∑

i:(i,j)∈A

yij = xj +
∑

i:(j,i)∈A

yji, ∀j ∈ V (7)

∑

j∈V

xj = y0r (8)

yij ≥ 0, ∀(i, j) ∈ A ∪ (0, r) (9)

x0 ≥ 0, ∀(i, j) ∈ A (10)



For the source of the flow, they introduce a variable x0 ∈ [0, n], representing
the eventual residual flow. Constraint (5) states that the residual flow plus the
flow injected into the network corresponds to the total system flow. Each of
the vertices with a positive incoming flow retains one unit of flow, i.e., (yij >
0) ⇒ (xj = 1),∀(i, j) ∈ A enforced by Constraint (6). The flow conservation is
modeled in Constraint (7). Finally, Constraint (8) enforces that the flow absorbed
by the network corresponds to the flow injected into the system. This encoding
requires 2|E| + 1 additional continuous variables and ensures that all selected
nodes form a connected component.

3.2 Connectivity as Multi-commodity flow

In the first encoding we enforce the connectivity of all selected nodes though a
single commodity flow. In this model, the key difference is that we enforce the
connectivity of the selected set of nodes by associating a separate commodity
with each node. There will be one unit of flow from the root to each selected
node of its own “commodity” type. We arbitrarily select one of the terminals as
a root node denoted r ∈ T . Each other node i is a potential sink of one unit of
commodity flow of type i that will have to be routed from the root node to i.
Let use denote the set of neighbors of a node i as δ(i) = {j|(i, j) ∈ A}.

Similarly to the original model, we still have binary decision variable for
each vertex and the objective, the budget constraint and the terminal inclusion
constraint are defined as before.

For each (directed) edge (i, j) ∈ A and each node k different from the root
node r, we introduce a variable ykij ≥ 0 which when it is nonzero indicates that
the edge carries flow of type k. If a node k is selected then in becomes an active
sink for flow of type k.

∑

j:r∈δ(j)

ykjr = 0 ∀k ∈ V − r (11)

∑

j∈δ(k)

ykjk = xk ∀k ∈ V − r (12)

∑

j∈δ(k)

ykkj = 0 ∀k ∈ V − r (13)

∑

j∈δ(i)

ykij =
∑

i∈δ(j)

ykji ∀k,∀i ∈ V − r, i 6= k (14)

ykij ≤ xi ∀k,∀i ∈ V − r,∀j ∈ δ(i) (15)

ykij ≤ xj ∀k,∀i ∈ V − r,∀j ∈ δ(i) (16)

ykij ≥ 0 ∀k ∈ V − r,∀(i, j) ∈ A (17)

For all nodes k, if node k is selected, then k is a sink for flow of commodity
k (Constraint (12, 13)). Constraint (14) imposes conservation of flow for each
commodity type k at each node different from the sink k and the source r, and
Constraint (11) imposes that the root does not have any incoming flow. Finally,



the capacity of each edge is zero if either end node is not selected, and 1 otherwise
(Constraint (15, 16)).

This encoding requires (|V | − 1)2|E| additional continuous variables – con-
siderably more than the SCF encoding. However, we will see that enforcing the
connectivity of each node to the root separately results in tighter LP relaxation.

3.3 Connectivity as Directed Steiner Tree

As suggested by the multi-commodity flow encoding, to enforce connectivity one
may enforce that there exists a path from each selected node to the root node. In
this third encoding, we in fact explicitly model the selection of edges as binary
variables and insist that we select a set of nodes and edges such that there is a
single path from each selected node to the root (using the selected nodes). In
other words, we impose stronger constraints than necessary while preserving all
feasible solutions in terms of subset of nodes that induce a connected subgraph.
In effect, we enforce the connectivity constraints by adding constraints that en-
sure that we select edges that form a (Steiner) tree. Several studies on Steiner
Tree problem variants have shown that often directed edge models are better
than undirected ones in solving Steiner Tree problems (e.g. [11, 4]). Following
these results, we adapt the directed Dantzig-Fulkerson-Johnson formulation of
connectivity. We have a binary variable for each directed edge in A (Constraint
(24)). We can avoid explicitly including binary variables x for each node, as
these decisions can be inferred from the values of the edge binary variables.
The set of selected nodes consists of the nodes that have exactly one incoming
edge. Although the vertex variables are not explicitly represented, it will still be
useful to refer to them. To this effect, given a solution vector over the edge vari-
ables y, let us define an associated vertex solution vector x as xk =

∑

k∈δ(i) yik.

Constraints (18) and (19) express the objective and the budget constraint in
terms of edge variables. Constraint (20) enforces that each terminal node should
have one incoming edge (i.e. it should be selected). To enforce the directed tree
property, each non-root node is allowed to have at most one incoming edge (Con-
straint (21)). Connectivity is enforced through generalized subtour elimination
constraints defined over edge variables (Constraints (23)). We also include Con-
straint (22) which strengthens the formulation by enforcing that each edge is
used in at most one direction.



max
∑

i∈V



ui

∑

j∈δ(i)

yji



 (18)

s.t.
∑

i∈V



ci

∑

j∈δ(i)

yji



 ≤ C (19)

∑

j∈δ(i)

yji = 1 ∀i ∈ T (20)

∑

j∈δ(i)

yji ≤ 1 ∀i ∈ V − T (21)

yij + yji ≤ 1 ∀i ∈ V − T,∀j ∈ δ(i) − r (22)
∑

(i,j)∈A|j∈S,i∈V \S

yij ≥
∑

j∈δ(k)

yjk, ∀S ⊂ V − r,∀k ∈ S [cuts] (23)

yij ∈ {0, 1} ∀(i, j) ∈ A (24)

Given the exponential number of connectivity Constraints (23), in the following
section we describe a solution approach in which we relax these constraints in
the context of cutting plane procedure and only add them as cuts when they
become violated.

4 Solution Approaches

Conrad et al. [2], Gomes et al. [7] outline a preprocessing technique for the
Budget-constrained Connected Subgraph problem which effectively reduces the
problem size for tight budgets. The procedure computes all-pairs shortest paths
in the graph and uses these distances to compute for each node the minimal
Steiner Tree cost that covers all three terminals as well as the node under con-
sideration. If this minimum cost exceeds the allowed budget, the node does not
belong to any feasible solution and hence its variable is assigned to 0.

Gomes et al. [7] also outline a greedy method for finding feasible solutions
to the Budget-constrained Connected Subgraph problem by first computing the
minimum cost Steiner tree covering all the terminal nodes and then greedily
adding additional nodes until the allowed budget is exhausted. They show that
providing this greedy solution to their encoding of the Connected Subgraph
Problem (the single commodity flow encoding) significantly improves perfor-
mance.

We use both of these techniques. We apply the preprocessing step to all
problem instances. In addition, we provide the greedy solution as a starting
point to the SCF encoding.

Our approach to solving the DFJ encoding is based on a cutting plane or
Bender’s decomposition approach. We solve a relaxed “master” problem which



omits the exponential number of connectivity constraints. In a first pass of this
procedure all edge variables are relaxed from binary variables to continuous
variables ∈ [0, 1]. In this first phase, we solve a sequence of progressively tighter
LP master problems and in effect this corresponds to a cutting plane approach.
Once we find a (fractional) optimal solution to the LP master problem that does
not violate any connectivity constraints, we have obtained the optimal solution
to the LP relaxation of the DFJ formulation. If that solution is integral, then
we have an optimal solution to the original problem. If the LP solution is not
integral, we enforce the integrality constraints for all edge variables. We continue
the same iteration steps where now the master problem includes the cuts learned
during solving the LP relaxation as well as the integrality constraints. In the
second phase, we need to solve a sequence of MIP master problems which is in
effect a Bender’s decomposition approach. At each iteration, the optimal solution
to the MIP master might not be connected and more connectivity cuts would
need to be added. Once we find an optimal MIP master solution, we have found
an optimal integer solution to the original problem. The detailed algorithm is
outlined below:

Master Algorithm:

0. (Initialize) Define the initial relaxation P0 of the problem by Constraints (18,
19,20, 21, 22) as well as the integrality Constraint (24) relaxed to only enforce
the bounds. Set iteration count t = 0.
1. (Master optimization) Solve Pt and obtain an optimal (edge) solution yt.
Let the associated vertex solution be xt. If the associated vertex solution xt is
integral, go to Step 3, otherwise go to Step 4.
2. (Additional Check) Check the connectivity of the induced graph G(xt). If it is
connected, then xt is optimal, and the algorithm returns solution xt. Otherwise,
continue to Step 4.
3. (Master separation) Check if yt satisfies all the connectivity constraints (23). If
it does, go to Step 4. If a violated constraint is found, then add the corresponding
cut to the master problem and let Pt+1 be the problem obtained. Set t = t + 1
and return to Step 1.
4. (Optimality check) If the associated vertex solution xt is integral, then xt is
optimal, and the algorithm returns solution xt. Otherwise, add the integrality
constraints (24) back in to the problem, and let Pt+1 be the problem obtained.
Set t = t + 1 and go to Step 1.

Checking the exponential number of connectivity constraints (23) given an
edge solution yt in Step 3 is done through a polynomial time separation proce-
dure. The separation procedure checks the connectivity of each selected vertex
to the root and terminates as soon as it finds a disconnected node and infers a
cut to be added. It first checks the connectivity of the terminals to the root and
then other selected vertices. We solve a max-flow problem in the directed graph
G’=(V,A) between the root and each node k ∈ V − r selected in the proposed
solution, i.e. in the associated vertex solution xt(k) > 1−ǫ. The capacities of the
edges are the current values of the edge variables yt in the master solution. If the
maximum flow is less than the sum of the incoming arcs from k, we have found



a violated constraint. The dual variables of the max-flow subproblem indicate
the partition of nodes {S, V \S} that define the minimum cut (let r ∈ V \S).

Now, we can add the cut enforcing that at least one edge across the partition
needs to be selected if parcel k is selected:

∑

(i,j)∈A|i∈V \S,j∈S

yij ≥ xk (25)

Step 2 of the algorithm is a special step that applies to the Connected Sub-
graph Problems with node costs and node profits. Given a solution yij of the
DFJ formulation and the associated vertex vector xt we can infer a set of se-
lected nodes V ′ = {k ∈ V |xk(t) = 1}. The original problem only requires that for
the selected subset of vertices V ′ the induced graph G(V ′) is connected, while
the DFJ formulation poses a much stronger requirement to select a subset of
edges forming a tree. Hence, it can be the case that that V ′ induces a connected
subgraph in G, but the selected edges E′ = {(i, j) ∈ A|yij = 1} do not form a
single connected component. To illustrate this, imagine that the selected edges
E′ form two vertex-disjoint cycles C1 and C2 and such that u ∈ C1 and v ∈ C2

and u, v ∈ E. The edge set E′ clearly does form a connected subgraph, however
the subgraph induced by the selected vertices is connected because of the edge
u, v. Without Step 2, our separation procedure in Step 3 will infer a new cut and
will wrongly conclude that the selected master solution is not a feasible solution.
To avoid such cases, we introduce Step 2 to check the weaker connectivity in
terms of the induced subgraph. If this connectivity check fails, then we use the
max-flow separation procedure in Step 3 to infer a new connectivity cut to add
to the master.

The solution procedure described above solves a series of tighter relaxation
of the original problem and therefore the first solution that is feasible w.r.t.
all the constraints in the original problem is in fact the optimal solution. One
problem with this approach is that we need to wait until the very end to get
one integer feasible solution which is also the optimal one. Ideally, one would
like to have integer feasible solutions as soon as possible. We achieve this in
the context of this solution technique by noticing that while solving the MIP
master to optimality we discover a sequence of integer solutions. Some of these
integer solutions might satisfy all connectivity constraints (i.e. they are feasible
solutions to the original problem), but are discarded by the master as sub-
optimal – there might be disconnected solutions to the master of better quality.
To detect the discovery of feasible solutions to the original problem while solving
the master problem, we introduce a connectivity check at each MIP master
incumbent solution (not described in our algorithm outline above). If a MIP
master incumbent is connected and is better than any other connected integer
solution discovered so far, we record this solution as an incumbent to our original
problem.



5 Experimental Results

We evaluate the strength of the LP relaxation of the three alternative encod-
ings on a synthetically generated benchmark of instances [2]. We generate 100
instances of a 10 by 10 grid parcels (100 nodes) and 3 reserves (terminals) with
uniformly sampled costs and utilities. We report median running times across the
100 instances where the budget is varied as percentage slack over the minimum
cost solution for the particular instance. For example, given a minimum cost so-
lution for connecting the terminal nodes of value cmin, 10% slack corresponds to
budget B = 110% ∗ cmin. All computational experiments were performed using
IBM ILOG CPLEX 11[8].
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Fig. 1. Optimality gap and run times of LP relaxations of the three encodings
on 10x10 lattices with 3 reserves, median over 100 runs
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Fig. 2. Compare run times of DFJ and SCF for finding optimal integer solutions
on 10x10 lattices with 3 reserves, median over 100 runs.

Figure 1 compares the relative gap between the optimal objective of the
LP relaxation z∗LP and the optimal objective of the problem z∗IP at different
budget levels given by (z∗LP − z∗IP )/z∗IP . One can see that the DFJ encoding
indeed provides a relaxation which is much tighter than the relaxation of the



single flow formulation of the problem. In particular, the smaller the budget is
(up to some point), the bigger advantage the exponential formulation has. This
added strength however is paid in computational time. The LP relaxation of the
SCF model is solved really fast compared to the DFJ encoding. On the other
had, the multi-commodity encoding does not dominate on either measure – it
provides tighter bound on the optimal but not as tight as the DFJ formulation
but at the same time takes a considerable computational time. In the rest of
the experimental analysis, we concentrate on the single commodity flow and the
DFJ encoding. The DFJ-style encodings in the context of Steiner tree problems
are known to produce tight LP relaxations. Our results confirm this trend in
the variant we are studying here. More importantly, one would like to use the
strength of this encoding to find the optimal integer feasible solution.

Figure 2 compares the running time of the SCF encoding and the DFJ encod-
ing. An easy-hard-easy pattern of the running time with respect to the budget
was already observed by Gomes et al. [7]. Here, we clearly see that the DFJ
encoding is in fact most beneficial in exactly the hard budget region. For large
budgets, the DFJ encoding in fact has worst running time than the single com-
modity flow. However, more importantly it improves the running time in the
hard region by 2 orders of magnitude.

We are interested in the running time performance of the SCF and the DFJ
encoding when looking for integer feasible solutions. We evaluate the perfor-
mance on a real-world Wildlife Corridor design problem attempting to connect
three existing reserves. We tackle this problem at two different spatial scales.
The coarser scale considers parcels grid cells of size 40 by 40 km and has 242
parcels (nodes). The finer spatial scale consider parcels of size 10 by 10 km and
has 3299 parcels (nodes).
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Fig. 3. Results on a Wildlife Corridor Problem at 40 km resolution.

Figure 3 clearly demonstrates the advantage of the DFJ encoding on the
40km problem instance both in terms of the LP relaxation bound (left) and in
terms of finding integer optimal solutions (right). The single flow encoding is
fast for very tight and very large budgets, but for a critically constrained region



the running time is much higher. The DFJ encoding on the other hand shows
robust running times which do not vary much with the budget level.

We compare the running time to find integer solutions for the much larger
instance at spatial resolution of 10 km. We set the budget at different (tight)
levels as percent slack above the minimum cost required to connect the reserves.
Table 1 presents solution quality, running times and optimality gap results for
three different levels. For comparison, we also include the quality of the solution
obtained by the greedy algorithm from [7] (which is usually much worse than the
optimal). The results in Table 1 show that the DFJ encoding is much faster at
finding optimal or near optimal solutions to the problem than the SCF encoding.
Given a 8 hour cutoff time, for all three budget levels DFJ finds equal or better
feasible solutions than SCF and also provides very tight optimality guarantee
(< 1% in all cases). On the other hand, SCF in all three cases can only guarantee
that the best solution it has founf is within at best 28% of optimality.

Table 1. The performance of the SCF and DFJ encoding on a large real world
instance with an 8 hour cutoff time.

budget slack encoding time objective opt. gap

10% greedy < 2 mins 10691163 NA

109475
SCF 8 hrs 10877799 31.15%
DFJ 25 mins 12107793 0.01%

20% greedy < 2 mins 12497251 NA

119427
SCF 8 hrs 12911652 30.35%
DFJ 2 hrs 25 mins 13640629 0.01%

30% greedy < 2 mins 13581815 NA

129379
SCF 8 hrs 13776496 28.64%
DFJ 7 hrs 35 mins 14703920 0.62%

6 Conclusion

The budget-constrained Connection Subgraph Problem is computationally chal-
lenging problem with a lot of real world applications. Capturing well the combi-
natorial structure of the connectivity constraint is critical to effectively solving
large scale instances. In this work, we proposed a novel solution approach to this
problem that uses an adapted directed Dantzig-Fulkerson-Johnson formulation
with subtour elimination constraints in the context of a cut-generation approach.
This results in significant speed up in run times when the budget level falls in
the interval that results in most computationally challenging instances. We eval-
uate performance on a relatively large instance of the Wildlife Corridor Design
Problem and find optimal solutions for different budget levels. This work is a
good example of identifying and extending relevant Computer Science results
for problems arising in the area of Computation Sustainability.



Acknowledgments

This research was supported by IISI, Cornell University (AFOSR grant FA9550-04-1-

0151), NSF Expeditions in Computing award for Computational Sustainability (Grant

0832782) and NSF IIS award (Grant 0514429).

References

[1] J. Benders. Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik, 4:238–252, 1962.

[2] Jon Conrad, Carla P. Gomes, Willem-Jan van Hoeve, Ashish Sabharwal,
and Jordan Suter. Connections in networks: Hardness of feasibility versus
optimality. In CPAIOR, volume 4510, pages 16–28, May 2007.

[3] Alysson M. Costa, Jean-Franois Cordeau, and Gilbert Laporte. Steiner
tree problems with profits. INFOR: Information Systems and Operational
Research, 4(2):99–115, 2006.

[4] Alysson M. Costa, Jean-François Cordeau, and Gilbert Laporte. Models
and branch-and-cut algorithms for the steiner tree problem with revenues,
budget and hop constraints. Networks, 53(2):141–159, 2009.

[5] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a Large-Scale
Traveling-Salesman Problem. Operations Research, 2(4):393–410, 1954.

[6] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Philip Klein. Node-
weighted steiner tree and group steiner tree in planar graphs. In ICALP:
International Colloquium on Automata, Languages and Programming, 2009.

[7] Carla P. Gomes, Willem-Jan van Hoeve, and Ashish Sabharwal. Connec-
tions in networks: A hybrid approach. In CPAIOR, volume 5015, pages
303–307, May 2008.

[8] ILOG, SA. CPLEX 11.0 Reference Manual, 2007.
[9] Heungsoon Felix Lee and Daniel R. Dooly. Decomposition algorithms for

the maximum-weight connected graph problem. Naval Research Logistics,
45(8):817–837, 1998.

[10] Asaf Levin. A better approximation algorithm for the budget prize collect-
ing tree problem. Operations Research Letters, 32(4):316 – 319, 2004.
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