In Introduction to Optimization, Decision Support and Sedwthodologies,
Burke and Kendall (Eds.), Kluwer, 2005. (Invited Survey.)

Chapter 18

APPROXIMATION ALGORITHMS

Carla P. Gomes

Department of Computer Science
Cornell University
Ithaca, NY, USA

Ryan Williams

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA, USA

18.1 INTRODUCTION

Most interesting real-world optimization problems arepghnallenging from
a computational point of view. In fact, quite often, finding@ptimal or even a
near-optimal solution to a large-scale optimization peabimay require com-
putational resources far beyond what is practically atsbela There is a sub-
stantial body of literature exploring the computationagerties of optimiza-
tion problems by considering how the computational demanids solution
method grow with the size of the problem instance to be sofsed e.g. Aho
etal., 1979). A key distinction is made between problemsribguire compu-
tational resources that grow polynomially with problemesizrsus those for
which the required resources grow exponentially. The forrategory of prob-
lems are called efficiently solvable, whereas problemsaénatter category are
deemedntractablebecause the exponential growth in required computational
resources renders all but the smallest instances of subifiepte unsolvable.

It has been determined that a large class of common optiimizptoblems
are classified ablP-hard It is widely believed—though not yet proven (Clay
Mathematics Institute, 2003)—that NP-hard problems am@adtable, which
means that there does not exist an efficient algorithm (nhe tbat scales poly-
nomially) that is guaranteed to find an optimal solution facls problems.
Examples of NP-hard optimization tasks are the minimumeliag salesman
problem, the minimum graph coloring problem, and the minirhin packing

558 GOMES AND WILLIAMS

problem. As a result of the nature of NP-hard problems, megthat leads to
a better understanding of the structure, computationglesties, and ways of
solving one of themexactlyor approximately also leads to better algorithms
for solving hundreds of other different but related NP-hamoblems. Several
thousand computational problems, in areas as diverse asmots, biology,
operations research, computer-aided design and finanee,bleen shown to
be NP-hard. (See Aho et al., 1979, for further descriptioth discussion of
these problems.)

A natural question to ask is whethapproximate(i.e. near-optimal) solu-
tions can possibly be found efficiently for such hard optaian problems.
Heuristic local search methods, such as tabu search andaséthiiannealing
(see Chapters 6 and 7), are often quite effective at findiag-optimal solu-
tions. However, these methods do not come with rigorousagii@es concern-
ing the quality of the final solution or the required maximwmtime. In this
chapter, we will discuss a more theoretical approach tashkise consisting of
so-called “approximation algorithms”, which are efficiagorithms that can
be proven to produce solutions of a certain quality. We vslbaliscuss classes
of problems for which no such efficient approximation algors exist, thus
leaving an important role for the quite general, heurigiital search methods.

The design of good approximation algorithms is a very acdirea of re-
search where one continues to find new methods and technidjussquite
likely that these techniques will become of increasing ingoace in tackling
large real-world optimization problems.

In the late 1960s and early 1970s a precise notion of appaiiomwas pro-
posed in the context of multiprocessor scheduling and bakipg (Graham,
1966; Garey et al., 1972; Johnson, 1974). Approximatioorilgns gener-
ally have two properties. First, they provide a feasiblaioh to a problem
instance in polynomial time. In most cases, it is not diffi¢col devise a pro-
cedure that findsomefeasible solution. However, we are interested in having
some assured quality of the solution, which is the secondchgiharacterizing
approximation algorithms. The quality of an approximatadgorithm is the
maximum “distance” between its solutions and the optimhltamns, evaluated
over all the possible instances of the problem. Informaltyalgorithm approx-
imately solves an optimization problem if it always retuenteasible solution
whose measure is close to optimal, for example within a famboinded by a
constant or by a slowly growing function of the input sizevési a constant
«, an algorithmA is ana-approximation algorithm for a given minimization
problemII if its solution is at mosty times the optimum, considering all the
possible instances of problerh

The focus of this chapter is on the design of approximatigorghms for
NP-hard optimization problems. We will show how standargbathm de-
sign techniques such as greedy and local search methodsbareused to

APPROXIMATION ALGORITHMS 559

devise good approximation algorithms. We will also show hrawdomiza-
tion is a powerful tool for designing approximation algbrits. Randomized
algorithms are interesting because in general such agmeare easier to an-
alyze and implement, and faster than deterministic algmst (Motwani and
Raghavan, 1995). A randomized algorithm is simply an allgorithat per-
forms some of its choices randomly; it “flips a coin” to decigdbat to do at
some stages. As a consequence of its random componentedifexecutions
of a randomized algorithm may result in different solutiamsl runtime, even
when considering the same instance of a problem. We will dinmwone can
combine randomization with approximation techniques ueorto efficiently
approximate NP-hard optimization problems. In this case,approximation
solution, the approximation ratio, and the runtime of thpragimation algo-
rithm may be random variables. Confronted with an optiniieaproblem, the
goal is to produce a randomized approximation algorithni wintime prov-
ably bounded by a polynomial and whose feasible solutiofosecto the opti-
mal solution,in expectation Note that these guarantees hold for every instance
of the problem being solved. The only randomness in the pedoce guar-
antee of the randomized approximation algorithm comes fiteenalgorithm
itself, and not from the instances.

Since we do not know of efficient algorithms to find optimaludmins for
NP-hard problems, a central question is whether we can exifigi compute
good approximations that are close to optimal. It would bey weteresting
(and practical) if one could go from exponential to polynahtime complexity
by relaxing the constraint on optimality, especially if waagantee at most a
relative small error.

Good approximation algorithms have been proposed for sayeiloblems
in combinatorial optimization. The so-called APX comptgxilass includes
the problems that allow a polynomial-time approximatiagoaithm with a per-
formance ratio bounded by a constant. For some problemsamweesign even
better approximation algorithms. More precisely we carsaar a family of
approximation algorithms that allows us to get as close éoofitimum as we
like, as long as we are willing to trade quality with time. $sipecial family
of algorithms is called ampproximation schem@S) and the so-called PTAS
class is the class of optimization problems that allow fpplynomial time ap-
proximation schemthat scales polynomially in the size of the input. In some
cases we can devise approximation schemes that scale pobiho both in
the size of the input and in the magnitude of the approximadiwor. We refer
to the class of problems that allow sufthly polynomial time approximation
schemess FPTAS.

Nevertheless, for some NP-hard problems, the approximatibat have
been obtained so far are quite poor, and in some cases no®eedrdeen able
to devise approximation algorithms within a constant faciothe optimum.

560 GOMES AND WILLIAMS

Initially it was not clear if these weak results were due tolacgk of ability in
devising good approximation algorithms for such problemgsome inher-
ent structural property of the problems that excludes them fhaving good
approximations. We will see that indeed there are limitetito approxima-
tion which areintrinsic to some classes of problems. For example, in some
cases there is a lower bound on the constant factor of thesippation, and
in other cases, we can provably show that there are no appatioins within
any constant factor from the optimum. Essentially, there is dewiange of
scenarios going from NP-hard optimization problems thiwakpproxima-
tions toany required degree, to problems not allowing approximatidrella
We will provide a brief introduction to proof techniques dge derive non-
approximability results.

We believe that the best way to understand the ideas behprdxamation
and randomization is to study instances of algorithms widgsé properties,
through examples. Thus in each section, we will first inte<he intuitive
concept, then reinforce its salient points through wetisgn examples of pro-
totypical problems. Our goal is far from trying to provide entprehensive
survey of approximation algorithms or even the best appnaibn algorithms
for the problems introduced. Instead, we describe diftedemsign and eval-
uation technigues for approximation and randomized algms, using clear
examples that allow for relatively simple and intuitive &xations. For some
problems discussed in the chapter there are approximatithdetter perfor-
mance guarantees but requiring more sophisticated probhigues that are
beyond the scope of this introductory tutorial. In such sase will point the
reader to the relevant literature results. In summary, oaigfor this chapter
are as follows:

1 Present the fundamental ideas and concepts underlyinmtioa of ap-
proximation algorithms.

2 Provide clear examples that illustrate different tecbhagjfor the design
and evaluation of efficient approximation algorithms. Tkearaples in-
clude accessible proofs of the approximation bounds.

3 Introduce the reader to the classification of optimizapooblems ac-
cording to their polynomial-time approximability, inclundy basic ideas
on polynomial-time inapproximability.

4 Show the power of randomization for the design of approkinaal-
gorithms that are in general faster and easier to analyzéngpiément
than the deterministic counterparts.

5 Show how we can use a randomized approximation algoritterhasris-
tic to guide a complete search method (empirical results).

APPROXIMATION ALGORITHMS 561

6 Present promising application areas for approximatiahrandomized
algorithms.

7 Provide additional sources of information on approxioratand ran-
domization methods.

In Section 18.2 we introduce precise notions and conced imsapprox-
imation algorithms. In this section we describe key desaphhiques for ap-
proximation algorithms. We use clear prototypical exammpteillustrate the
main techniques and concepts, such as the minimum vertex,¢be knapsack
problem, the maximum satisfiability problem, the travelgadesman problem,
and the maximum cut problem. As mentioned earlier, we aréntetested in
providing the best approximation algorithms for these [awis, but rather in
illustrating how standard algorithm technigues can be @ststtively to de-
sign and evaluate approximation algorithms. In Sectio && provide a tour
of the main approximation classes, including a brief intrcttbn to techniques
to proof lower bounds on approximability. In Section 18.4 describe some
promising areas of application of approximation algorithr8ection 18.6 sum-
marizes the chapter and provides additional sources afrir#tion on approx-
imation and randomization methods.

18.2 APPROXIMATION STRATEGIES
18.2.1 Preliminaries

Optimization Problems We will define optimization problems in a tradi-
tional way (Aho et al., 1979; Ausiello et al., 1999). Eachimiation problem
has three defining features: the structure of the impgtance the criterion of
a feasiblesolutionto the problem, and theeasurdunction used to determine
which feasible solutions are considered to be optimal. litlva evident from
the problem name whether we desire a feasible solution withnemum or
maximum measure. To illustrate, the minimum vertex covebj@m may be

defined in the following way.
Minimum Vertex Cover

Instance:An undirected grapli = (V, E).

Solution: A subsetS C V such that for evenfu,v} € E, eitheru € S
orveSs.

Measure:|S]|.

We use the following notation for items related to an instahc

m Sol(I) is the set of feasible solutions 1o

» my: Sol(I) — Ris the measure function associated wiftand

562 GOMES AND WILLIAMS

= Opt(I) C Sol(I) is the feasible solutions with optimal measure (be it
minimum or maximum).

Hence, we may completely specify an optimization probldnby giving
a set of tuples{(I, Sol(I),mr,Opt(I))} over all possible instances It is
important to keep in mind thaol (1) and/ may be over completely different
domains. In the above example, the set/aé all undirected graphs, while
Sol(I) is all possible subsets of vertices in a graph.

Approximation and Performance Roughly speaking, an algorithm approx-
imately solves an optimization problem if it always retuenfeasible solution
whose measure is close to optimal. This intuition is madeipeebelow.

Let IT be an optimization problem. We say that an algoritdnfeasibly
solvesII if given an instance € II, A(I) € Sol(I); that is, A returns a
feasible solution td.

Let A feasibly solvell. Then we define thapproximation ration(A) of A
to be the minimum possible ratio between the measury 6f and the measure
of an optimal solution. Formally,

A(I
a(A) = min 77%[((1)
Iett my(Opt (1))
For minimization problems, this ratio is always at least lespectively, for
maximization problems, it is always at most 1.

Complexity Background We define a decision problem as an optimization
problem in which the measure is 0-1 valued. That is, solvinghstancel of
a decision problem corresponds to answeriggsinoguestion about (where
yescorresponds to a measure of 1, amlcorresponds to a measure of 0).
We may therefore represent a decision problem as a sgbskthe set of all
possible instances: members$fepresent instances with measure 1.
Informally, P (polynomial time) is defined as the class of decision proklem
II for which there exists a corresponding algoritiis such that every instance
I € 11 is solved byAr within a polynomial {I|* for some constant) num-
ber of steps on any “reasonable” model of computation. Redde models
include single-tape and multi-tape Turing machines, ramdocess machines,
pointer machines, etc.
While P is meant to represent a class of problems that can be efficient
solved,N P (nondeterministic polynomial time) is a class of decisiooljlems
II that can be efficientlghecked More formally, N P is the class of decision
problemsII for which there exists a corresponding decision probl&nn P
and constank satisfying

I €11 if and only if there existC € {0, 1}1" such tha(1,C) e I

APPROXIMATION ALGORITHMS 563

In other words, one can determine if an instaride in an N P problem effi-
ciently if one is also provided with a certain short strifigwhich is of length
polynomial inI. For example, consider th¥ P problem of determining if a
graphG has a pathP that travels through all nodes exactly once (this is known
as the Hamiltonian path problem). Here, the instancese graphs, and the
proofsC are Hamiltonian paths. If one is giver along with a description of
P, itis easy to verify thaf’ is indeed such a path by checking that

1 P contains all nodes i,
2 no node appears more than oncé’irand
3 any two adjacent nodes i have an edge between them(in

However, it is not known how to find such a pathgiven only a grapl, and
this is the fundamental difference betwa@mandN P. In fact, the Hamiltonian
path problem is not only iV P but is also/NV P-hard, see the Introduction.

Notice that while a short proof always existslifc II, it need not be the
case that short proofs exist for instances ndtliriThus, whileP problems are
considered to be those which aféiciently decidable/N P problems are those
considered to befficiently verifiablevia a short proof.

We will also consider the optimization counterpartsRand N P, which
are PO and N PO, respectively. InformallyPO is the class of optimization
problems where there exists a polynomial time algorithm #haays returns
an optimal solution to every instance of the problem, whe@®a&0 is the
class of optimization problems where the measure functigroiynomial time
computable, and an algorithm can determine whether or nossilge solution
is feasible in polynomial time.

Our focus here will be on approximating solutions to the test” of N PO
problems, those problems where the corresponding deqgsairiem isN P-
hard. Interestingly, somé&’ PO problems of this type can be approximated
very well, whereas others can hardly be approximated at all.

18.2.2 The Greedy Method

Greedy approximation algorithms are designed with a simbi®sophy in
mind: repeatedly make choices that get one closer and dlmadeasible solu-
tion for the problem. These choices will be optimal accaydim an imperfect
but easily computable heuristic. In particular, this hstigitries to be as op-
portunistic as possible in the short run. (This is why sugodihms are called
greedy—a better name might be “short-sighted”). For examglppose my
goal is to find the shortest walking path from my house to tieatdr. If | be-
lieved that the walk via Forbes Avenue is about the samethesgthe walk via
Fifth Avenue, then if | am closer to Forbes than Fifth, it wabble reasonable
to walk towards Forbes and take that route.

564 GOMES AND WILLIAMS

Clearly, the success of this strategy depends on the coessbf my belief
that the Forbes path is indeed just as good as the Fifth pathwNMshow
that for some problems, choosing a solution according to orunistic,
imperfect heuristic achieves a non-trivial approximatigorithm.

Greedy Vertex Cover The minimum vertex cover problem was defined in
the preliminaries (Section 18.2.1). Variants on the pnobé®me up in many
areas of optimization research. We will describe a simptedy algorithm that
is a 2-approximation to the problem; that is, the cardipalitthe vertex cover
returned by our algorithm is no more than twice the cardipalf a minimum
cover. The algorithm is as follows.

Greedy-VC: Initially, letS be an empty set. Choose an arbitrary edge
{u,v}. Add v andv to S, and remove: andv from the graph. Repeat
until no edges remain in the graph. Retuias the vertex cover.

THEOREM 18.1 Greedy-VC is a 2-approximation algorithm for Minimum
Vertex Cover.

Proof. First, we claim$ as returned by Greedy-VC is indeed a vertex cover.
Suppose not; then there exists an edgdich was not covered by any vertex in
S. Since we only remove vertices from the graph that ar® ian edge: would
remain in the graph after Greedy-VC had completed, whichcisrdradiction.

Let S* be a minimum vertex cover. We will now show th&t contains at
least|.S|/2 vertices. It will follow that|S*| > |S|/2, hence our algorithm has
a|S|/|S*| < 2 approximation ratio.

Since the edges we chose in Greedy-VC do not share any emslgbiol-
lows that

= |S|/2is the number of edges we chose and
= S* must have chosen at least one vertex from each edge we chose.
It follows that|S*| > |S|/2. O

Sometimes when one proves that an algorithm has a certamaption
ratio, the analysis is somewhat “loose”, and may not refleethtest possible
ratio that can be derived. It turns out that Greedy-VC is nitebdhan a 2-
approximation. In particular, there is an infinite set of tégrCover instances
where Greedy-VC provably chooses exactly twice the numbeentices nec-
essary to cover the graph, namely in the case of completetibipgraphs; see
Fig. 17.1.

One final remark should be noted on Vertex Cover. While theraladgo-
rithm is indeed quite simple, no better approximation dtbars are known! In
fact, it is widely believed that one cannot approximate mimin vertex cover
better thar2 — ¢ for anye > 0, unlessP = N P, see Khot and Regev (2003).

APPROXIMATION ALGORITHMS 565

Figure 18.1. A bipartite graph is one for which its vertices can be assigned one of i<
(say,red or blue), in such a way that all edges have endpoints with differetdars. Above is a
sketch of acompletebipartite graph wittn nodes colored red andnodes colored blue. When
running Greedy-VC on these instances (for any natural numjehe algorithm will select all
2n vertices.

Greedy MAX-SAT The MAX-SAT problem has been very well-studied;
variants of it arise in many areas of discrete optimizatido.introduce it re-
quires a bit of terminology.

We will deal solely with Boolean variables (that is, thoseishthare either
true or false), which we will denote hy;, x5, etc. Aliteral is defined as either
a variable or the negation of a variable (exg, —x1; are literals). Aclauseis
defined as the OR of some literatsd. (—~z; \V z7 V —z1;) is a clause). We say
that a Boolean formula is inonjunctive normal fornfCNF) if it is presented
as an AND of clauses (e.§—z1 V z7 V —z11) A (x5 V —xe V —23) is in CNF).

Finally, the MAX-SAT problem is to find an assignment to theiables of
a Boolean formula in CNF such that the maximum number of elsase set
to true, or aresatisfied Formally:

MAX-SAT

Instance:A Boolean formulaF in CNF.

Solution: An assignment, which is a function from each of the variables
in F' to {true, false}.

Measure: The number of clauses if that are set to true (are satisfied)
when the variables it" are assigned according &0

What might be a natural greedy strategy for approximatelyirsp MAX-
SAT? One approach is to pick a variable that satisfies mamgetaif it is set
to a certain value. Intuitively, if a variable occurs neglte several clauses,

566 GOMES AND WILLIAMS

setting the variable tdalse will satisfy several clauses; hence this strategy
should approximately solve the problem well. kg{;, F') denote the number
of clauses inF" where the literal; appears.

Greedy-MAXSAT: Pick a literal; with maximumn(l;, F') value. Set
the corresponding variable &f such that all clauses containirdigare
satisfied, yielding a reducefl. Repeat until no variables remainin

Itis easy to see that Greedy-MAXSAT runs in polynomial timau@hly quadratic
time, depending on the computational model chosen for aiglylt is also a
“good” approximation for the MAX-SAT problem.

THEOREM 18.2 Greedy-MAXSAT is é—approximation algorithm for MAX-
SAT.

Proof. Proof by induction on the number of variablesn the formulaF'.
Let m be the total number of clauses In If n = 1, the result is obvious.
Forn > 1, letl; have maximum(l;, F') value, andv; be its corresponding
variable. Letmpog and mygrc be the number of clauses ifi that contain
l; and —l;, respectively. Aftery; is set so that; is true (so both; and —i;
disappear front’), there are at least — mpos — mneg clauses left, om — 1
variables.

By induction hypothesis, Greedy-MAXSAT satisfies at lgast— mpos —
mngc)/2 of these clauses, therefore the total number of clausesiedtis at
least(m — mpos — mneG)/2 +mpos = m/2+ (mpos — mNEGg)/2 > m/2,
by our greedy choice of picking thethat occurred most often. O

Greedy MAX-CUT Our next example shows how local search (in particular,
hill-climbing) may be employed in designing approximation algorithmgl- Hi
climbing is inherently a greedy strategy: when one has alflsasolutionz,
one tries to improve it by choosing some feasiptbat is “close” tar, but has a
better measure (lower or higher, depending on minimizatiomaximization).
Repeated attempts at improvement often result in “locadigtimal solutions
that have a good measure relative to a globally optimal mwift.e. a member
of Opt(I)). We illustrate local search by giving an approximationoaiiym
for the N P-complete MAX-CUT problem which finds a locally optimal sati
fying assignment. It is important to note that not all locadhich strategies try
to find a local optimum—for example, simulated annealingratits toescape
from local optima in the hopes of finding a global optimum gfiatrick et al.,
1983).

MAX-CUT

APPROXIMATION ALGORITHMS 567

Instance:An undirected grapldé: = (V, E).

Solution: A cut of the graph, i.e. a paifS,7") such thatS C V' and
T=V-5.

Measure:Thecut size which is the number of edges crossing the cut, i.e.
{{u,v} € ElueSveT}.

Our local search algorithm repeatedly improves the cufessible solution
by changing one vertex’s place in the cut, until no more irapment can be
made. We will prove that at such a local maximum, the cut Sz leasin /2.

Local-Cut: Start with an arbitrary cut f. For each vertex, determine
if moving it to the other side of the partition increases tize ®f the cut.
If so, move it. Repeat until no such movements are possible.

First, observe that this algorithm repeats at magimes, as each movement
of a vertex increases the size of the cut by at least 1, and @aoube at most
m in size.

THEOREM 18.3 Local-Cut is a%-approximation algorithm for MAX-CUT.

Proof. Let (S, T') be the cut returned by the algorithm, and consider a vertex
v. After the algorithm finishes, observe that the number oksdgljacent to
that cross(S, T") is more than the number of adjacent edges that do not cross,
otherwisev would have been moved. Létg(v) be the degree af. Then our
observation implies that at leastg(v) /2 edges out of cross the cut returned
by the algorithm.

Let m* be the total number of edges crossing the cut returned. Eigh e
has two endpoints, so the sum, .y (deg(v)/2) counts each crossing edge at
most twice, i.e.

3 (deg(v)/2) < 2m”*

veV
However, observe ., deg(v) = 2m: when summing up all degrees of
vertices, every edge gets counted exactly twice, once fdn eadpoint. We
conclude that

m = Z(deg(v)/Z) <2m*

veV

It follows that the approximation ratio of the algorithmfgg? > % O

It turns out that MAX-CUT admits much better approximatiatias thar%;
a so-calledelaxationof the problem to a semi-definite linear program yields a
0.8786 approximation (Goemans and Williamson, 1995). Hewdike many
optimization problems, MAX-CUT cannot be approximateditaabily well
(1 — ¢, for all e > 0) unlessP = NP. That is to say, it is unlikely that
MAX-CUT is in the PTAScomplexity class.

568 GOMES AND WILLIAMS

Greedy Knapsack The knapsack problem and its special cases have been
extensively studied in operations research. The premibatbet is classic:

you have a knapsack of capacity and a set of items, ... ,n. Each item has

a particular cost; of carrying it, along with a profip; that you will gain by
carrying it. The problem is then to find a subset of items widkt@t most,
having maximum profit.

Maximum Integer Knapsack

Instance:A capacityC' € N, and a number of items € N, with corre-
sponding costs and profits, p; € Nforalli =1,... ,n.

Solution: A subsetS C {1,... ,n} suchthad . qc; < C.
Measure:Thetotal profit}_ ..o p;.

jeS

Maximum Integer Knapsack, as formulated above)Nig-hard. There is
also a “fractional” version of this problem (we call it Maxinm Fraction Knap-
sack), which can be solved in polynomial time. In this vemsiather than hav-
ing to pick the entire item, one is allowed to chodisectionsof items, like 1/8
of the first item, 1/2 of the second item, and so on. The coomdipg profit
and cost incurred from the items will be similarly fractibi®/8 of the profit
and cost of the first, 1/2 of the profit and cost of the second,saron).

One greedy strategy for solving these two problems is to fiaois with the
largest profit-to-cost ratio first, with the hopes of gettmgny small-cost high-
profit items in the knapsack. It turns out that this algorittwiti not give any
constant approximation guarantee, but a tiny variant anapproach will give
a 2-approximation for Integer Knapsack, and an exact dtgarfor Fraction
Knapsack. The algorithms for Integer Knapsack and Fradioapsack are,
respectively:

m Greedy-IKS: Choose items with the largest profit-to-cosbrirst, until
the total cost of items chosen is greater tldanLet j be the last item
chosen, and be the set of items chosen befgreReturn eitheK;} or
S, depending on which one is more profitable.

m Greedy-FKS: Choose items as in Greedy-IKS. When the jtarrakes
the cost of the current solution greater ti@nadd thefraction of j such
that the resulting cost of the solution is exacily

We omit a proof of the following. A full treatment can be fouimdAusiello
et al. (1999).

LEMMA 18.4 Greedy-FKS solves Maximum Fraction Knapsack in polyno-
mial time. That is, Greedy-FKS is a 1-approximation to MaximFraction
Knapsack.

APPROXIMATION ALGORITHMS 569

We entitled the above as a lemma, because we will use it toyzmahe
approximation algorithm for Integer Knapsack.

THEOREM 18.5 Greedy-KSis a}-approximation for Maximum Integer Knap-
sack.

Proof. Fix an instance of the problem. L&t =}, ¢ p;, the total profit of
items in .S, andj be the last item chosen (as specified in the algorithm). We
will show thatP + p; is greater than or equal to the profit of an optimal Integer
Knapsack solution. It follows that one 6for {;j} has at least half the profit of
the optimal solution.

Let ST be an optimal Integer Knapsack solution to the given ingianath
total profit ;. Similarly, let S7. and P;. correspond to an optimal Fraction
Knapsack solution. Observe thaf. < P;.

By the analysis of the algorithm for Fraction Knapsaék, = P + epj,
wheree € (0, 1] is the fraction chosen for iterhin the algorithm. Therefore

P+p;>P+epj=Ppr>Pf
and we are done. O

In fact, this algorithm can be extended to ggb@ynomial time approxi-
mation scheméPTAS) for Maximum Integer Knapsack, (see Ausiello et al.,
1999). A PTAS has the property that, for any fixed 0 provided, it returns a
(1 + €)-approximate solution. Further, the runtime is polynonniathe input
size,provided thate is constant This allows us to specify a runtime that has
1/e in the exponent. It is typical to view a PTAS adamily of successively
better (but also slower) approximation algorithms, eactming with a succes-
sively smallere > 0. This is intuitively why they are called an approximation
schemeas it is meant to suggest that a variety of algorithms ard. US&@TAS
is quite powerful; such a scheme can approximately solvelalgm with ratios
arbitrarily close to 1. However, we will observe that manglgems provably
do not have a PTAS, unlegd= N P.

18.2.3 Sequential Algorithms

Sequential algorithms are used for approximations on problwhere a
feasible solution is a partitioning of the instance intosetb. A sequential al-
gorithm “sorts” the items of the instance in some manner,sahelcts partitions
for the instance based on this ordering.

Sequential Bin Packing We first consider the problem of Minimum Bin
Packing, which is similar in nature to the knapsack problems

570 GOMES AND WILLIAMS

Minimum Bin Packing

Instance A set of itemsS = {ry,...,r,}, wherer; € (0, 1] for all
1=1,...,n.
Solution Partition ofS into bins By, ... , By such thaty 5 rj <1

foralli=1,... M.
Measure M.

An obvious algorithm for Minimum Bin Packing is am-line strategy. Ini-
tially, let 5 = 1 and have a birB; available. As one runs through the input
(r1, 2, €tc), try to pack the new itemy into the last bin used3;. If r; does
not fit in B;, create another bif;; and puta; in it. This algorithm is “on-
line” as it processes the input in a fixed order, and thus gdadkw items to the
instance while the algorithm is running does not change tiveoone. Call this
heuristic Last-Bin.

THEOREM 18.6 Last-Bin is a 2-approximation to Minimum Bin Packing.

Proof. Let R be the sum of all items, sB = > s 7i. Letm be the total
number of bins used by the algorithm, andné&t be the minimum number of
bins possible for the given instance. Note thét > R, as the total number of
bins needed is at least the total size of all items (each Hutshbunit). Now,
given any pair of bind3; and B, 1 returned by the algorithm, the sum of items
from S in B; andB; . is at least 1; otherwise, we would have stored the items
of B,y in B; instead. This shows that < 2R. Hencem < 2R < 2m*, and
the algorithm is a 2-approximation. d

An interesting exercise for the reader is to construct aesesf examples
demonstrating that this approximation bound, like the arereedy-VC, is
tight.

As one might expect, there exist algorithms that give bedfgroxima-
tions than the above. For example, we do not even considgréwious bins
By,...,Bj_1 when trying to pack an;, only the last one is considered.

Motivated by this observation, consider the following nfmdition to Last-
Bin. Select each item; in decreasing order of size, placing in the first
availablebin out of By,. .. , B;. (So a new bin is only createddf cannot fit
in any of the previoug bins.) Call this new algorithm First-Bin. An improved
approximation bound may be derived, via an intricate amalyscases.

THEOREM 18.7 (Johnson, 1974) First-Bin is é&-approximation to Mini-
mum Bin Packing.

Sequential Job Scheduling One of the major problems in scheduling theory
is how to assign jobs to multiple machines so that all of ths jare completed

APPROXIMATION ALGORITHMS 571

efficiently. Here, we will consider job completion in the stest amount of
time possible. For the purposes of abstraction and singlisie will assume
the machines are identical in processing power for each job.

Minimum Job Scheduling

Instance An integerk and a multi-sef” = {t1,... ,t,} of times¢; € Q
foralli =1,... ,n (i.e. thet; are fractions).

Solution An assignment of jobs to machines, i.e. a functiorirom
{1,...,n}to{l,... k}.

Measure The completion time for all machines, assuming they run in

parallel max{>_, ,;—; ti | j € {1,... ,k}}.

The algorithm we propose for Job Scheduling is also on-livieen reading
a new job with timet;, assign it to the machingthat currently has the least
amount of work; that is, thg with minimum > ; tie Call this algorithm
Sequential-Jobs.

i:a(i)=

THEOREM 18.8 Sequential Jobs is a 2-approximation for Minimum Job Schedu
ing.

Proof. Let 5 be a machine with maximum completion time, andilbe the
index of the last job assigned joby the algorithm. Les; ; be the sum of all
times for jobs prior ta that are assigned th (This may be thought of as the
time that jobi begins on maching). The algorithm assigneito the machine
with the least amount of work, hence all other machiifeat this point have
larger", ;- ti- Therefores; ; < £ 371U, t;, i.e. s; ; is lessl/k of the total
time of all jobs (recalk is the number of machines).

Notice B = % Z?:l t; < m*, the completion time for an optimal solution,
as the sum corresponds to the case where every machine xalotly ¢he same
fraction of time to complete. Thus the completion time forcmaej is

sij+ti <m"4+m*=2m"

So the maximum completion time is at most twice that of anmatisolution.
O

This is not the best one can do: Minimum Job Scheduling als@HaTAS
(see Vazirani, 1983).
18.2.4 Randomization

Randomness is a powerful resource for algorithmic desigponthe as-
sumption that one has access to unbiased coins that may pedfland their

572 GOMES AND WILLIAMS

values (heads or tails) extracted, a wide array of new mattiesrmay be em-
ployed to aid the analysis of an algorithm. It is often theectmat a simple
randomized algorithm will have the same performance gueeasras a compli-
cated deterministic (i.e. non-randomized) procedure.

One of the most intriguing discoveries in the area of albamitdesign is
that the addition of randomness into a computational psocaa sometimes
lead to a significant speedup over purely deterministic odh This may be
intuitively explained by the following set of observation8 randomized al-
gorithm can be viewed as a probability distribution on a $edaterministic
algorithms. The behavior of a randomized algorithm can @ara given in-
put, depending on the random choices made by the algoritengehwhen we
consider a randomized algorithm, we are implicitly consitg a randomly
chosen algorithm from a family of algorithms. If a substahtiaction of these
deterministic algorithms perform well on the given inputen a strategy of
restarting the randomized algorithm after a certain pginuntime will lead
to a speed-up (Gomes et al., 1998).

Some randomized algorithms are able to efficiently solveleras for which
no efficient deterministic algorithm is known, such as polyial identity test-
ing (see Motwani and Raghavan, 1995). Randomization is alkey com-
ponent in the popular simulated annealing method for sghaptimization
problems (Kirkpatrick et al., 1983). For a long time, the lgjem of deter-
mining if a given number is prime (a fundamental problem inderm cryp-
tography) was only efficiently solvable using randomizat{@oldwasser and
Kilian, 1986; Rabin, 1980; Solovay and Strassen, 1977)y Yecently, a de-
terministic algorithm for primality was discovered (Agrakvet al., 2002).

Random MAX-CUT Solution We saw earlier a greedy strategy for MAX-
CUT that yields a 2-approximation. Using randomization, e give an
extremely short approximation algorithm that has the sasropmance in
approximation, and runs in expected polynomial time.

Random-Cut: Choose a random cut (i.e. a random partitioheof/éer-
tices into two sets). If there are less thawy2 edges crossing this cut,
repeat.

THEOREM 18.9 Random-Cutis %-approximation algorithm for MAX-CUT
that runs in expected polynomial time.

Proof. Let X be a random variable denoting the number of edges crossing
acut. Fori = 1,...,m, X; will be an indicator variable that is 1 if th&h
edge crosses the cut, and 0 otherwise. Thes " | X;, so by linearity of
expectationE[X]| = >, E[X;].

Now for any edge{u, v}, the probability it crosses a randomly chosen cut
is1/2. (Why? We randomly placed andv in one of two possible partitions,

APPROXIMATION ALGORITHMS 573

souw is in the same partition aswith probability 1/2.) Thus,E[X;] = 1/2 for
alli, soE[X]| =m/2.

This only shows that by choosing a random cut, we expect t@agleast
m/2 edges crossing. We want a randomized algorithm #hatysreturns
a good cut, and its running time is a random variable whoseasafion is
polynomial. Let us compute the probability thdt> m /2 when a random cut
is chosen. In the worst case, wh&n> m /2 all of the probability is weighted
onm, and whenX < m/2 all of the probability is weighted om /2 — 1. This
makes the expectation & as high as possible, while making the likelihood
of obtaining an at-least: /2 cut small. Formally,

m/2=FE[X]|<(1—-Pr[X >m/2])(m/2 —1)+ Pr[X >m/2]m

Solving for Pr[X > m/2], it is at least2. It follows that the expected
number of iterations in the above algorithm is at moesti- 2) /2; therefore the
algorithm runs in expected polynomial time, and alwaysrreta cut of size at

leastm /2. O

We remark that, had we simply specified our approximationpask“a ran-
dom cut and stop”, we would say that the algorithm runs indirtame, and
has arexpectedpproximation ratio of 1/2.

Random MAX-SAT Solution Previously, we studied a greedy approach for
MAX-SAT that was guaranteed to satisfy half of the clausesreHwve will
consider MAX-Ak-SAT, the restriction of MAX-SAT to CNF forolae with

at leastk literals per clause. Our algorithm is analogous to the ond/f&X-
CUT: Pick a random assignment to the variablel$ is easy to show, using
a similar analysis to the above, that the expected appraximaatio of this
procedure is at leagt— Zik More precisely, ifm is the total number of clauses
in a formula, the expected number of clauses satisfied bydomamssignment
ism —m/2".

Let ¢ be anarbitrary clause of at least literals. The probability that each
of its literals were set to a value that makes them false iscst m12’“, since
there is a probability ofl /2 for each literal and there are at ledsof them.
Therefore the probability thatis satisfied is at least—1/2%. Using a linearity
of expectation argument (as in the MAX-CUT analysis) weiirfat at least
m — m/2" clauses are expected to be satisfied.

18.3 A TOUR OF APPROXIMATION CLASSES

We will now take a step back from our algorithmic discussjarsd briefly
describe a few of the common complexity classes associaithd/NV> opti-
mization problems.

574 GOMES AND WILLIAMS

18.3.1 PTAS and FPTAS

Definition PTAS and FPTAS are classes of optimization problems thaesom
believe are closer to the proper definition of what is effittiesolvable, rather
than merelyP. This is because problems in these two classes may be ap-
proximated with constant raticrbitrarily closeto 1. However, withPTAS
as the approximation ratio gets closer to 1, the runtime efabrresponding
approximation algorithm may grow exponentially with théaa

More formally, PTAS is the class of NPO probleifighat have ampproxi-
mation schemeThat is, givere > 0, there exists a polynomial time algorithm
A, such that

= |f IT is a maximization problemA, is a(1 + ¢) approximation, i.e. the
ratio approaches 1 from the right.

= If II is a minimization problem, it is &1 — ¢) approximation (the ratio
approaches 1 from the left).

As we mentioned, one drawback of a PTAS is that the- ¢) algorithm
could be exponential in/e. The class FPTAS is essentially PTAS but with
the additional requirement that the runtime of the appratiom algorithm is
polynomial inn and1/e.

A Few Known Results It is known that someV P-hard optimization prob-
lems cannot be approximated arbitrarily well unléss= N P. One example
is a problem we looked at earlier, Minimum Bin Packing. Tlsiiirare case
in which there is a simple proof that the problem is not apjpnable unless
P=NP.

THEOREM 18.10 (Aho et al., 1979) Minimum Bin Packing is not in PTAS,
unlessP = NP. In fact, there is n®3/2 — e approximation for any > 0,
unlessP = NP.

To prove the result, we use a reduction from the Set Partitemision prob-
lem. Set Partitioning asks if a given set of natural numbars le split into
two sets that have equal sum.

Set Partition

Instance: A multi-set S = {ry,...,r,}, wherer; € N for all i =
1,...,n.

Solution: A partition of S into setsS; and Ss; i.e. 51U Sy = S and
S1NSy =a.

Measure:m(S) = 1if 3 g mi = eresg rj, andm(S) = 0 other-
wise.

APPROXIMATION ALGORITHMS 575

Proof. Let S = {r4,... ,r,} be a Set Partition instance. Reduce it to Min-
imum Bin Packing by setting' = %Z;;l s;j (half the total sum of elements
in S), and considering a bin packing instancetemss’ = {r,/C, ... ,r,/C}.

If S can be partitioned into two sets of equal sum, then the mimimumber
of bins necessary for the correspondisigs 2. On the other hand, § cannot
be partitioned in this way, the minimum number of bins neeftedS’ is at
least 3, as every possible partitioning results in a set gtith greater thag'.
Therefore, if there were a polytim@/2 — ¢)-approximation algorithmy, it
could be used to solve Set Partition:

= |f A(givenS andC) returns a solution using at mast/2—¢)2 = 3—2¢
bins, then there exists a Set Partition for

= |f Areturns a solution using at leg8/2 — €)3 = 9/2 — 3¢ = 4.5 — 3¢
bins, then there is no Set Partition f&r

But for anye € (0,3/2),
3—2<4.5— 3¢

Therefore this polynomial time algorithm distinguisheswseen thoses that
can be partitioned and those that cannotPse N P. O

A similar result holds for problems such as MAX-CUT, MAX-SAand
Minimum Vertex Cover. However, unlike the result for Bin Ringy, the proofs
for these appear to require the introductiopribabilistically checkable proofs
which we will be discussed later.

18.3.2 APX

APX is a (presumably) larger class than PTAS; the approxaenajuaran-
tees for problems in it are strictly weaker. AP optimization problemI is
in APX simply if there is a polynomial time algorithmd and constant such
that A is ac-approximation tdl.

A Few Known Results It is easy to see thaPT AS C APX C NPO.
When one sees new complexity classes and their inclusiores pbthe first
guestions to be asked is: How likely is it that these inclasioould be made
into equalities? Unfortunately, it is highly unlikely. Thalowing relationship
can be shown between the three approximation classes webene

THEOREM 18.11 (Ausiello et al., 1999PTAS = APX <+<— APX =
NPO < P=NP.

Therefore, if allV P optimization problems could be approximated within
a constant factor, the® = N P. Further, if all problems that have constant

576 GOMES AND WILLIAMS

approximations can be arbitrarily approximated, séil= N P. Another way

of saying this is: itV P problems are hard to solve, then some of them are hard
to approximate as well. Moreover, there exists a “hierarafysuccessively
harder-to-approximate problems.

One of the directions stated follows from a theorem of theviptes sec-
tion: earlier, we saw a constant factor approximation toiMimm Bin Packing.
However, it does not haveRTASunlessP = N P. This shows the direction
PTAS = APX = P = NP. One example of a problem that cannot be
in APX unlessP = NP is the well-known Minimum Traveling Salesman
problem.

Minimum Traveling Salesman

Instance A setC = {ci,...,c,} of cities and a distance functio :
CxC—N,

Solution A path through the cities, i.e. a permutation {1,... ,n} —
{1,...,n}.

Measure The cost of visiting cities with respect to the path, i.e.
n—1
Z d(cw(i)v C7r(i+1))
i=1

It is important to note that when the distances in the problestances al-
ways obey a Euclidean metric, Minimum Traveling Salespetsas aPTAS(
Arora, 1998). Thus, we may say that it is the generality osgme distances
in the above problem that makes it difficult to approximatdisTis often the
case with approximability: a small restriction on an inapgmable problem
can suddenly turn it into a highly approximable one.

18.3.3 Brief Introduction to PCPs

In the 1990s, the work in probabilistically checkable peo@?CPs) wathe
major breakthrough in proving hardness results, and algualtheoretical
computer science as a whole. In essence, PCPs only look at biteeof a
proposed proof, using randomness, but manage to captwke/d8lP. Because
the number of bits they check is so small (a constant), whesffanient PCP
exists for a given problem, it implies the hardnesajgroximately solvinghe
same problem as well, within some constant factor.

The notion of a PCP arose from a series of meditations on fmoeéking
using randomness. We knaW P represents the class of problems that have
“short proofs” we can verify efficiently. As far a& P is concerned, all of
the verification done is deterministic. When a proof is cor incorrect, a
polynomial time verifier answers “yes” or “no” with 100% caéince.

APPROXIMATION ALGORITHMS 577

However, what happens when we relax the notion of total ctress to in-
clude probability? Suppose we permit the proof verifier &stonbiased coins,
and haveone-sided errar That is, now a randomized verifier only accepts a
correct proof with probability at leadt/2, but still rejects any incorrect proof
it reads. (We call such a verifier @obabilistically checkable proof system
i.e. a PCP.) This slight tweaking of what it means to verifyragb leads to an
amazing characterization ¢f P: all NP decision problems can be verified
by a PCP of the above type, which only flipglog n) coins and only checks
aconstant(O(1)) number of bits of any given proof! The result involves the
construction of highly intricate error-correcting cod®ge shall not discuss it
on a formal level here, but will cite the above in the notaiwda theorem.

THEOREM 18.12 (Arora et al., 1998)PC P[O(logn),O(1)] = NP.

One corollary of this theorem is that a large class of appnaxion problems
do not admit a PTAS. In particular, we have the following ttezo.

THEOREM 18.13 ForII € {MAX-Ek-SAT, MAX-CUT, Minimum Vertex Coyer
there exists & such thatlT cannot bec-approximated in polynomial time, un-
lessP = NP.

18.4 PROMISING APPLICATION AREAS FOR
APPROXIMATION AND RANDOMIZED
ALGORITHMS

18.4.1 Randomized Backtracking and Backdoors

Backtracking is one of the oldest and most natural methoes i solving
combinatorial problems. In general, backtracking detreistically can take
exponential time. Recent work has demonstrated that matywearld prob-
lems can be solved quite rapidly, when the choices made iktiaaking are
randomized. In particular, problems in practice tend toehswall substruc-
tures within them. These substructures have the propeatyaiice they are
solved properly, the entire problem may be solved. The ex¢st of these so-
called “backdoors” (Williams et al., 2003) to problems méhkem very tenable
to solution using randomization. Roughly speaking, sehrulristics will set
the backdoor substructure early in the search, with a sigmifi probability.
Therefore, by repeatedly restarting the backtracking raeisim after a certain
(polynomial) length of time, the overall runtime that baekking requires to
find a solution is decreased tremendously.

578 GOMES AND WILLIAMS

18.4.2 Approximations to Guide Complete Backtrack
Search

A promising approach for solving combinatorial problemg;gsomplete
(exact) methods draws on recent results on some of the besbamation al-
gorithms based on linear programming (LP) relaxations &Cdly 1983, Dantzig,
1998) and so-called randomized rounding techniques, dgweh results that
uncovered the extreme variance or “unpredictability” ia tntime of com-
plete search procedures, often explained by so-calledykeded cost dis-
tributions (Gomes et al., 2000). Gomes and Shmoys (2003)oss acom-
pleterandomized backtrack search method that tightly couplestcaint sat-
isfaction problem (CSP) propagation techniques with ramded LP-based
approximations. They use as a benchmark domain a purely inatobial
problem, the quasigroup (or Latin square) completion mab(QCP). Each
instance consists of am by n matrix with n? cells. A complete quasigroup
consists of a coloring of each cell with onerotolors in such a way that there
is no repeated color in any row or column. Given a partial kotpof then
by n cells, determining whether there is a valid completion iatfull quasi-
group is an NP-complete problem (Colbourn, 1984). The uyitker structure
of this benchmark is similar to that found in a series of rgatd applications,
such as timetabling, experimental design, and fiber optiatirg problems (
Laywine and Mullen, 1998; Kumar et al., 1999).

Gomes and Shmoys compare their results for the hybrid CS8thaegy
guided by the LP randomized rounding approximation with & G&ategy
and with a LP strategy. The results show that the hybrid amtraignificantly
improves over the pure strategies on hard instances. Tgestthat the LP
randomized rounding approximation provides powerful reigrguidance to
the CSP search.

18.4.3 Average Case Complexity and Approximation

While “worst case” complexity has a very rich theory, it ofteels too re-
strictive to be relevant to practice. Perha@#’-hard problems are hard only
for some esoteric sets of instances that will hardly eveseario this end, re-
searchers have proposed theories of “average case" catyplexich attempt
to probabilistically analyze problems based on randomfseh instances over
distributions; for an introduction to this line of work, c{Gurevich, 1991).
Recently, an intriguing thread of theoretical researchexadored the connec-
tions between the average-case complexity of problemstaiddpproxima-
tion hardness (Feige, 2002). For example, it is shown thainilom 3-SATs
hard to solve in polynomial time (under reasonable defingtiof “random” and
“hard"), thenN P-hard optimization problems such as Minimum Bisection are
hard to approximate in the worst case. Conversely, thisiaaphat improved

APPROXIMATION ALGORITHMS 579

approximation algorithms for some problems could lead aherage-case
tractability of others. A natural research question to askloes an PTAS im-
ply average-case tractability, or vice versa? We suspatstime statement of
this form might be the case. In our defense, a recent papésr(Bed Vocking,
2003) shows thaRandomMaximum Integer Knapsack is exactly solvable in
expected polynomial time! (Recall that there exists an PTé&Sviaximum
Integer Knapsack.)

18.5 TRICKS OF THE TRADE

One major initial motivation for the study of approximatiatgorithms was
to provide a new theoretical avenue for analyzing and copiitig hard prob-
lems. Faced with a brand-new interesting optimization fgmob how might
one apply the techniques discussed here? One possible sgreseeds as
follows:

1 First, try to prove your problem i8’ P-hard, or find evidence that it is
not! Perhaps the problem admits an interesting exact éfgoriwithout
the need for approximation.

2 Often, a very natural and intuitive idea is the basis forgpraximation
algorithm. How good is a randomly chosen feasible solutiontiie
problem? (What is the expected value of a random solution@w H
about a greedy strategy? Can you define a neighborhood satclochl
search does well?

3 Look for a problem (call itI) that is akin to yours in some sense, and use
an existing approximation algorithm faf to obtain an approximation
for your problem.

4 Try to prove it cannot be approximated well, by reducing sdrard-to-
approximate problem to your problem.

The first, third, and fourth points essentially hinge on sne'sourcefulness:
one’s tenacity to scour the literature (and colleaguespfoblems similar to
the one at hand, as well as one’s ability to see the relatipsstnd reductions
which show that a problem is indeed similar.

This chapter has been mainly concerned with the second. poinanswer
the questions of that point, it is crucial to prolweundson optimal solutions,
with respect to the feasible solutions that one’s appraaciain. For mini-
mization (maximization) problems, one will need to prdageer boundgre-
spectively,upper boundson some optimal solution for the problem. Devising
lower (or upper) bounds can simplify the proof tremendaouslye only needs
to show that an algorithm returns a solution with value attmogmes the
lower bound to show that the algorithm ig-@pproximation.

580 GOMES AND WILLIAMS

We have proven upper and lower bounds repeatedly (impliaitexplicitly)
in our proofs for approximation algorithms throughout ttlimpter—it may be
instructive for the reader to review each approximatioropand find where
we have done it. For example, the greedy vertex cover algorfbf choosing a
maximal matching) works because even an optimal vertexramxers at least
one of the vertices in each edge of the matching. The numbedgds in the
matching is a lower bound on the number of nodes in a optimagxeover,
and thus the number of nodes in the matching (which is twieenthmber of
edges) is at most twice the number of nodes of an optimal cover

18.6 CONCLUSIONS

We have seen the power of randomization in finding approxrsatutions
to hard problems. There are many available approaches $ardeg such al-
gorithms, from solving a related problem and tweaking itsitsan (in linear
programming relaxations) to constructing feasible sohgiin a myopic way
(via greedy algorithms). We saw that for some problems,radeteng an ap-
proximate solution is vastly easier than finding an exaattswi, while other
problems are just as hard to approximate as they are to solve.

In closing, we remark that the study of approximation andlcanized al-
gorithms is still a very young (but rapidly developing) fieltlis our sincerest
hope that the reader is inspired to contribute to the prodiigrowth of the
subject, and its far-reaching implications for problemvsd in general.

SOURCES OF ADDITIONAL INFORMATION
Books on Algorithms

s Data Structures and Algorithms (Aho et al., 1983)

= Introduction to Algorithms (Cormen et al., 2001)

= The Design and Analysis of Algorithms (Kozen, 1992)

= Combinatorial Optimization: Algorithms and Complexityafgadimitriou
and Steiglitz, 1982)

Books on Linear Programming and Duality
= Linear Programming (Chvatal, 1983)
m Linear Programming and Extensions (Dantzig, 1998)
= Integer and Combinatorial Optimization (Nemhauser andséigl1988)

= Combinatorial Optimization: Algorithms and Complexityagfadimitriou
and Steiglitz, 1982)

APPROXIMATION ALGORITHMS 581

= Combinatorial Optimization (Cook et al., 1988)
= Combinatorial Optimization Polyhedra and Efficiency (Sjgler, 2003)

Books on Approximation Algorithms
m Complexity and Approximation (Ausiello et al., 1999)
= Approximation Algorithms for NP-Hard Problems (Hochbauki97)

= Approximation algorithms (Vazirani, 1983)

Books on Probabilistic and Randomized Algorithms
= An Introduction to Probability Theory and Its Applicatioffseller, 1971)
= The Probabilistic Method (Alon and Spencer, 2000)
= Randomized Algorithms (Motwani and Raghavan, 1995)
m The Discrepancy Method (Chazelle, 2001)

Surveys

= Computing Near-Optimal Solutions to Combinatorial Op#ation Prob-
lems (Shmoys, 1995)

= Approximation algorithms via randomized rounding: a syr{8rini-
vasan)

Courses and Lectures Notes Online

= Approximability of Optimization Problems, MIT, Fall 99 (Mau Su-
dan), http://theory.lcs.mit.edu/ madhu/FT99/courselht

= Approximation Algorithms, Fields Institute, Fall 99 (JpeCheriyan),
http://www.math.uwaterloo.ca/ jcheriya/App-courselise. html

= Approximation Algorithms, Johns Hopkins University, FB8198 (Lenore
Cowen), http://www.cs.jhu.edu/ cowen/approx.html

= Approximation Algorithms, Technion, Fall 95 (Yuval Rabgni
http://mww.cs.technion.ac.il/ rabani/236521.95.winht

= Approximation Algorithms, Cornell University, Fall 98 (Williamson),
http://www.almaden.ibm.com/cs/people/dpw/

= Approximation Algorithms, Tel Aviv University, Fall 01 (Wgzwick),
http://www.cs.tau.ac.il/7Ezwick/approx-alg-01.html

582 GOMES AND WILLIAMS

= Approximation Algorithms for Network Problems, (Cheriyand Ravi)
http://www.gsia.cmu.edu/afs/andrew/gsia/ravi/WWWHecnotes.html

= Randomized algorithms, CMU, Fall 2000 (Avrim Blum),
http://www-2.cs.cmu.edu/afs/cs/usr/avrim/www/Raigd@B8/home.html

= Randomization and optimization by Devdatt Dubhashi,
http://mww.cs.chalmers.se/ dubhashi/ComplexityColiméz2.html

= Topics in Mathematical Programming: Approximation Algbms, Cor-
nell University, Spring 99 (David Shmoys),
http://www.orie.cornell.edu/ or739/index.html

= Course notes on online algorithms, randomized algorithmesywork
flows, linear programming, and approximation algorithmschl Goe-
mans), http://www-math.mit.edu/ goemans/

Main Conferences Covering the Approximation and Randomizéion Top-
ics

m |PCO: Integer Programming and Combinatorial Optimization

= |SMP: International Symposium on Mathematical Prograngmin

s FOCS: Annual IEEE Symposium on Foundation of Computer Seien
= SODA: Annual ACM-SIAM Symposium on Discrete Algorithms

s STOC: Annual ACM Symposium on Theory of Computing

= RANDOM: International Workshop on Randomization and Ap{na-
tion Techniques in Computer Science

= APPROX: International Workshop on Approximation Algorik for
Combinatorial Optimization Problems

Acknowledgments

CG's research was partially supported by AFRL, grants F368®1-0005
and F30602-99-1-0006, AFOSR, grant F49620-01-1-007&l{igent Infor-
mation Systems Institute) and F49620-01-1-0361 (MURI grand F30602-
00-2-0530 (DARPA contract). RW's research was partiallgpsrted by the
NSF ALADDIN Center (http://www.aladdin.cs.cmu.edu/),daan NSF Grad-
uate Research Fellowship. Any opinions, findings, conchssior recommen-
dations expressed here are those of the author(s) and decexsarily reflect
the views of the National Science Foundation. The views amttlosions
contained herein are those of the author and should not émreted as nec-
essarily representing the official policies or endorses)egither expressed or
implied, of the U.S. Government.

APPROXIMATION ALGORITHMS 583

References

Agrawal, M., Kayal, N. and Saxena, N., 2002, Primes in P, weseciitk.ac.in/
news/primality.html

Aho, A. V., Hopcroft, J. E. and Ullman, J. D., 19®@pmputers and intractabil-
ity: A guide to NP-Completenedsteeman, San Francisco.

Aho, A. V., Hopcroft, J. E. and Ullman, J. D., 198Bata structures and Al-
gorithms,Computer Science and Information Processing Series, Addis
Wesley, Reading, MA

Alon, N. and Spencer, J., 2000he Probabilistic Methodwiley, New York

Arora, S., 1998, Polynomial time approximation schemesiaclidean trav-
eling salesman and other geometric problel#CM45.753—-782.

Arora, S., Lund, C., Motwani, R., Sudan, M. and Szegedy, M98l Proof
verification and the hardness of approximation probleim#&CM45.501—
555.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Martit&paccamela, A.
and Protasi, M., 1999Complexity and Approximatiogpringer, Berlin.
Beier, R. and Vocking, B., 2003, Random knapsack in expegptdghomial

time, Proc. ACM Symposium on Theory of Computinyg, 232—-241.

Chazelle, B., 2001The Discrepancy Method;ambridge University Press,
Cambridge.

Chvatal, V., 1979, A greedy heuristic for the set-coveribath. Oper. Res.
4:233-235.

Chvatal, V., 1983Linear ProgrammingFreeman, San Francisco. Chvartal
Clay Mathematics Institute, 2003, The millenium prize peobs: P vs. NP,(1983) not
http://www.claymath.org/ cited.

Colbourn, C., 1984, The complexity of completing partidinasquaresDis-
crete Appl. Math8:25-30.

Cook, W., Cunningham, W., Pulleyblank, W. and Schrijver, 2288,Combi-
natorial Optimization Wiley, New York.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, @12htroduction
to Algorithms MIT Press, Cambridge, MA.

Dantzig, G., 1998l.inear Programming and Extensiori8rinceton University
Press, Princeton, NJ.

Feige, U., 2002, Relations between average case compkaxityapproxima-
tion complexity, in:Proc. ACM Symposium on Theory of Computimg 534—
543.

Feller, W., 1971 An Introduction to Probability Theory and Its Applicatigns
Wiley, New York.

Garey, M. R., Graham, R. L. and Ulman, J. D., 1972, Worst casdysis
of memory allocation algorithms, ifProc. ACM Symposium on Theory of
Computingpp. 143-150.

584 GOMES AND WILLIAMS

Goemans, M. X. and Williamson, D. P., 1995, Improved appration al-
gorithms for maximum cut and satisfiability problems usimgnglefinite
programming,J. ACM42:1115-1145.

Goldwasser, S. and Kilian, J., 1986, Almost all primes caqguiekly certified,
in: Proc. Annual IEEE Symposium on Foundations of Computem8&eije
pp. 316-329.

Gomes, C., Selman, B., Crato, N. and Kautz, H., 2000, Heaiget phenom-
ena in satisfiability and constraint satisfaction problefng\utom. Reason.
24:67-100.

Gomes, C. P.,, Selman, B. and Kautz, H., 1998, Boosting caaixniial search
through randomization, irProc. 15th National Conference on Atrtificial In-
telligence (AAAI-98)AAAI Press, Menlo Park, CA.

Gomes, C. P. and Shmoys, D., 2002, The promise of LP to booBtt€h-
niques for combinatorial problems, iRroc. 4th International Workshop
on Integration of Al and OR Techniques in Constraint Prognang for
Combinatorial Optimisation Problems (CP-Al-OR’02k Croisic, France,
N. Jussien and F. Laburthe, eds, pp. 291-305.

Graham, R. L., 1966, Bounds for certain multiprocessinghaal@s,Bell Syst.
Tech. J45:1563-1581.

Gurevich, Y., 1991, Average Case Complexity, Froc. 18th International
Colloquium on Automata, Languages, and Programming (ICBLR Springer
Lecture Notes in Computer Science Vol. 510, pp. 615-628.

Hochbaum, D. S., 1997, edApproximation Algorithms for NP-Hard Prob-
lems,PWS Publishing Company, Boston, MA.

Johnson, D. S., 1974, Approximation algorithms for comtairial problems,
J. Comput. Syst. S®:256-278.

Khot, S. and Regev, O., 2003, Vertex cover might be hard tocmate
within 2-e, in:Proc. IEEE Conf. on Computational Complexity

Kirkpatrick, S., Gelatt, C. and Vecchi, M., 1983, Optimipat by simulated
annealing Science220.671-680.

Kozen, D., 1992The design and analysis of algorithn®&pringer, New York.

Kumar, S. R., Russell, A. and Sundaram, R., 1999, Approximgdatin square
extensionsAlgorithmica24:128-138.

Laywine, C. and Mullen, G., 1998iscrete Mathematics using Latin Squares,
Discrete Mathematics and Optimization Series, Wiley+sti=nce, New
York.

Motwani, R. and Raghavan, P., 19%andomized AlgorithnGambridge Uni-
versity Press, Cambridge.

Nemhauser, G. and Wolsey, L., 198&eger and Combinatorial Optimization,
Wiley, New York.

Papadimitriou, C. and Steiglitz, K., 1982pmbinatorial Optimization: Algo-
rithms and Complexityrentice-Hall, Englewood Cliffs, NJ.

APPROXIMATION ALGORITHMS 585

Rabin, M. (1980). Probabilistic algorithm for testing péility, J. Number The-
ory 12.128-138.

Schrijver, A., 2003,Combinatorial Optimization Polyhedra and Efficiency,
Springer, Berlin.

Shmoys, D., 1995, Computing near-optimal solutions to doatbrial op-
timization problems, inCombinatorial OptimizationDIMACS Series in
Discrete Mathematics and Theoretical Computer Scienc& ok, L. Lo-
vasz and P. Seymour, eds, American Mathematical Sociaiyjdemce, RI.

Solovay, R. and Strassen, V., 1977, A fast Monte Carlo tegirfimality, SIAM
J. Comput6:84-86.

Srinivasan, A., Approximation algorithms via randomizedmding: a survey.
Available from: citeseer.nj.nec.com/493290.html

Vazirani, V., 1983 Approximation AlgorithmsSpringer, Berlin.

Williams, R., Gomes, C. P. and Selman, B., 2003, Backdootgpical case
complexity, InProc. International Joint Conference on Artificial Intelli
gence (IJCAl)

