
Chapter 18

APPROXIMATION ALGORITHMS

Carla P. Gomes
Department of Computer Science
Cornell University
Ithaca, NY, USA

Ryan Williams
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA, USA

In Introduction to Optimization, Decision Support and SearchMethodologies,
Burke and Kendall (Eds.), Kluwer, 2005. (Invited Survey.)

18.1 INTRODUCTION

Most interesting real-world optimization problems are very challenging from
a computational point of view. In fact, quite often, finding an optimal or even a
near-optimal solution to a large-scale optimization problem may require com-
putational resources far beyond what is practically available. There is a sub-
stantial body of literature exploring the computational properties of optimiza-
tion problems by considering how the computational demandsof a solution
method grow with the size of the problem instance to be solved(see e.g. Aho
et al., 1979). A key distinction is made between problems that require compu-
tational resources that grow polynomially with problem size versus those for
which the required resources grow exponentially. The former category of prob-
lems are called efficiently solvable, whereas problems in the latter category are
deemedintractablebecause the exponential growth in required computational
resources renders all but the smallest instances of such problems unsolvable.

It has been determined that a large class of common optimization problems
are classified asNP-hard. It is widely believed—though not yet proven (Clay
Mathematics Institute, 2003)—that NP-hard problems are intractable, which
means that there does not exist an efficient algorithm (i.e. one that scales poly-
nomially) that is guaranteed to find an optimal solution for such problems.
Examples of NP-hard optimization tasks are the minimum traveling salesman
problem, the minimum graph coloring problem, and the minimum bin packing

558 GOMES AND WILLIAMS

problem. As a result of the nature of NP-hard problems, progress that leads to
a better understanding of the structure, computational properties, and ways of
solving one of them,exactlyor approximately, also leads to better algorithms
for solving hundreds of other different but related NP-hardproblems. Several
thousand computational problems, in areas as diverse as economics, biology,
operations research, computer-aided design and finance, have been shown to
be NP-hard. (See Aho et al., 1979, for further description and discussion of
these problems.)

A natural question to ask is whetherapproximate(i.e. near-optimal) solu-
tions can possibly be found efficiently for such hard optimization problems.
Heuristic local search methods, such as tabu search and simulated annealing
(see Chapters 6 and 7), are often quite effective at finding near-optimal solu-
tions. However, these methods do not come with rigorous guarantees concern-
ing the quality of the final solution or the required maximum runtime. In this
chapter, we will discuss a more theoretical approach to thisissue consisting of
so-called “approximation algorithms”, which are efficientalgorithms that can
be proven to produce solutions of a certain quality. We will also discuss classes
of problems for which no such efficient approximation algorithms exist, thus
leaving an important role for the quite general, heuristic local search methods.

The design of good approximation algorithms is a very activearea of re-
search where one continues to find new methods and techniques. It is quite
likely that these techniques will become of increasing importance in tackling
large real-world optimization problems.

In the late 1960s and early 1970s a precise notion of approximation was pro-
posed in the context of multiprocessor scheduling and bin packing (Graham,
1966; Garey et al., 1972; Johnson, 1974). Approximation algorithms gener-
ally have two properties. First, they provide a feasible solution to a problem
instance in polynomial time. In most cases, it is not difficult to devise a pro-
cedure that findssomefeasible solution. However, we are interested in having
some assured quality of the solution, which is the second aspect characterizing
approximation algorithms. The quality of an approximationalgorithm is the
maximum “distance” between its solutions and the optimal solutions, evaluated
over all the possible instances of the problem. Informally,an algorithm approx-
imately solves an optimization problem if it always returnsa feasible solution
whose measure is close to optimal, for example within a factor bounded by a
constant or by a slowly growing function of the input size. Given a constant
α, an algorithmA is anα-approximation algorithm for a given minimization
problemΠ if its solution is at mostα times the optimum, considering all the
possible instances of problemΠ.

The focus of this chapter is on the design of approximation algorithms for
NP-hard optimization problems. We will show how standard algorithm de-
sign techniques such as greedy and local search methods havebeen used to

APPROXIMATION ALGORITHMS 559

devise good approximation algorithms. We will also show howrandomiza-
tion is a powerful tool for designing approximation algorithms. Randomized
algorithms are interesting because in general such approaches are easier to an-
alyze and implement, and faster than deterministic algorithms (Motwani and
Raghavan, 1995). A randomized algorithm is simply an algorithm that per-
forms some of its choices randomly; it “flips a coin” to decidewhat to do at
some stages. As a consequence of its random component, different executions
of a randomized algorithm may result in different solutionsand runtime, even
when considering the same instance of a problem. We will showhow one can
combine randomization with approximation techniques in order to efficiently
approximate NP-hard optimization problems. In this case, the approximation
solution, the approximation ratio, and the runtime of the approximation algo-
rithm may be random variables. Confronted with an optimization problem, the
goal is to produce a randomized approximation algorithm with runtime prov-
ably bounded by a polynomial and whose feasible solution is close to the opti-
mal solution,in expectation. Note that these guarantees hold for every instance
of the problem being solved. The only randomness in the performance guar-
antee of the randomized approximation algorithm comes fromthe algorithm
itself, and not from the instances.

Since we do not know of efficient algorithms to find optimal solutions for
NP-hard problems, a central question is whether we can efficiently compute
good approximations that are close to optimal. It would be very interesting
(and practical) if one could go from exponential to polynomial time complexity
by relaxing the constraint on optimality, especially if we guarantee at most a
relative small error.

Good approximation algorithms have been proposed for some key problems
in combinatorial optimization. The so-called APX complexity class includes
the problems that allow a polynomial-time approximation algorithm with a per-
formance ratio bounded by a constant. For some problems, we can design even
better approximation algorithms. More precisely we can consider a family of
approximation algorithms that allows us to get as close to the optimum as we
like, as long as we are willing to trade quality with time. This special family
of algorithms is called anapproximation scheme(AS) and the so-called PTAS
class is the class of optimization problems that allow for apolynomial time ap-
proximation schemethat scales polynomially in the size of the input. In some
cases we can devise approximation schemes that scale polynomially, both in
the size of the input and in the magnitude of the approximation error. We refer
to the class of problems that allow suchfully polynomial time approximation
schemesas FPTAS.

Nevertheless, for some NP-hard problems, the approximations that have
been obtained so far are quite poor, and in some cases no one has ever been able
to devise approximation algorithms within a constant factor of the optimum.

560 GOMES AND WILLIAMS

Initially it was not clear if these weak results were due to our lack of ability in
devising good approximation algorithms for such problems or to some inher-
ent structural property of the problems that excludes them from having good
approximations. We will see that indeed there are limitations to approxima-
tion which areintrinsic to some classes of problems. For example, in some
cases there is a lower bound on the constant factor of the approximation, and
in other cases, we can provably show that there are no approximations within
any constant factor from the optimum. Essentially, there is a wide range of
scenarios going from NP-hard optimization problems that allow approxima-
tions toany required degree, to problems not allowing approximations at all.
We will provide a brief introduction to proof techniques used to derive non-
approximability results.

We believe that the best way to understand the ideas behind approximation
and randomization is to study instances of algorithms with these properties,
through examples. Thus in each section, we will first introduce the intuitive
concept, then reinforce its salient points through well-chosen examples of pro-
totypical problems. Our goal is far from trying to provide a comprehensive
survey of approximation algorithms or even the best approximation algorithms
for the problems introduced. Instead, we describe different design and eval-
uation techniques for approximation and randomized algorithms, using clear
examples that allow for relatively simple and intuitive explanations. For some
problems discussed in the chapter there are approximationswith better perfor-
mance guarantees but requiring more sophisticated proof techniques that are
beyond the scope of this introductory tutorial. In such cases we will point the
reader to the relevant literature results. In summary, our goals for this chapter
are as follows:

1 Present the fundamental ideas and concepts underlying thenotion of ap-
proximation algorithms.

2 Provide clear examples that illustrate different techniques for the design
and evaluation of efficient approximation algorithms. The examples in-
clude accessible proofs of the approximation bounds.

3 Introduce the reader to the classification of optimizationproblems ac-
cording to their polynomial-time approximability, including basic ideas
on polynomial-time inapproximability.

4 Show the power of randomization for the design of approximation al-
gorithms that are in general faster and easier to analyze andimplement
than the deterministic counterparts.

5 Show how we can use a randomized approximation algorithm asa heuris-
tic to guide a complete search method (empirical results).

APPROXIMATION ALGORITHMS 561

6 Present promising application areas for approximation and randomized
algorithms.

7 Provide additional sources of information on approximation and ran-
domization methods.

In Section 18.2 we introduce precise notions and concepts used in approx-
imation algorithms. In this section we describe key design techniques for ap-
proximation algorithms. We use clear prototypical examples to illustrate the
main techniques and concepts, such as the minimum vertex cover, the knapsack
problem, the maximum satisfiability problem, the travelingsalesman problem,
and the maximum cut problem. As mentioned earlier, we are notinterested in
providing the best approximation algorithms for these problems, but rather in
illustrating how standard algorithm techniques can be usedeffectively to de-
sign and evaluate approximation algorithms. In Section 18.3 we provide a tour
of the main approximation classes, including a brief introduction to techniques
to proof lower bounds on approximability. In Section 18.4 wedescribe some
promising areas of application of approximation algorithms. Section 18.6 sum-
marizes the chapter and provides additional sources of information on approx-
imation and randomization methods.

18.2 APPROXIMATION STRATEGIES

18.2.1 Preliminaries

Optimization Problems We will define optimization problems in a tradi-
tional way (Aho et al., 1979; Ausiello et al., 1999). Each optimization problem
has three defining features: the structure of the inputinstance, the criterion of
a feasiblesolutionto the problem, and themeasurefunction used to determine
which feasible solutions are considered to be optimal. It will be evident from
the problem name whether we desire a feasible solution with aminimum or
maximum measure. To illustrate, the minimum vertex cover problem may be
defined in the following way.

Minimum Vertex Cover

Instance:An undirected graphG = (V,E).
Solution: A subsetS ⊆ V such that for every{u, v} ∈ E, eitheru ∈ S
or v ∈ S.
Measure:|S|.

We use the following notation for items related to an instance I.

Sol(I) is the set of feasible solutions toI,

mI : Sol(I) → R is the measure function associated withI, and

562 GOMES AND WILLIAMS

Opt(I) ⊆ Sol(I) is the feasible solutions with optimal measure (be it
minimum or maximum).

Hence, we may completely specify an optimization problemΠ by giving
a set of tuples{(I, Sol(I),mI , Opt(I))} over all possible instancesI. It is
important to keep in mind thatSol(I) andI may be over completely different
domains. In the above example, the set ofI is all undirected graphs, while
Sol(I) is all possible subsets of vertices in a graph.

Approximation and Performance Roughly speaking, an algorithm approx-
imately solves an optimization problem if it always returnsa feasible solution
whose measure is close to optimal. This intuition is made precise below.

Let Π be an optimization problem. We say that an algorithmA feasibly
solvesΠ if given an instanceI ∈ Π, A(I) ∈ Sol(I); that is, A returns a
feasible solution toI.

Let A feasibly solveΠ. Then we define theapproximation ratioα(A) of A
to be the minimum possible ratio between the measure ofA(I) and the measure
of an optimal solution. Formally,

α(A) = min
I∈Π

mI(A(I))

mI(Opt(I))

For minimization problems, this ratio is always at least 1. Respectively, for
maximization problems, it is always at most 1.

Complexity Background We define a decision problem as an optimization
problem in which the measure is 0–1 valued. That is, solving an instanceI of
a decision problem corresponds to answering ayes/noquestion aboutI (where
yescorresponds to a measure of 1, andno corresponds to a measure of 0).
We may therefore represent a decision problem as a subsetS of the set of all
possible instances: members ofS represent instances with measure 1.

Informally, P (polynomial time) is defined as the class of decision problems
Π for which there exists a corresponding algorithmAΠ such that every instance
I ∈ Π is solved byAΠ within a polynomial (|I|k for some constantk) num-
ber of steps on any “reasonable” model of computation. Reasonable models
include single-tape and multi-tape Turing machines, random access machines,
pointer machines, etc.

While P is meant to represent a class of problems that can be efficiently
solved,NP (nondeterministic polynomial time) is a class of decision problems
Π that can be efficientlychecked. More formally,NP is the class of decision
problemsΠ for which there exists a corresponding decision problemΠ′ in P
and constantk satisfying

I ∈ Π if and only if there existsC ∈ {0, 1}|I|
k

such that(I, C) ∈ Π′

APPROXIMATION ALGORITHMS 563

In other words, one can determine if an instanceI is in anNP problem effi-
ciently if one is also provided with a certain short stringC, which is of length
polynomial inI. For example, consider theNP problem of determining if a
graphG has a pathP that travels through all nodes exactly once (this is known
as the Hamiltonian path problem). Here, the instancesI are graphs, and the
proofsC are Hamiltonian paths. If one is givenG along with a description of
P , it is easy to verify thatP is indeed such a path by checking that

1 P contains all nodes inG,

2 no node appears more than once inP , and

3 any two adjacent nodes inP have an edge between them inG.

However, it is not known how to find such a pathP given only a graphG, and
this is the fundamental difference betweenP andNP . In fact, the Hamiltonian
path problem is not only inNP but is alsoNP -hard, see the Introduction.

Notice that while a short proof always exists ifI ∈ Π, it need not be the
case that short proofs exist for instances not inΠ. Thus, whileP problems are
considered to be those which areefficiently decidable, NP problems are those
considered to beefficiently verifiablevia a short proof.

We will also consider the optimization counterparts toP andNP , which
arePO andNPO, respectively. Informally,PO is the class of optimization
problems where there exists a polynomial time algorithm that always returns
an optimal solution to every instance of the problem, whereas NPO is the
class of optimization problems where the measure function is polynomial time
computable, and an algorithm can determine whether or not a possible solution
is feasible in polynomial time.

Our focus here will be on approximating solutions to the “hardest” ofNPO
problems, those problems where the corresponding decisionproblem isNP -
hard. Interestingly, someNPO problems of this type can be approximated
very well, whereas others can hardly be approximated at all.

18.2.2 The Greedy Method

Greedy approximation algorithms are designed with a simplephilosophy in
mind: repeatedly make choices that get one closer and closerto a feasible solu-
tion for the problem. These choices will be optimal according to an imperfect
but easily computable heuristic. In particular, this heuristic tries to be as op-
portunistic as possible in the short run. (This is why such algorithms are called
greedy—a better name might be “short-sighted”). For example, suppose my
goal is to find the shortest walking path from my house to the theater. If I be-
lieved that the walk via Forbes Avenue is about the same length as the walk via
Fifth Avenue, then if I am closer to Forbes than Fifth, it would be reasonable
to walk towards Forbes and take that route.

564 GOMES AND WILLIAMS

Clearly, the success of this strategy depends on the correctness of my belief
that the Forbes path is indeed just as good as the Fifth path. We will show
that for some problems, choosing a solution according to an opportunistic,
imperfect heuristic achieves a non-trivial approximationalgorithm.

Greedy Vertex Cover The minimum vertex cover problem was defined in
the preliminaries (Section 18.2.1). Variants on the problem come up in many
areas of optimization research. We will describe a simple greedy algorithm that
is a 2-approximation to the problem; that is, the cardinality of the vertex cover
returned by our algorithm is no more than twice the cardinality of a minimum
cover. The algorithm is as follows.

Greedy-VC: Initially, letS be an empty set. Choose an arbitrary edge
{u, v}. Add u andv to S, and removeu andv from the graph. Repeat
until no edges remain in the graph. ReturnS as the vertex cover.

Theorem 18.1 Greedy-VC is a 2-approximation algorithm for Minimum
Vertex Cover.

Proof. First, we claimS as returned by Greedy-VC is indeed a vertex cover.
Suppose not; then there exists an edgee which was not covered by any vertex in
S. Since we only remove vertices from the graph that are inS, an edgee would
remain in the graph after Greedy-VC had completed, which is acontradiction.

Let S∗ be a minimum vertex cover. We will now show thatS∗ contains at
least|S|/2 vertices. It will follow that|S∗| ≥ |S|/2, hence our algorithm has
a |S|/|S∗| ≤ 2 approximation ratio.

Since the edges we chose in Greedy-VC do not share any endpoints, it fol-
lows that

|S|/2 is the number of edges we chose and

S∗ must have chosen at least one vertex from each edge we chose.

It follows that |S∗| ≥ |S|/2. �

Sometimes when one proves that an algorithm has a certain approximation
ratio, the analysis is somewhat “loose”, and may not reflect the best possible
ratio that can be derived. It turns out that Greedy-VC is no better than a 2-
approximation. In particular, there is an infinite set of Vertex Cover instances
where Greedy-VC provably chooses exactly twice the number of vertices nec-
essary to cover the graph, namely in the case of complete bipartite graphs; see
Fig. 17.1.

One final remark should be noted on Vertex Cover. While the above algo-
rithm is indeed quite simple, no better approximation algorithms are known! In
fact, it is widely believed that one cannot approximate minimum vertex cover
better than2 − ε for anyε > 0, unlessP = NP , see Khot and Regev (2003).

APPROXIMATION ALGORITHMS 565

...
...

Figure 18.1. A bipartite graph is one for which its vertices can be assigned one of two colors
(say,red or blue), in such a way that all edges have endpoints with different colors. Above is a
sketch of acompletebipartite graph withn nodes colored red andn nodes colored blue. When
running Greedy-VC on these instances (for any natural number n), the algorithm will select all
2n vertices.

Greedy MAX-SAT The MAX-SAT problem has been very well-studied;
variants of it arise in many areas of discrete optimization.To introduce it re-
quires a bit of terminology.

We will deal solely with Boolean variables (that is, those which are either
true or false), which we will denote byx1, x2, etc. Aliteral is defined as either
a variable or the negation of a variable (e.g.x7, ¬x11 are literals). Aclauseis
defined as the OR of some literals (e.g.(¬x1 ∨x7∨¬x11) is a clause). We say
that a Boolean formula is inconjunctive normal form(CNF) if it is presented
as an AND of clauses (e.g.(¬x1 ∨x7 ∨¬x11)∧ (x5 ∨¬x2 ∨¬x3) is in CNF).

Finally, the MAX-SAT problem is to find an assignment to the variables of
a Boolean formula in CNF such that the maximum number of clauses are set
to true, or aresatisfied. Formally:

MAX-SAT

Instance:A Boolean formulaF in CNF.
Solution:An assignmenta, which is a function from each of the variables
in F to {true , false}.
Measure:The number of clauses inF that are set to true (are satisfied)
when the variables inF are assigned according toa.

What might be a natural greedy strategy for approximately solving MAX-
SAT? One approach is to pick a variable that satisfies many clauses if it is set
to a certain value. Intuitively, if a variable occurs negated in several clauses,

566 GOMES AND WILLIAMS

setting the variable tofalse will satisfy several clauses; hence this strategy
should approximately solve the problem well. Letn(li, F) denote the number
of clauses inF where the literalli appears.

Greedy-MAXSAT: Pick a literalli with maximumn(li, F) value. Set
the corresponding variable ofli such that all clauses containingli are
satisfied, yielding a reducedF . Repeat until no variables remain inF .

It is easy to see that Greedy-MAXSAT runs in polynomial time (roughly quadratic
time, depending on the computational model chosen for analysis). It is also a
“good” approximation for the MAX-SAT problem.

Theorem 18.2 Greedy-MAXSAT is a12 -approximation algorithm for MAX-
SAT.

Proof. Proof by induction on the number of variablesn in the formulaF .
Let m be the total number of clauses inF . If n = 1, the result is obvious.
For n > 1, let li have maximumn(li, F) value, andvi be its corresponding
variable. LetmPOS andmNEG be the number of clauses inF that contain
li and¬li, respectively. Aftervi is set so thatli is true (so bothli and¬li
disappear fromF), there are at leastm−mPOS −mNEG clauses left, onn−1
variables.

By induction hypothesis, Greedy-MAXSAT satisfies at least(m−mPOS −
mNEG)/2 of these clauses, therefore the total number of clauses satisfied is at
least(m−mPOS−mNEG)/2+mPOS = m/2+(mPOS−mNEG)/2 ≥ m/2,
by our greedy choice of picking theli that occurred most often. �

Greedy MAX-CUT Our next example shows how local search (in particular,
hill-climbing) may be employed in designing approximation algorithms. Hill-
climbing is inherently a greedy strategy: when one has a feasible solutionx,
one tries to improve it by choosing some feasibley that is “close” tox, but has a
better measure (lower or higher, depending on minimizationor maximization).
Repeated attempts at improvement often result in “locally”optimal solutions
that have a good measure relative to a globally optimal solution (i.e. a member
of Opt(I)). We illustrate local search by giving an approximation algorithm
for theNP -complete MAX-CUT problem which finds a locally optimal satis-
fying assignment. It is important to note that not all local search strategies try
to find a local optimum—for example, simulated annealing attempts toescape
from local optima in the hopes of finding a global optimum (Kirkpatrick et al.,
1983).

MAX-CUT

APPROXIMATION ALGORITHMS 567

Instance:An undirected graphG = (V,E).
Solution: A cut of the graph, i.e. a pair(S, T) such thatS ⊆ V and
T = V − S.
Measure:Thecut size, which is the number of edges crossing the cut, i.e.
|{{u, v} ∈ E | u ∈ S, v ∈ T}|.

Our local search algorithm repeatedly improves the currentfeasible solution
by changing one vertex’s place in the cut, until no more improvement can be
made. We will prove that at such a local maximum, the cut size is at leastm/2.

Local-Cut: Start with an arbitrary cut ofV . For each vertex, determine
if moving it to the other side of the partition increases the size of the cut.
If so, move it. Repeat until no such movements are possible.

First, observe that this algorithm repeats at mostm times, as each movement
of a vertex increases the size of the cut by at least 1, and a cutcan be at most
m in size.

Theorem 18.3 Local-Cut is a1
2 -approximation algorithm for MAX-CUT.

Proof. Let (S, T) be the cut returned by the algorithm, and consider a vertex
v. After the algorithm finishes, observe that the number of edges adjacent tov
that cross(S, T) is more than the number of adjacent edges that do not cross,
otherwisev would have been moved. Letdeg(v) be the degree ofv. Then our
observation implies that at leastdeg(v)/2 edges out ofv cross the cut returned
by the algorithm.

Let m∗ be the total number of edges crossing the cut returned. Each edge
has two endpoints, so the sum

∑
v∈V (deg(v)/2) counts each crossing edge at

most twice, i.e.
∑

v∈V

(deg(v)/2) ≤ 2m∗

However, observe
∑

v∈V deg(v) = 2m: when summing up all degrees of
vertices, every edge gets counted exactly twice, once for each endpoint. We
conclude that

m =
∑

v∈V

(deg(v)/2) ≤ 2m∗

It follows that the approximation ratio of the algorithm ism∗

m
≥ 1

2 . �

It turns out that MAX-CUT admits much better approximation ratios than1
2 ;

a so-calledrelaxationof the problem to a semi-definite linear program yields a
0.8786 approximation (Goemans and Williamson, 1995). However, like many
optimization problems, MAX-CUT cannot be approximated arbitrarily well
(1 − ε, for all ε > 0) unlessP = NP . That is to say, it is unlikely that
MAX-CUT is in the PTAScomplexity class.

568 GOMES AND WILLIAMS

Greedy Knapsack The knapsack problem and its special cases have been
extensively studied in operations research. The premise behind it is classic:
you have a knapsack of capacityC, and a set of items1, . . . , n. Each item has
a particular costci of carrying it, along with a profitpi that you will gain by
carrying it. The problem is then to find a subset of items with cost at mostC,
having maximum profit.

Maximum Integer Knapsack

Instance:A capacityC ∈ N, and a number of itemsn ∈ N, with corre-
sponding costs and profitsci, pi ∈ N for all i = 1, . . . , n.
Solution:A subsetS ⊆ {1, . . . , n} such that

∑
j∈S cj ≤ C.

Measure:Thetotal profit
∑

j∈S pj.

Maximum Integer Knapsack, as formulated above, isNP -hard. There is
also a “fractional” version of this problem (we call it Maximum Fraction Knap-
sack), which can be solved in polynomial time. In this version, rather than hav-
ing to pick the entire item, one is allowed to choosefractionsof items, like 1/8
of the first item, 1/2 of the second item, and so on. The corresponding profit
and cost incurred from the items will be similarly fractional (1/8 of the profit
and cost of the first, 1/2 of the profit and cost of the second, and so on).

One greedy strategy for solving these two problems is to packitems with the
largest profit-to-cost ratio first, with the hopes of gettingmany small-cost high-
profit items in the knapsack. It turns out that this algorithmwill not give any
constant approximation guarantee, but a tiny variant on this approach will give
a 2-approximation for Integer Knapsack, and an exact algorithm for Fraction
Knapsack. The algorithms for Integer Knapsack and FractionKnapsack are,
respectively:

Greedy-IKS: Choose items with the largest profit-to-cost ratio first, until
the total cost of items chosen is greater thanC. Let j be the last item
chosen, andS be the set of items chosen beforej. Return either{j} or
S, depending on which one is more profitable.

Greedy-FKS: Choose items as in Greedy-IKS. When the itemj makes
the cost of the current solution greater thanC, add thefraction of j such
that the resulting cost of the solution is exactlyC.

We omit a proof of the following. A full treatment can be foundin Ausiello
et al. (1999).

Lemma 18.4 Greedy-FKS solves Maximum Fraction Knapsack in polyno-
mial time. That is, Greedy-FKS is a 1-approximation to Maximum Fraction
Knapsack.

APPROXIMATION ALGORITHMS 569

We entitled the above as a lemma, because we will use it to analyze the
approximation algorithm for Integer Knapsack.

Theorem 18.5 Greedy-KS is a12 -approximation for Maximum Integer Knap-
sack.

Proof. Fix an instance of the problem. LetP =
∑

i∈S pi, the total profit of
items inS, andj be the last item chosen (as specified in the algorithm). We
will show thatP +pj is greater than or equal to the profit of an optimal Integer
Knapsack solution. It follows that one ofS or {j} has at least half the profit of
the optimal solution.

Let S∗
I be an optimal Integer Knapsack solution to the given instance, with

total profit P ∗
I . Similarly, let S∗

F andP ∗
F correspond to an optimal Fraction

Knapsack solution. Observe thatP ∗
F ≤ P ∗

I .
By the analysis of the algorithm for Fraction Knapsack,P ∗

F = P + εpj,
whereε ∈ (0, 1] is the fraction chosen for itemj in the algorithm. Therefore

P + pj ≥ P + εpj = P ∗
F ≥ P ∗

I

and we are done. �

In fact, this algorithm can be extended to get apolynomial time approxi-
mation scheme(PTAS) for Maximum Integer Knapsack, (see Ausiello et al.,
1999). A PTAS has the property that, for any fixedε > 0 provided, it returns a
(1 + ε)-approximate solution. Further, the runtime is polynomialin the input
size,provided thatε is constant. This allows us to specify a runtime that has
1/ε in the exponent. It is typical to view a PTAS as afamily of successively
better (but also slower) approximation algorithms, each running with a succes-
sively smallerε > 0. This is intuitively why they are called an approximation
scheme, as it is meant to suggest that a variety of algorithms are used. A PTAS
is quite powerful; such a scheme can approximately solve a problem with ratios
arbitrarily close to 1. However, we will observe that many problems provably
do not have a PTAS, unlessP = NP .

18.2.3 Sequential Algorithms

Sequential algorithms are used for approximations on problems where a
feasible solution is a partitioning of the instance into subsets. A sequential al-
gorithm “sorts” the items of the instance in some manner, andselects partitions
for the instance based on this ordering.

Sequential Bin Packing We first consider the problem of Minimum Bin
Packing, which is similar in nature to the knapsack problems.

570 GOMES AND WILLIAMS

Minimum Bin Packing

Instance: A set of itemsS = {r1, . . . , rn}, whereri ∈ (0, 1] for all
i = 1, . . . , n.
Solution: Partition ofS into binsB1, . . . , BM such that

∑
rj∈Bi

rj ≤ 1

for all i = 1, . . . ,M .
Measure: M .

An obvious algorithm for Minimum Bin Packing is anon-linestrategy. Ini-
tially, let j = 1 and have a binB1 available. As one runs through the input
(r1, r2, etc), try to pack the new itemri into the last bin used,Bj . If ri does
not fit in Bj, create another binBj+1 and putai in it. This algorithm is “on-
line” as it processes the input in a fixed order, and thus adding new items to the
instance while the algorithm is running does not change the outcome. Call this
heuristic Last-Bin.

Theorem 18.6 Last-Bin is a 2-approximation to Minimum Bin Packing.

Proof. Let R be the sum of all items, soR =
∑

ri∈S ri. Let m be the total
number of bins used by the algorithm, and letm∗ be the minimum number of
bins possible for the given instance. Note thatm∗ ≥ R, as the total number of
bins needed is at least the total size of all items (each bin holds 1 unit). Now,
given any pair of binsBi andBi+1 returned by the algorithm, the sum of items
from S in Bi andBi+1 is at least 1; otherwise, we would have stored the items
of Bi+1 in Bi instead. This shows thatm ≤ 2R. Hencem ≤ 2R ≤ 2m∗, and
the algorithm is a 2-approximation. �

An interesting exercise for the reader is to construct a series of examples
demonstrating that this approximation bound, like the one for Greedy-VC, is
tight.

As one might expect, there exist algorithms that give betterapproxima-
tions than the above. For example, we do not even consider theprevious bins
B1, . . . , Bj−1 when trying to pack anai, only the last one is considered.

Motivated by this observation, consider the following modification to Last-
Bin. Select each itemai in decreasing order of size, placingai in the first
availablebin out ofB1, . . . , Bj. (So a new bin is only created ifai cannot fit
in any of the previousj bins.) Call this new algorithm First-Bin. An improved
approximation bound may be derived, via an intricate analysis of cases.

Theorem 18.7 (Johnson, 1974) First-Bin is a119 -approximation to Mini-
mum Bin Packing.

Sequential Job Scheduling One of the major problems in scheduling theory
is how to assign jobs to multiple machines so that all of the jobs are completed

APPROXIMATION ALGORITHMS 571

efficiently. Here, we will consider job completion in the shortest amount of
time possible. For the purposes of abstraction and simplicity, we will assume
the machines are identical in processing power for each job.

Minimum Job Scheduling

Instance: An integerk and a multi-setT = {t1, . . . , tn} of times, ti ∈ Q

for all i = 1, . . . , n (i.e. theti are fractions).
Solution: An assignment of jobs to machines, i.e. a functiona from
{1, . . . , n} to {1, . . . , k}.
Measure: The completion time for all machines, assuming they run in
parallel:max{

∑
i:a(i)=j ti | j ∈ {1, . . . , k}}.

The algorithm we propose for Job Scheduling is also on-line:when reading
a new job with timeti, assign it to the machinej that currently has the least
amount of work; that is, thej with minimum

∑
i:a(i)=j ti. Call this algorithm

Sequential-Jobs.

Theorem 18.8 Sequential Jobs is a 2-approximation for Minimum Job Schedul-
ing.

Proof. Let j be a machine with maximum completion time, and leti be the
index of the last job assigned toj by the algorithm. Letsi,j be the sum of all
times for jobs prior toi that are assigned toj. (This may be thought of as the
time that jobi begins on machinej). The algorithm assignedi to the machine
with the least amount of work, hence all other machinesj′ at this point have
larger

∑
i:a(i)=j′ ti. Thereforesi,j ≤

1
k

∑n
i=1 ti, i.e. si,j is less1/k of the total

time of all jobs (recallk is the number of machines).
NoticeB = 1

k

∑n
i=1 ti ≤ m∗, the completion time for an optimal solution,

as the sum corresponds to the case where every machine takes exactly the same
fraction of time to complete. Thus the completion time for machinej is

si,j + ti ≤ m∗ + m∗ = 2m∗

So the maximum completion time is at most twice that of an optimal solution.
�

This is not the best one can do: Minimum Job Scheduling also has a PTAS
(see Vazirani, 1983).

18.2.4 Randomization

Randomness is a powerful resource for algorithmic design. Upon the as-
sumption that one has access to unbiased coins that may be flipped and their

572 GOMES AND WILLIAMS

values (heads or tails) extracted, a wide array of new mathematics may be em-
ployed to aid the analysis of an algorithm. It is often the case that a simple
randomized algorithm will have the same performance guarantees as a compli-
cated deterministic (i.e. non-randomized) procedure.

One of the most intriguing discoveries in the area of algorithm design is
that the addition of randomness into a computational process can sometimes
lead to a significant speedup over purely deterministic methods. This may be
intuitively explained by the following set of observations. A randomized al-
gorithm can be viewed as a probability distribution on a set of deterministic
algorithms. The behavior of a randomized algorithm can varyon a given in-
put, depending on the random choices made by the algorithm; hence when we
consider a randomized algorithm, we are implicitly considering a randomly
chosen algorithm from a family of algorithms. If a substantial fraction of these
deterministic algorithms perform well on the given input, then a strategy of
restarting the randomized algorithm after a certain point in runtime will lead
to a speed-up (Gomes et al., 1998).

Some randomized algorithms are able to efficiently solve problems for which
no efficient deterministic algorithm is known, such as polynomial identity test-
ing (see Motwani and Raghavan, 1995). Randomization is alsoa key com-
ponent in the popular simulated annealing method for solving optimization
problems (Kirkpatrick et al., 1983). For a long time, the problem of deter-
mining if a given number is prime (a fundamental problem in modern cryp-
tography) was only efficiently solvable using randomization (Goldwasser and
Kilian, 1986; Rabin, 1980; Solovay and Strassen, 1977). Very recently, a de-
terministic algorithm for primality was discovered (Agrawal et al., 2002).

Random MAX-CUT Solution We saw earlier a greedy strategy for MAX-
CUT that yields a 2-approximation. Using randomization, wecan give an
extremely short approximation algorithm that has the same performance in
approximation, and runs in expected polynomial time.

Random-Cut: Choose a random cut (i.e. a random partition of the ver-
tices into two sets). If there are less thanm/2 edges crossing this cut,
repeat.

Theorem 18.9 Random-Cut is a12 -approximation algorithm for MAX-CUT
that runs in expected polynomial time.

Proof. Let X be a random variable denoting the number of edges crossing
a cut. Fori = 1, . . . ,m, Xi will be an indicator variable that is 1 if theith
edge crosses the cut, and 0 otherwise. ThenX =

∑m
i=1 Xi, so by linearity of

expectation,E[X] =
∑m

i=1 E[Xi].
Now for any edge{u, v}, the probability it crosses a randomly chosen cut

is 1/2. (Why? We randomly placedu andv in one of two possible partitions,

APPROXIMATION ALGORITHMS 573

sou is in the same partition asv with probability1/2.) Thus,E[Xi] = 1/2 for
all i, soE[X] = m/2.

This only shows that by choosing a random cut, we expect to getat least
m/2 edges crossing. We want a randomized algorithm thatalways returns
a good cut, and its running time is a random variable whose expectation is
polynomial. Let us compute the probability thatX ≥ m/2 when a random cut
is chosen. In the worst case, whenX ≥ m/2 all of the probability is weighted
onm, and whenX < m/2 all of the probability is weighted onm/2− 1. This
makes the expectation ofX as high as possible, while making the likelihood
of obtaining an at-least-m/2 cut small. Formally,

m/2 = E[X] ≤ (1 − Pr[X ≥ m/2])(m/2 − 1) + Pr[X ≥ m/2]m

Solving for Pr[X ≥ m/2], it is at least 2
m+2 . It follows that the expected

number of iterations in the above algorithm is at most(m+2)/2; therefore the
algorithm runs in expected polynomial time, and always returns a cut of size at
leastm/2. �

We remark that, had we simply specified our approximation as “pick a ran-
dom cut and stop”, we would say that the algorithm runs in linear time, and
has anexpectedapproximation ratio of 1/2.

Random MAX-SAT Solution Previously, we studied a greedy approach for
MAX-SAT that was guaranteed to satisfy half of the clauses. Here we will
consider MAX-Ak-SAT, the restriction of MAX-SAT to CNF formulae with
at leastk literals per clause. Our algorithm is analogous to the one for MAX-
CUT: Pick a random assignment to the variables. It is easy to show, using
a similar analysis to the above, that the expected approximation ratio of this
procedure is at least1− 1

2k . More precisely, ifm is the total number of clauses
in a formula, the expected number of clauses satisfied by a random assignment
is m − m/2k.

Let c be anarbitrary clause of at leastk literals. The probability that each
of its literals were set to a value that makes them false is at most1/2k, since
there is a probability of1/2 for each literal and there are at leastk of them.
Therefore the probability thatc is satisfied is at least1−1/2k. Using a linearity
of expectation argument (as in the MAX-CUT analysis) we infer that at least
m − m/2k clauses are expected to be satisfied.

18.3 A TOUR OF APPROXIMATION CLASSES

We will now take a step back from our algorithmic discussions, and briefly
describe a few of the common complexity classes associated with NP opti-
mization problems.

574 GOMES AND WILLIAMS

18.3.1 PTAS and FPTAS

Definition PTAS and FPTAS are classes of optimization problems that some
believe are closer to the proper definition of what is efficiently solvable, rather
than merelyP . This is because problems in these two classes may be ap-
proximated with constant ratiosarbitrarily close to 1. However, withPTAS,
as the approximation ratio gets closer to 1, the runtime of the corresponding
approximation algorithm may grow exponentially with the ratio.

More formally, PTAS is the class of NPO problemsΠ that have anapproxi-
mation scheme. That is, givenε > 0, there exists a polynomial time algorithm
Aε such that

If Π is a maximization problem,Aε is a(1 + ε) approximation, i.e. the
ratio approaches 1 from the right.

If Π is a minimization problem, it is a(1 − ε) approximation (the ratio
approaches 1 from the left).

As we mentioned, one drawback of a PTAS is that the(1 + ε) algorithm
could be exponential in1/ε. The class FPTAS is essentially PTAS but with
the additional requirement that the runtime of the approximation algorithm is
polynomial inn and1/ε.

A Few Known Results It is known that someNP -hard optimization prob-
lems cannot be approximated arbitrarily well unlessP = NP . One example
is a problem we looked at earlier, Minimum Bin Packing. This is a rare case
in which there is a simple proof that the problem is not approximable unless
P = NP .

Theorem 18.10 (Aho et al., 1979) Minimum Bin Packing is not in PTAS,
unlessP = NP . In fact, there is no3/2 − ε approximation for anyε > 0,
unlessP = NP .

To prove the result, we use a reduction from the Set Partitiondecision prob-
lem. Set Partitioning asks if a given set of natural numbers can be split into
two sets that have equal sum.

Set Partition

Instance: A multi-set S = {r1, . . . , rn}, whereri ∈ N for all i =
1, . . . , n.
Solution: A partition of S into setsS1 andS2; i.e. S1 ∪ S2 = S and
S1 ∩ S2 = ∅.
Measure:m(S) = 1 if

∑
ri∈S1

ri =
∑

rj∈S2
rj, andm(S) = 0 other-

wise.

APPROXIMATION ALGORITHMS 575

Proof. Let S = {r1, . . . , rn} be a Set Partition instance. Reduce it to Min-
imum Bin Packing by settingC = 1

2

∑n
j=1 sj (half the total sum of elements

in S), and considering a bin packing instance ofitemsS′ = {r1/C, . . . , rn/C}.
If S can be partitioned into two sets of equal sum, then the minimum number

of bins necessary for the correspondingS′ is 2. On the other hand, ifS cannot
be partitioned in this way, the minimum number of bins neededfor S′ is at
least 3, as every possible partitioning results in a set withsum greater thanC.
Therefore, if there were a polytime(3/2 − ε)-approximation algorithmA, it
could be used to solve Set Partition:

If A (givenS andC) returns a solution using at most(3/2−ε)2 = 3−2ε
bins, then there exists a Set Partition forS.

If A returns a solution using at least(3/2 − ε)3 = 9/2 − 3ε = 4.5 − 3ε
bins, then there is no Set Partition forS.

But for anyε ∈ (0, 3/2),

3 − 2ε < 4.5 − 3ε

Therefore this polynomial time algorithm distinguishes between thoseS that
can be partitioned and those that cannot, soP = NP . �

A similar result holds for problems such as MAX-CUT, MAX-SAT, and
Minimum Vertex Cover. However, unlike the result for Bin Packing, the proofs
for these appear to require the introduction ofprobabilistically checkable proofs,
which we will be discussed later.

18.3.2 APX

APX is a (presumably) larger class than PTAS; the approximation guaran-
tees for problems in it are strictly weaker. AnNP optimization problemΠ is
in APX simply if there is a polynomial time algorithmA and constantc such
thatA is ac-approximation toΠ.

A Few Known Results It is easy to see thatPTAS ⊆ APX ⊆ NPO.
When one sees new complexity classes and their inclusions, one of the first
questions to be asked is: How likely is it that these inclusions could be made
into equalities? Unfortunately, it is highly unlikely. Thefollowing relationship
can be shown between the three approximation classes we haveseen.

Theorem 18.11 (Ausiello et al., 1999)PTAS = APX ⇐⇒ APX =
NPO ⇐⇒ P = NP .

Therefore, if allNP optimization problems could be approximated within
a constant factor, thenP = NP . Further, if all problems that have constant

576 GOMES AND WILLIAMS

approximations can be arbitrarily approximated, stillP = NP . Another way
of saying this is: ifNP problems are hard to solve, then some of them are hard
to approximate as well. Moreover, there exists a “hierarchy” of successively
harder-to-approximate problems.

One of the directions stated follows from a theorem of the previous sec-
tion: earlier, we saw a constant factor approximation to Minimum Bin Packing.
However, it does not have aPTASunlessP = NP . This shows the direction
PTAS = APX ⇒ P = NP . One example of a problem that cannot be
in APX unlessP = NP is the well-known Minimum Traveling Salesman
problem.

Minimum Traveling Salesman

Instance: A setC = {c1, . . . , cn} of cities, and a distance functiond :
C × C → N.
Solution: A path through the cities, i.e. a permutationπ : {1, . . . , n} →
{1, . . . , n}.
Measure: The cost of visiting cities with respect to the path, i.e.

n−1∑

i=1

d(cπ(i), cπ(i+1))

It is important to note that when the distances in the probleminstances al-
ways obey a Euclidean metric, Minimum Traveling Salesperson has aPTAS(
Arora, 1998). Thus, we may say that it is the generality of possible distances
in the above problem that makes it difficult to approximate. This is often the
case with approximability: a small restriction on an inapproximable problem
can suddenly turn it into a highly approximable one.

18.3.3 Brief Introduction to PCPs

In the 1990s, the work in probabilistically checkable proofs (PCPs) wasthe
major breakthrough in proving hardness results, and arguably in theoretical
computer science as a whole. In essence, PCPs only look at a few bits of a
proposed proof, using randomness, but manage to capture allof NP . Because
the number of bits they check is so small (a constant), when anefficient PCP
exists for a given problem, it implies the hardness ofapproximately solvingthe
same problem as well, within some constant factor.

The notion of a PCP arose from a series of meditations on proof-checking
using randomness. We knowNP represents the class of problems that have
“short proofs” we can verify efficiently. As far asNP is concerned, all of
the verification done is deterministic. When a proof is correct or incorrect, a
polynomial time verifier answers “yes” or “no” with 100% confidence.

APPROXIMATION ALGORITHMS 577

However, what happens when we relax the notion of total correctness to in-
clude probability? Suppose we permit the proof verifier to toss unbiased coins,
and haveone-sided error. That is, now a randomized verifier only accepts a
correct proof with probability at least1/2, but still rejects any incorrect proof
it reads. (We call such a verifier aprobabilistically checkable proof system,
i.e. a PCP.) This slight tweaking of what it means to verify a proof leads to an
amazing characterization ofNP : all NP decision problems can be verified
by a PCP of the above type, which only flipsO(log n) coins and only checks
a constant(O(1)) number of bits of any given proof! The result involves the
construction of highly intricate error-correcting codes.We shall not discuss it
on a formal level here, but will cite the above in the notationof a theorem.

Theorem 18.12 (Arora et al., 1998)PCP [O(log n),O(1)] = NP .

One corollary of this theorem is that a large class of approximation problems
do not admit a PTAS. In particular, we have the following theorem.

Theorem 18.13 For Π ∈ {MAX-Ek-SAT, MAX-CUT, Minimum Vertex Cover},
there exists ac such thatΠ cannot bec-approximated in polynomial time, un-
lessP = NP .

18.4 PROMISING APPLICATION AREAS FOR
APPROXIMATION AND RANDOMIZED
ALGORITHMS

18.4.1 Randomized Backtracking and Backdoors

Backtracking is one of the oldest and most natural methods used for solving
combinatorial problems. In general, backtracking deterministically can take
exponential time. Recent work has demonstrated that many real-world prob-
lems can be solved quite rapidly, when the choices made in backtracking are
randomized. In particular, problems in practice tend to have small substruc-
tures within them. These substructures have the property that once they are
solved properly, the entire problem may be solved. The existence of these so-
called “backdoors” (Williams et al., 2003) to problems makethem very tenable
to solution using randomization. Roughly speaking, searchheuristics will set
the backdoor substructure early in the search, with a significant probability.
Therefore, by repeatedly restarting the backtracking mechanism after a certain
(polynomial) length of time, the overall runtime that backtracking requires to
find a solution is decreased tremendously.

578 GOMES AND WILLIAMS

18.4.2 Approximations to Guide Complete Backtrack
Search

A promising approach for solving combinatorial problems using complete
(exact) methods draws on recent results on some of the best approximation al-
gorithms based on linear programming (LP) relaxations (Chvatal, 1983, Dantzig,
1998) and so-called randomized rounding techniques, as well as on results that
uncovered the extreme variance or “unpredictability” in the runtime of com-
plete search procedures, often explained by so-called heavy-tailed cost dis-
tributions (Gomes et al., 2000). Gomes and Shmoys (2002) propose acom-
pleterandomized backtrack search method that tightly couples constraint sat-
isfaction problem (CSP) propagation techniques with randomized LP-based
approximations. They use as a benchmark domain a purely combinatorial
problem, the quasigroup (or Latin square) completion problem (QCP). Each
instance consists of ann by n matrix with n2 cells. A complete quasigroup
consists of a coloring of each cell with one ofn colors in such a way that there
is no repeated color in any row or column. Given a partial coloring of then
by n cells, determining whether there is a valid completion intoa full quasi-
group is an NP-complete problem (Colbourn, 1984). The underlying structure
of this benchmark is similar to that found in a series of real-world applications,
such as timetabling, experimental design, and fiber optics routing problems (
Laywine and Mullen, 1998; Kumar et al., 1999).

Gomes and Shmoys compare their results for the hybrid CSP/LPstrategy
guided by the LP randomized rounding approximation with a CSP strategy
and with a LP strategy. The results show that the hybrid approach significantly
improves over the pure strategies on hard instances. This suggest that the LP
randomized rounding approximation provides powerful heuristic guidance to
the CSP search.

18.4.3 Average Case Complexity and Approximation

While “worst case" complexity has a very rich theory, it often feels too re-
strictive to be relevant to practice. PerhapsNP -hard problems are hard only
for some esoteric sets of instances that will hardly ever arise. To this end, re-
searchers have proposed theories of “average case" complexity, which attempt
to probabilistically analyze problems based on randomly chosen instances over
distributions; for an introduction to this line of work, cf.(Gurevich, 1991).
Recently, an intriguing thread of theoretical research hasexplored the connec-
tions between the average-case complexity of problems and their approxima-
tion hardness (Feige, 2002). For example, it is shown that ifrandom 3-SATis
hard to solve in polynomial time (under reasonable definitions of “random” and
“hard”), thenNP -hard optimization problems such as Minimum Bisection are
hard to approximate in the worst case. Conversely, this implies that improved

APPROXIMATION ALGORITHMS 579

approximation algorithms for some problems could lead to the average-case
tractability of others. A natural research question to ask is: does an PTAS im-
ply average-case tractability, or vice versa? We suspect that some statement of
this form might be the case. In our defense, a recent paper (Beier and Vocking,
2003) shows thatRandomMaximum Integer Knapsack is exactly solvable in
expected polynomial time! (Recall that there exists an PTASfor Maximum
Integer Knapsack.)

18.5 TRICKS OF THE TRADE

One major initial motivation for the study of approximationalgorithms was
to provide a new theoretical avenue for analyzing and copingwith hard prob-
lems. Faced with a brand-new interesting optimization problem, how might
one apply the techniques discussed here? One possible scheme proceeds as
follows:

1 First, try to prove your problem isNP -hard, or find evidence that it is
not! Perhaps the problem admits an interesting exact algorithm, without
the need for approximation.

2 Often, a very natural and intuitive idea is the basis for an approximation
algorithm. How good is a randomly chosen feasible solution for the
problem? (What is the expected value of a random solution?) How
about a greedy strategy? Can you define a neighborhood such that local
search does well?

3 Look for a problem (call itΠ) that is akin to yours in some sense, and use
an existing approximation algorithm forΠ to obtain an approximation
for your problem.

4 Try to prove it cannot be approximated well, by reducing some hard-to-
approximate problem to your problem.

The first, third, and fourth points essentially hinge on one’s resourcefulness:
one’s tenacity to scour the literature (and colleagues) forproblems similar to
the one at hand, as well as one’s ability to see the relationships and reductions
which show that a problem is indeed similar.

This chapter has been mainly concerned with the second point. To answer
the questions of that point, it is crucial to proveboundson optimal solutions,
with respect to the feasible solutions that one’s approaches obtain. For mini-
mization (maximization) problems, one will need to provelower bounds(re-
spectively,upper bounds) on some optimal solution for the problem. Devising
lower (or upper) bounds can simplify the proof tremendously: one only needs
to show that an algorithm returns a solution with value at most c times the
lower bound to show that the algorithm is ac-approximation.

580 GOMES AND WILLIAMS

We have proven upper and lower bounds repeatedly (implicitly or explicitly)
in our proofs for approximation algorithms throughout thischapter—it may be
instructive for the reader to review each approximation proof and find where
we have done it. For example, the greedy vertex cover algorithm (of choosing a
maximal matching) works because even an optimal vertex cover covers at least
one of the vertices in each edge of the matching. The number ofedges in the
matching is a lower bound on the number of nodes in a optimal vertex cover,
and thus the number of nodes in the matching (which is twice the number of
edges) is at most twice the number of nodes of an optimal cover.

18.6 CONCLUSIONS

We have seen the power of randomization in finding approximate solutions
to hard problems. There are many available approaches for designing such al-
gorithms, from solving a related problem and tweaking its solution (in linear
programming relaxations) to constructing feasible solutions in a myopic way
(via greedy algorithms). We saw that for some problems, determining an ap-
proximate solution is vastly easier than finding an exact solution, while other
problems are just as hard to approximate as they are to solve.

In closing, we remark that the study of approximation and randomized al-
gorithms is still a very young (but rapidly developing) field. It is our sincerest
hope that the reader is inspired to contribute to the prodigious growth of the
subject, and its far-reaching implications for problem solving in general.

SOURCES OF ADDITIONAL INFORMATION

Books on Algorithms

Data Structures and Algorithms (Aho et al., 1983)

Introduction to Algorithms (Cormen et al., 2001)

The Design and Analysis of Algorithms (Kozen, 1992)

Combinatorial Optimization: Algorithms and Complexity (Papadimitriou
and Steiglitz, 1982)

Books on Linear Programming and Duality

Linear Programming (Chvatal, 1983)

Linear Programming and Extensions (Dantzig, 1998)

Integer and Combinatorial Optimization (Nemhauser and Wolsey, 1988)

Combinatorial Optimization: Algorithms and Complexity (Papadimitriou
and Steiglitz, 1982)

APPROXIMATION ALGORITHMS 581

Combinatorial Optimization (Cook et al., 1988)

Combinatorial Optimization Polyhedra and Efficiency (Schrijver, 2003)

Books on Approximation Algorithms

Complexity and Approximation (Ausiello et al., 1999)

Approximation Algorithms for NP-Hard Problems (Hochbaum,1997)

Approximation algorithms (Vazirani, 1983)

Books on Probabilistic and Randomized Algorithms

An Introduction to Probability Theory and Its Applications(Feller, 1971)

The Probabilistic Method (Alon and Spencer, 2000)

Randomized Algorithms (Motwani and Raghavan, 1995)

The Discrepancy Method (Chazelle, 2001)

Surveys

Computing Near-Optimal Solutions to Combinatorial Optimization Prob-
lems (Shmoys, 1995)

Approximation algorithms via randomized rounding: a survey (Srini-
vasan)

Courses and Lectures Notes Online

Approximability of Optimization Problems, MIT, Fall 99 (Madhu Su-
dan), http://theory.lcs.mit.edu/ madhu/FT99/course.html

Approximation Algorithms, Fields Institute, Fall 99 (Joseph Cheriyan),
http://www.math.uwaterloo.ca/ jcheriya/App-course/course.html

Approximation Algorithms, Johns Hopkins University, Fall1998 (Lenore
Cowen), http://www.cs.jhu.edu/ cowen/approx.html

Approximation Algorithms, Technion, Fall 95 (Yuval Rabani),
http://www.cs.technion.ac.il/ rabani/236521.95.wi.html

Approximation Algorithms, Cornell University, Fall 98 (D.Williamson),
http://www.almaden.ibm.com/cs/people/dpw/

Approximation Algorithms, Tel Aviv University, Fall 01 (Uri Zwick),
http://www.cs.tau.ac.il/7Ezwick/approx-alg-01.html

582 GOMES AND WILLIAMS

Approximation Algorithms for Network Problems, (Cheriyanand Ravi)
http://www.gsia.cmu.edu/afs/andrew/gsia/ravi/WWW/new-lecnotes.html

Randomized algorithms, CMU, Fall 2000 (Avrim Blum),
http://www-2.cs.cmu.edu/afs/cs/usr/avrim/www/Randalgs98/home.html

Randomization and optimization by Devdatt Dubhashi,
http://www.cs.chalmers.se/ dubhashi/ComplexityCourse/info2.html

Topics in Mathematical Programming: Approximation Algorithms, Cor-
nell University, Spring 99 (David Shmoys),
http://www.orie.cornell.edu/ or739/index.html

Course notes on online algorithms, randomized algorithms,network
flows, linear programming, and approximation algorithms (Michel Goe-
mans), http://www-math.mit.edu/ goemans/

Main Conferences Covering the Approximation and Randomization Top-
ics

IPCO: Integer Programming and Combinatorial Optimization

ISMP: International Symposium on Mathematical Programming

FOCS: Annual IEEE Symposium on Foundation of Computer Science

SODA: Annual ACM-SIAM Symposium on Discrete Algorithms

STOC: Annual ACM Symposium on Theory of Computing

RANDOM: International Workshop on Randomization and Approxima-
tion Techniques in Computer Science

APPROX: International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems

Acknowledgments

CG’s research was partially supported by AFRL, grants F30602-99-1-0005
and F30602-99-1-0006, AFOSR, grant F49620-01-1-0076 (Intelligent Infor-
mation Systems Institute) and F49620-01-1-0361 (MURI grant) and F30602-
00-2-0530 (DARPA contract). RW’s research was partially supported by the
NSF ALADDIN Center (http://www.aladdin.cs.cmu.edu/), and an NSF Grad-
uate Research Fellowship. Any opinions, findings, conclusions or recommen-
dations expressed here are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. The views and conclusions
contained herein are those of the author and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed or
implied, of the U.S. Government.

APPROXIMATION ALGORITHMS 583

References

Agrawal, M., Kayal, N. and Saxena, N., 2002, Primes in P, www.cse.iitk.ac.in/
news/primality.html

Aho, A. V., Hopcroft, J. E. and Ullman, J. D., 1979,Computers and intractabil-
ity: A guide to NP-Completeness,Freeman, San Francisco.

Aho, A. V., Hopcroft, J. E. and Ullman, J. D., 1983,Data structures and Al-
gorithms,Computer Science and Information Processing Series, Addison-
Wesley, Reading, MA

Alon, N. and Spencer, J., 2000,The Probabilistic Method,Wiley, New York
Arora, S., 1998, Polynomial time approximation schemes forEuclidean trav-

eling salesman and other geometric problems,J. ACM45:753–782.
Arora, S., Lund, C., Motwani, R., Sudan, M. and Szegedy, M., 1998, Proof

verification and the hardness of approximation problems,J. ACM45:501–
555.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.
and Protasi, M., 1999,Complexity and Approximation,Springer, Berlin.

Beier, R. and Vocking, B., 2003, Random knapsack in expectedpolynomial
time,Proc. ACM Symposium on Theory of Computing,pp. 232–241.

Chazelle, B., 2001,The Discrepancy Method,Cambridge University Press,
Cambridge.

Chvatal, V., 1979, A greedy heuristic for the set-covering,Math. Oper. Res.
4:233–235.

Chvatal, V., 1983,Linear Programming,Freeman, San Francisco. Chvartal
(1983) not
cited.

Clay Mathematics Institute, 2003, The millenium prize problems: P vs. NP,
http://www.claymath.org/

Colbourn, C., 1984, The complexity of completing partial latin squares,Dis-
crete Appl. Math.8:25–30.

Cook, W., Cunningham, W., Pulleyblank, W. and Schrijver, A., 1988,Combi-
natorial Optimization,Wiley, New York.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C, 2001, Introduction
to Algorithms,MIT Press, Cambridge, MA.

Dantzig, G., 1998,Linear Programming and Extensions,Princeton University
Press, Princeton, NJ.

Feige, U., 2002, Relations between average case complexityand approxima-
tion complexity, in:Proc. ACM Symposium on Theory of Computing, pp. 534–
543.

Feller, W., 1971,An Introduction to Probability Theory and Its Applications,
Wiley, New York.

Garey, M. R., Graham, R. L. and Ulman, J. D., 1972, Worst case analysis
of memory allocation algorithms, in:Proc. ACM Symposium on Theory of
Computing,pp. 143–150.

584 GOMES AND WILLIAMS

Goemans, M. X. and Williamson, D. P., 1995, Improved approximation al-
gorithms for maximum cut and satisfiability problems using semidefinite
programming,J. ACM42:1115–1145.

Goldwasser, S. and Kilian, J., 1986, Almost all primes can bequickly certified,
in: Proc. Annual IEEE Symposium on Foundations of Computer Science,
pp. 316–329.

Gomes, C., Selman, B., Crato, N. and Kautz, H., 2000, Heavy-tailed phenom-
ena in satisfiability and constraint satisfaction problems, J. Autom. Reason.
24:67–100.

Gomes, C. P., Selman, B. and Kautz, H., 1998, Boosting combinatorial search
through randomization, in:Proc. 15th National Conference on Artificial In-
telligence (AAAI-98),AAAI Press, Menlo Park, CA.

Gomes, C. P. and Shmoys, D., 2002, The promise of LP to boost CSP tech-
niques for combinatorial problems, in:Proc. 4th International Workshop
on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimisation Problems (CP-AI-OR’02),Le Croisic, France,
N. Jussien and F. Laburthe, eds, pp. 291–305.

Graham, R. L., 1966, Bounds for certain multiprocessing anomalies,Bell Syst.
Tech. J.45:1563–1581.

Gurevich, Y., 1991, Average Case Complexity, in:Proc. 18th International
Colloquium on Automata, Languages, and Programming (ICALP’91), Springer
Lecture Notes in Computer Science Vol. 510, pp. 615–628.

Hochbaum, D. S., 1997, ed.,Approximation Algorithms for NP-Hard Prob-
lems,PWS Publishing Company, Boston, MA.

Johnson, D. S., 1974, Approximation algorithms for combinatorial problems,
J. Comput. Syst. Sci.9:256–278.

Khot, S. and Regev, O., 2003, Vertex cover might be hard to approximate
within 2-e, in:Proc. IEEE Conf. on Computational Complexity.

Kirkpatrick, S., Gelatt, C. and Vecchi, M., 1983, Optimization by simulated
annealing,Science220:671–680.

Kozen, D., 1992,The design and analysis of algorithms,Springer, New York.
Kumar, S. R., Russell, A. and Sundaram, R., 1999, Approximating latin square

extensions,Algorithmica24:128–138.
Laywine, C. and Mullen, G., 1998,Discrete Mathematics using Latin Squares,

Discrete Mathematics and Optimization Series, Wiley-Interscience, New
York.

Motwani, R. and Raghavan, P., 1995,Randomized Algorithm,Cambridge Uni-
versity Press, Cambridge.

Nemhauser, G. and Wolsey, L., 1988,Integer and Combinatorial Optimization,
Wiley, New York.

Papadimitriou, C. and Steiglitz, K., 1982,Combinatorial Optimization: Algo-
rithms and Complexity,Prentice-Hall, Englewood Cliffs, NJ.

APPROXIMATION ALGORITHMS 585

Rabin, M. (1980). Probabilistic algorithm for testing primality, J. Number The-
ory 12:128–138.

Schrijver, A., 2003,Combinatorial Optimization Polyhedra and Efficiency,
Springer, Berlin.

Shmoys, D., 1995, Computing near-optimal solutions to combinatorial op-
timization problems, in:Combinatorial Optimization,DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, W.Cook, L. Lo-
vasz and P. Seymour, eds, American Mathematical Society, Providence, RI.

Solovay, R. and Strassen, V., 1977, A fast Monte Carlo test for primality, SIAM
J. Comput.6:84–86.

Srinivasan, A., Approximation algorithms via randomized rounding: a survey.
Available from: citeseer.nj.nec.com/493290.html

Vazirani, V., 1983,Approximation Algorithms,Springer, Berlin.
Williams, R., Gomes, C. P. and Selman, B., 2003, Backdoors totypical case

complexity, In Proc. International Joint Conference on Artificial Intelli-
gence (IJCAI).

