Model Counting: A New Strategy for Obtaining Good Bounds

Carla P. Gomes, Ashish Sabharwal, Bart Selman
Cornell University

AAAI Conference, 2006
Boston, MA
What is Model/Solution Counting?

- F: a Boolean formula
 - e.g. $F = (a \text{ or } b) \text{ and } (\text{not } (a \text{ and } (b \text{ or } c)))$
 - Boolean variables: a, b, c
 - Total 2^3 possible 0-1 truth assignments
 - F has exactly 3 satisfying assignments (a,b,c):
 - $(1,0,0), (0,1,0), (0,1,1)$

- #SAT: How many satisfying assignments does F have?
 - Generalizes SAT: Is F satisfiable at all?
 - With n variables, can have anywhere from 0 to 2^n satisfying assignments
Why Model Counting?

- Success of SAT solvers has had a tremendous impact
 - E.g. verification, planning, model checking, scheduling, …
 - Can easily model a variety of problems of interest as a Boolean formula, and use an off-the-shelf SAT solver
 - Rapidly growing technology: scales to 1,000,000+ variables and 5,000,000+ constraints

- Efficient model counting techniques will extend this to a whole new range of applications
 - Probabilistic reasoning
 - Multi-agent / adversarial reasoning (bounded)
 - [Roth ‘96, Littman et. al. ‘01, Sang et. al. ‘04, Darwiche ‘05, Domingos ‘06]
The Challenge of Model Counting

- In theory
 - Model counting or #SAT is #P-complete
 (believed to be much harder than NP-complete problems)

- Practical issues
 - Often finding even a single solution is quite difficult!
 - Typically have huge search spaces
 - E.g. \(2^{1000} \approx 10^{300}\) truth assignments for a 1000 variable formula
 - Solutions often sprinkled unevenly throughout this space
 - E.g. with \(10^{60}\) solutions, the chance of hitting a solution at random is \(10^{-240}\)
How Might One Count?

How many people are present in the hall?

Problem characteristics:

- Space naturally divided into rows, columns, sections, …
- Many seats empty
- Uneven distribution of people (e.g. more near door, aisles, front, etc.)
How Might One Count?

Previous approaches:

1. Brute force
2. Branch-and-bound
3. Estimation by sampling

This work:
A clever randomized strategy using random XOR/parity constraints
#1: Brute-Force Counting

Idea:
- Go through every seat
- If occupied, increment counter

Advantage:
- Simplicity

Drawback:
- Scalability
#2: Branch-and-Bound (DPLL-style)

Idea:
- Split space into sections
 e.g. front/back, left/right/ctr, …
- Use smart detection of full/empty sections
- Add up all partial counts

Advantage:
- Relatively faster

Drawback:
- Still “accounts for” every single person present: need extremely fine granularity
- Scalability

Framework used in DPLL-based systematic exact counters

- e.g. Relsat [Bayardo-et-al ‘00], Cachet [Sang et. al. ‘04]
#3: Estimation By Sampling -- Naïve

Idea:
- Randomly select a region
- Count within this region
- Scale up appropriately

Advantage:
- Quite fast

Drawback:
- Robustness: can easily under- or over-estimate
- Scalability in sparse spaces: e.g. 10^{60} solutions out of 10^{300} means need region much larger than 10^{240} to “hit” any solutions
#3: Estimation By Sampling -- Smarter

Idea:
- Randomly sample k occupied seats
- Compute fraction in front & back
- Recursively count only front
- Scale with appropriate multiplier

Advantage:
- Quite fast

Drawback:
- Relies on uniform sampling of occupied seats -- not any easier than counting itself!
- Robustness: often under- or over-estimates; no guarantees

Framework used in approximate counters like ApproxCount [Wei-Selman ‘05]
Let’s Try Something Different …

A Coin-Flipping Strategy
(Intuition)

Idea:

Everyone starts with a hand up

- Everyone tosses a coin
- If heads, keep hand up, if tails, bring hand down
- Repeat till only one hand is up

Return $2^{\#(\text{rounds})}$

Does this work?

- On average, Yes!
- With M people present, need roughly $\log_2 M$ rounds for a unique hand to survive
From Counting People to #SAT

Given a formula F over n variables,

- Auditorium : search space for F
- Seats : 2^n truth assignments
- Occupied seats : satisfying assignments

Bring hand down : add additional constraint eliminating that satisfying assignment
Making the Intuitive Idea Concrete

- How can we make each solution “flip” a coin?
 - Recall: solutions are implicitly “hidden” in the formula
 - Don’t know anything about the solution space structure

- What if we don’t hit a unique solution?

- How do we transform the average behavior into a robust method with provable correctness guarantees?

Somewhat surprisingly, all these issues can be resolved!
XOR Constraints to the Rescue

☐ Use XOR/parity constraints
- E.g. \(a \oplus b \oplus c \oplus d = 1 \)
 (satisfied if an odd number of variables set to True)
- Translates into a small set of CNF clauses
- Used earlier in randomized reductions in Theo. CS
 [Valiant-Vazirani ‘86]

☐ Which XOR constraint \(X \) to use? Choose at random!

Two crucial properties:
- For every truth assignment \(A \),
 \(\Pr [A \text{ satisfies } X] = 0.5 \)
- For every two truth assignments \(A \) and \(B \),
 “\(A \) satisfies \(X \)” and “\(B \) satisfies \(X \)” are independent

Gives average behavior, some guarantees

Gives stronger guarantees
Obtaining Correctness Guarantees

- For formula F with M models/solutions, should ideally add $\log_2 M$ XOR constraints
- Instead, suppose we add $s = \log_2 M + 2$ constraints

Fix a solution A.

$\Pr [A \text{ survives } s \text{ XOR constraints }] = 1/2^s = 1/(4M)$

$\Rightarrow \exp [\text{ number of surviving solutions }] = M / (4M) = 1/4$

$\Rightarrow \Pr [\text{some solution survives }] \leq 1/4$ (by Markov’s Ineq)

$\Pr [F \text{ is satisfiable after } s \text{ XOR constraints }] \leq 1/4$

Thm: If F is still satisfiable after s random XOR constraints, then F has $\geq 2^{s-2}$ solutions with prob. $\geq 3/4$
Boosting Correctness Guarantees

Simply repeat the whole process!

Say, we iterate 4 times independently with \(s \) constraints.

\[
\Pr \left[F \text{ is satisfiable in every iteration } \right] \leq 1/4^4 < 0.004
\]

Thm: If \(F \) is satisfiable after \(s \) random XOR constraints in each of 4 iterations, then \(F \) has at least \(2^{s-2} \) solutions with prob. \(\geq 0.996 \).

MBound Algorithm (simplified; by concrete usage example):

Add \(k \) random XOR constrains and check for satisfiability using an off-the-shelf SAT solver. Repeat 4 times.

If satisfiable in all 4 cases, report \(2^{k-2} \) as a lower bound on the model count with 99.6% confidence.
Key Features of MBound

- Can use any state-of-the-art SAT solver off the shelf
- Random XOR constraints independent of both the problem domain and the SAT solver used
- Adding XORs further constrains the problem
 - Can model count formulas that couldn’t even be solved!
 - An effective way of “streamlining” [Gomes-Sellmann ’04]
 → XOR streamlining
- Very high provable correctness guarantees on reported bounds on the model count
 - May be boosted simply by repetition
Making it Work in Practice

- Purely random XOR constraints are generally large
 - Not ideal for current SAT solvers

- In practice, we use relatively short XORs
 - Issue: Higher variation
 - Good news: lower bound correctness guarantees still hold
 - Better news: can get surprisingly good results in practice with extremely short XORs!
Experimental Results

<table>
<thead>
<tr>
<th>Problem Instance</th>
<th>Mbound (99% confidence)</th>
<th>Relsat (exact counter)</th>
<th>ApproxCount (approx. counter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models</td>
<td>Time</td>
<td>Models</td>
<td>Time</td>
</tr>
<tr>
<td>Ramsey 1</td>
<td>(\geq 1.2 \times 10^{30})</td>
<td>2 hrs</td>
<td>(\geq 7.1 \times 10^{8})</td>
</tr>
<tr>
<td>Ramsey 2</td>
<td>(\geq 1.8 \times 10^{19})</td>
<td>2 hrs</td>
<td>(\geq 1.9 \times 10^{5})</td>
</tr>
<tr>
<td>Schur 1</td>
<td>(\geq 2.8 \times 10^{14})</td>
<td>2 hrs</td>
<td>---</td>
</tr>
<tr>
<td>Schur 2 **</td>
<td>(\geq 6.7 \times 10^{7})</td>
<td>5 hrs</td>
<td>---</td>
</tr>
<tr>
<td>ClqColor 1</td>
<td>(\geq 2.1 \times 10^{40})</td>
<td>3 min</td>
<td>(\geq 2.8 \times 10^{26})</td>
</tr>
<tr>
<td>ClqColor 2</td>
<td>(\geq 2.2 \times 10^{46})</td>
<td>9 min</td>
<td>(\geq 2.3 \times 10^{20})</td>
</tr>
</tbody>
</table>

** Instance cannot be solved by any state-of-the-art SAT solver**
Summary and Future Directions

- Introduced XOR streamlining for model counting
 - can use any state-of-the-art SAT solver off the shelf
 - provides significantly better counts on challenging instances, including some that can’t even be solved
 - Hybrid strategy: use exact counter after adding XORs
 - Upper bounds (extended theory using large XORs)

- Future Work
 - Uniform solution sampling from combinatorial spaces
 - Insights into solution space structure
 - From counting to probabilistic reasoning
Extra Slides
How Good are the Bounds?

- In theory, with enough computational resources, can provably get as close to the exact counts as desired.

- In practice, limited to relatively short XORs. However, can still get quite close to the exact counts!

<table>
<thead>
<tr>
<th>Instance</th>
<th>Number of vars</th>
<th>Exact count</th>
<th>xor size</th>
<th>lowerbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>bitmask</td>
<td>252</td>
<td>21.0×10^{28}</td>
<td>9</td>
<td>$\geq 9.2 \times 10^{28}$</td>
</tr>
<tr>
<td>log_a</td>
<td>1719</td>
<td>26.0×10^{15}</td>
<td>36</td>
<td>$\geq 1.1 \times 10^{15}$</td>
</tr>
<tr>
<td>php 1</td>
<td>200</td>
<td>6.7×10^{11}</td>
<td>17</td>
<td>$\geq 1.3 \times 10^{11}$</td>
</tr>
<tr>
<td>php 2</td>
<td>300</td>
<td>20.0×10^{15}</td>
<td>20</td>
<td>$\geq 1.1 \times 10^{15}$</td>
</tr>
</tbody>
</table>