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Abstract. In recent years we have seen an increasing interest in combining constraint satisfaction prob-
lem (CSP) formulations and linear programming (LP) based techniques for solving hard computational
problems. While considerable progress has been made in the integration of these techniques for solving
problems that exhibit a mixture of linear and combinatorial constraints, it has been surprisingly difficult to
successfully integrate LP-based and CSP-based methods in a purely combinatorial setting. Our approach
draws on recent results on approximation algorithms based on LP relaxations and randomized rounding
techniques, with theoretical guarantees, as well on results that provide evidence that the runtime distribu-
tions of combinatorial search methods are often heavy-tailed. We propose a complete randomized backtrack
search method for combinatorial problems that tightly couples CSP propagation techniques with random-
ized LP-based approximations. We present experimental results that show that our hybrid CSP/LP back-
track search method outperforms the pure CSP and pure LP strategies on instances of a hard combinatorial
problem.

1. Introduction

In recent years we have seen the development of successful methods for solving op-
timization problems by integrating techniques from Constraint Programming (CP) and
Operations Research (OR) (see, e.g., (Gomes, 2001)). Such hybrid approaches draw on
the individual strengths of these different paradigms: OR heavily relies on mathemati-
cal programming formulations such as integer and linear programming, while CP uses
constrained-based search and inference methods. This is particularly true in domains
where we have a combination of linear constraints, well-suited for linear programming
(LP) formulations, and discrete constraints, suited for constraint satisfaction problem
(CSP) formulations (see, e.g., (Little and Darby-Dowman, 1995; Bockmayr and Kasper,
1998; Heipcke, 1998; Guéret and Jussien, 1999; Hooker et al., 1999; Rodosek, Wallace,
and Hajian, 1999; Caseau and Laburthe, 1995; Focacci, Lodi, and Milano, 1999a, 1999b,
2000; Refalo, 1999, 2000)). Nevertheless, in a purely combinatorial setting, with only
discrete, non-numerical variables, so far it has been surprisingly difficult to integrate
LP-based and CSP-based techniques. For example, despite a significant amount of work
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on using LP relaxations to solve Boolean satisfiability (SAT) problems, practical state-
of-the-art solvers do not incorporate LP relaxation techniques. From a practical point of
view, the challenge is how to integrate such techniques into practical solvers. The ba-
sic idea is to use the information from LP relaxations to guide the combinatorial search
process. A key issue is whether the LP relaxation provides sufficient useful additional
information – in particular, information that is not easily uncovered by constraint propa-
gation and inference techniques (see, e.g., (Hooker, 1996; Kamath et al., 1992; Warners,
1999)). Of course, also the cost of solving the LP relaxation should not outweigh the
benefits in the reduction of search cost.

Another aspect to note is that while LP relaxations combined with several heuristic
strategies have been used extensively by both the OR and CP communities, in general,
such heuristic approaches do not provide rigorous guarantees concerning the quality of
the solutions that they achieve. A more theoretically well-founded approach can be
obtained by using approximation algorithms with formal guarantees on solution quality
and efficiency.

The area of approximation algorithms is a new and very active research area. Ap-
proximation algorithms are procedures that provide a feasible solution in polynomial
time. Note that in most cases it is not difficult to devise a procedure that finds some
solution. However, we are interested in having some guarantee on the quality of the
solution, a key aspect that characterizes approximation algorithms. The quality of an
approximation algorithm is the “distance” between its solutions and the optimal solu-
tions, evaluated over all the possible instances of the problem. Informally, an algorithm
approximately solves an optimization problem if it always returns a feasible solution
whose measure is close to optimal, for example within a factor bounded by a constant
or by a slowly growing function of the input size. More formally, given a maximiza-
tion problem � and a constant α (0 < α < 1), an algorithm A is an α-approximation
algorithm for � if its solution is at least α times the optimum, considering all the pos-
sibles instances of problem �. Interestingly, standard algorithm design techniques such
as greedy and local search methods, dynamic programming, and classical methods of
discrete optimization such as linear programming and semidefinite programming are
key tools to devise good approximation algorithms. Randomization is also a powerful
tool for designing approximation algorithms. So, while approximation algorithms are,
in general, based on standard algorithm design techniques, the performance guarantee
associated with them is novel, which is not provided by heuristic methods.

Our approach for solving purely combinatorial problems draws on recent results
on some of the best approximation algorithms with theoretical guarantees based on LP
relaxations and randomized rounding techniques (see, e.g., (Chudak and Shmoys, 1999;
Motwani, Naor, and Raghavan, 1997)), as well on results that uncovered the extreme
variance or “unpredictability” in the runtime of complete search procedures, often ex-
plained by so-called heavy-tailed cost distributions (Gomes, Selman, and Crato, 1997;
Gomes et al., 2000; Walsh, 1999). More specifically, we propose a complete randomized
backtrack search method that tightly couples CSP propagation techniques with random-
ized LP-based approximations.
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We use as a benchmark domain a purely combinatorial problem, the quasigroup
(or Latin square) completion problem (QCP). Each instance consists of an n by n matrix
with n2 cells. A complete quasigroup consists of a coloring of each cell with one of
n colors in such a way that there is no repeated color in any row or column. Given
a partial coloring of the n by n cells, determining whether there is a valid completion
into a full quasigroup is an NP-complete problem (Colbourn, 1984). The underlying
structure of this benchmark is similar to that found in a series of real-world applications,
such as timetabling, experimental design, and fiber optics routing problems (Laywine
and Mullen, 1998; Kumar, Russell, and Sundaram, 1999).

Our approach incorporates a new randomized (1 − 1/e)-approximation for QCP
(Gomes, Regis, and Shmoys, 2003), the best approximation guarantee for this problem
at the present time, a considerable improvement over the previously known performance
guarantee for this problem, which was 0.5. We present experimental findings for a hy-
brid backtrack search method that tightly couples CSP propagation techniques with in-
formation provided by the randomized LP-based approximation for hard combinatorial
instances of the QCP domain.

We compare our results with a pure CSP strategy and with a pure LP strategy. Our
results show that a hybrid approach significantly improves over the pure strategies on
hard instances. In our hybrid approach, the LP-based approximation provides global
information about the values to assign to the CSP variables. In effect, the randomized
LP rounding approximation provides powerful heuristic guidance to the CSP search,
especially at the top of the backtrack search tree. With our hybrid CSP/LP strategy we
were able to considerably improve the time performance of the pure CSP strategy on
hard instances. Furthermore, the hybrid CSP/LP strategy could solve several instances
of QCP that could not be solved by the pure CSP strategy.

Interestingly, and contrarily to the experience in other domains that combine lin-
ear constraints with a combinatorial component, we find that the role of the LP-based
approximation in detecting infeasibility for pure combinatorial problems is not as im-
portant as its role as search guidance. In particular, deeper down in the search tree, the
information obtainable via LP relaxations can be computed much faster via CSP tech-
niques. This means that during that part of the search process, the hybrid strategy should
be avoided. A key issue in making the hybrid strategy effective on purely combinatorial
problems is to find the right balance between the amount of work spent in solving the
LP relaxations and the time spent on the CSP search. Our approach also uses restart
strategies in order to combat the heavy-tailed nature of combinatorial search. By using
restart strategies we take advantage of any significant probability mass early on in the
distribution, reducing the variance in runtime and the probability of failure of the search
procedure, resulting in a more robust overall search method.

The structure of the paper is as follows. In the next section, we describe the Qua-
sigroup Completion Problem (QCP). In section 3, we provide different formulations for
the problem and, in section 4, we discuss approximations for QCP based on LP ran-
domized rounding. In section 5, we present our hybrid CSP/LP randomized rounding
backtrack search procedure and, in section 6, we provide empirical results.
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Figure 1. Quasigroup completion problem of order 4, with 5 holes.

2. The quasigroup completion problem

Given a set Q of n symbols (i.e., |Q| = n), a Latin square indexed by Q is an n ×
n matrix such that each of its rows and columns is a permutation of the n symbols
in Q (Laywine and Mullen, 1998). n is called the order of the Latin square. From
an algebraic point of view, a Latin square indexed by Q defines a very specific finite
structure, a cancellative grupoid (Q, �), where � is a binary operation on Q and the
Latin square is the multiplication table of �. Such a grupoid is called a quasigroup.
In the context of this paper, the key aspect about quasigroups that we are interested
in is their equivalence to Latin squares, in the sense that the multiplication table of a
quasigroup forms a Latin square and conversely, any given Latin square represents the
multiplication table of a certain quasigroup. A partial latin square PLS is a partially
filled n by n matrix such that no symbol occurs repeated in a row or a column. PLSi,j = k

denotes that entry i, j of PLS has symbol k. We refer to the empty cells of the partial
Latin square as holes and to the non-empty cells as pre-assigned cells. The number of
holes in a PLS is denoted by h. The Quasigroup Completion Problem (QCP) (or Latin
square completion problem)1 is the problem of determining whether the h holes of the
corresponding partial Latin square can be filled in such a way that we obtain a complete
Latin square (i.e., a full multiplication table of a quasigroup) (see figure 1). QCP is
NP-complete (Colbourn, 1984).

The structure implicit in QCP is similar to that found in real-world domains: in-
deed, many problems in scheduling and experimental design have a structure similar
to the structure of QCP. A particularly interesting application that directly maps onto
the QCP is the problem of assigning wavelengths to routes in fiber-optic networks, as
performed by Latin routers (Kumar, Russell, and Sundaram, 1999). As the name sug-
gests, Latin routers use the concept of Latin squares to capture the constraints required
to achieve conflict-free routing: a given wavelength cannot be assigned to a given input
port more than once; a given wavelength cannot be assigned to a given output port more
than once.

2.1. Phase transition phenomena in QCP

In recent years significant progress has been made in the study of typical case complex-
ity, namely the study of so-called phase transition phenomena in computational models,
correlating structural features of problems with computational complexity. This is a new
emerging area of research that is changing the way we characterize the computational
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complexity of NP-complete problems, beyond the worst-case complexity notion: Using
tools from statistical physics we are now able to provide a fine characterization of the
spectrum of computational complexity of instances of NP-complete problems, identify-
ing typical easy-hard-easy patterns (Hogg and Huberman, 1996). For example, in the
random Satisfiability problem, with fixed clause length (K-Sat, with K � 3), it has been
empirically shown that the difficulty of problems depends on the ratio between number
of clauses and number of variables (Kirkpatrick and Selman, 1994). Furthermore, it has
also been empirically shown that the peak in complexity occurs at the phase transition,
i.e., the region in which instances change from being almost all solvable to being almost
all unsolvable. We note that a rigorous and formal characterization of phase transition
phenomena of computational search problems is very challenging. Even though several
researchers from different communities, namely theoretical computer science, mathe-
matics, and physics are now working on the study of phase transition phenomena in
computational methods, progress is very slow. For example, for the 3-Sat case, the exis-
tence of a phase transition phenomenon has been formally proved, but the exact ratio of
clauses to variables at which it occurs has not been rigorously proved. While empirical
results show that the phase transition phenomenon occurs when the ratio of clauses to
variables is about 4.2, the theoretical results indicate that the phase transition phenom-
enon occurs between 3.4 and 4.6. There is a large body of recent work on the phase
transitions observed in random distributions of constraint satisfaction problems, such as
random Sat, random binary CSP, random graph coloring, and other problem domains.
(For example, (Hogg and Huberman, 1996) contains a collection of recent papers in the
area.)

We have identified a phase transition phenomenon for QCP (Gomes and Selman,
1997), a more structured domain than purely random problem domains such as random
K-Sat. Interestingly, like in the random 3-Sat problem, the computationally hardest in-
stances lie at the phase transition, the region in which problem instances switch from
being almost all solvable (“under-constrained” region) to being almost all unsolvable
(“over-constrained” region). Figure 2 shows the computational cost (median number of
backtracks) and phase transition in solvability for solving QCP instances of different or-
ders. In both of the plots displayed in the figure we vary the ratio of pre-assigned cells2

along the horizontal axis. We vary the median number of backtracks for solution along
the Y -axis of the top plot.3 We vary the percentage of instances for which there is a
valid completion of the partial Latin square along the vertical axis of the bottom panel.
Each data point was obtained by running a complete backtrack search procedure on 100
instances for the specified ratio of pre-assigned cells. Even though all the instances are
from QCP, which is an NP-complete problem, we clearly distinguish various regions
of problem difficulty in the figure. In particular, both at low ratios and high ratios of
preassigned colors the median solution cost is relatively small. In the under-constrained
area, for example for levels of pre-assignment below 30%, the median number of back-
tracks for finding a solution is below 20 for all the orders of Latin squares shown in the
figure. In the over-constrained area, for example for levels of pre-assignment greater
than 50%, it is relatively easy for the backtrack search procedure to prove that the par-
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(a)

(b)

Figure 2. (a) Computational cost of solving QCP instances (order 11–15). X-axis: fraction of pre-assigned
cells; Y -axis: median number of backtracks for solution (log scale). (b) Phase transition in solvability for
QCP instances (order 12–15). X-axis: fraction of pre-assigned cells; Y -axis: fraction of instances for which
the partial Latin square could not be completed into a full Latin square. (Each data point was computed

based on 100 instances.)
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tial Latin squares cannot be completed into full Latin squares. The median number of
backtracks for solution for instances with 50% pre-assigned colors is 1. In between the
under-constrained and over-constrained area, the complexity peaks and, in fact, exhibits
strong exponential growth. For example, for instances of order 15 in the critically con-
strained region, where the phase transition occurs, the median number of backtracks is
greater than 4000.

We note that the location of the phase transition depends only on the structure of
the particular domain and is not dependent on the particular search procedure: the transi-
tion is with respect to the solvability of the instances, a structural feature of the domain.
For QCP, the transition is from a region in which for most instances the partial Latin
square pattern can be completed to a full Latin square, to a region in which for most of
the instances the partial pattern cannot be completed to a full Latin square. The compu-
tational cost complexity peaks in the phase transition region. While the location of the
complexity cost peak is not sensitive to the search procedure in general, its magnitude,
on the other hand, is highly correlated with the strength of the search method: the weaker
the search method the higher the peak in computational cost.

There are only empirical results for the location of the phase transition for the
quasigroup domain. Rigorous results are very difficult to obtain given the constraints
that characterize this domain. For example, for a variation of QCP in which only feasible
instances are considered, referred to as Quasigroup with Holes (QWH), we conjecture
that an expression of the type ((1 − h)/np), with p constant, captures the location of the
phase transition for the quasigroup domain, where h is the number of holes, and p is a
scaling parameter. Based on empirical results p seems to be ≈1.55. However, given that
for low orders of quasigroups p = 2 is a good approximation, for simplification we talk
about proportion of holes (or preassigned colors) in terms of the total number of cells of
the matrix, i.e., (1 − h)/n2 (Achlioptas et al., 2000). The experiments reported in this
paper were based on QWH instances (see section 6).

2.2. Heavy-tailed behavior in QCP

The runtime distributions of randomized backtrack search algorithms are highly non-
standard (Gomes et al., 2000). Technically speaking, these distributions are often
heavy-tailed. Stated informally, when solving a computationally hard problem with a
randomized search method, both very long runs and very short runs occur much more
frequently than one might intuitively expect. For example, in practice, one can observe
runs that take only seconds while other runs take hours or days, even when solving the
same problem instance.

One of the clues that we are in the presence of a distribution with heavy-tails is the
erratic behavior of its mean and/or variance. Figure 3 illustrates the “wandering sam-
ple mean” phenomenon of a randomized backtrack search algorithm running on a QCP
instance. The figure displays the average cost (number of backtracks) of a randomized
backtrack style search procedure calculated over an increasing number of runs, on the
same QCP instance, an instance of order 11 with 64% of holes. Despite the fact that this
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Figure 3. Erratic behavior of sample mean phenomenon. X-axis: sequence of runs on the same instance.
Y -axis: average number of backtracks per run. The average of the number of backtracks until solution
exhibits a very erratic behavior as we increase the number of runs of a randomized backtrack search algo-
rithm on the same problem instance. After 200 runs, the mean is about 500 backtracks; after 600 runs, it
is about 2000 backtracks; after 1000 runs, it is about 3500 backtracks. The phenomenon is due to the fact
that the more runs we take into account, the more likely we hit some very long runs, which increase the
overall average number of backtracks. This experiment consisted of using a randomized backtrack search
algorithm (randomization only for tie breaking equal choices selected by the first-fail heuristic) on a QCP
instance of order 11, with 64% of holes. Even though the randomized backtrack solver finds a solution in
50% of the cases using only one or zero backtracks (i.e., the median is 1), approximately 1% of the runs

require more than 1,000,000 backtracks to find a solution.

instance is easy, in 50% of the runs a solution could be found with one or zero backtracks
(median = 1), some runs take more than 106 backtracks.

To model the long tail behavior of our distributions, we consider distributions
which asymptotically have tails of the Pareto–Lévy form, i.e., Pr {X > x} ∼ Cx−α ,
x > 0, with α > 0. These are distributions whose tails have a power-law decay. The
constant α is called the index of stability of the distribution. The distribution moments
of order higher than α are infinite. For example, when 1 < α < 2, the distribution has a
finite mean and infinite variance, and for α � 1, both the mean and variance are not de-
fined. In order to check for the existence of heavy-tails in our distributions, we proceed
in two steps. First, we graphically analyze the tail behavior of the sample distributions.
Second, we estimate the index of stability. As noted above, distributions of the Pareto–
Lévy form have tails with power-law decay. Therefore, the log–log plot of the tail of
the distribution should show an approximate linear decrease, as shown in figure 4. The
visual check of the linearity of the plot can be confirmed by calculating the maximum
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Figure 4. Heavy-tailed behavior for three different QCP instances: the top curve corresponds to a critically
constrained instance; the middle curve corresponds to a medium-constrained instance; and the bottom curve
corresponds to an under-cosntrained instance. X-axis: number of backtracks (log scale). Y -axis: the
complement-to-one of the cumulative distribution (log scale) (i.e., the tail or the survival function of the
distribution, Pr {X > x} = 1 − F(x), where F(x) is the cumulative distribution). The linear behavior of
the curves in log–log scale indicates heavy-tailed behavior. For example, the lower curve shows that ≈90%
of the runs finish in less than 10 backtracks; ≈0.1% of runs take more than 10,000 backtracks; some of the
runs take even more than 100,000 backtracks. Each distribution is based on 10,000 runs of the backtrack
search method. For the under-constrained instance (bottom curve) the estimate of α is 0.466±0.009. Given
that α < 1 and the data were obtained without censorship, the data are consistent with the hypothesis of

infinite mean and infinite variance.

likelihood estimates of the indices of stability (the values of α), using a variation of the
Hill estimator (Hill, 1975) modified to take into account data truncation of extreme out-
liers (Gomes et al., 2000). Because α < 1 for all the distributions displayed in figure 4,
in all those cases the data are consistent with the hypothesis of infinite mean and infinite
variance.4

The formal explanation for heavy-tailed behavior comes from the fact that there is a
non zero probability of entering a subtree of exponential size that has no solutions (Chen,
Gomes, and Selman, 2001). The phenomenon of heavy-tailed distributions suggests that
a sequence of “short” runs instead of a single long run may be a more effective use of our
computational resources. As a direct practical consequence of the heavy-tailed behavior
of cost distributions, randomized restarts of search procedures can dramatically reduce
the variance in the search behavior. In fact, restarts eliminate heavy-tail behavior (Gomes
et al., 2000).
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3. Problem formulations

3.1. CSP formulation

Given a partial latin square of order n, PLS, the Latin square completion problem can be
expressed as a CSP (Gomes and Selman, 1997):

xi,j ∈ {1, . . . , N} ∀i, j,

xi,j = k ∀i, j such that PLSij = k,

alldiff (xi,1, xi,2, . . . , xi,n), i = 1, 2, . . . , n,

alldiff (x1,j , x2,j , . . . , xn,j ), j = 1, 2, . . . , n.

xi,j denotes the symbol in cell i, j , and the statement “PLSij = k” denotes that symbol
k is pre-assigned to cell i, j .

The alldiff constraint states that all the variables involved in the constraint have to
have different values. It has been shown that a CSP approach solves QCP instances up
to order about 33 relatively well (Gomes and Selman, 1997; Shaw, Stergiou, and Walsh,
1998; Achlioptas et al., 2000). However, given the exponential increase in search cost
in the phase transition area. critically constrained instances of order greater than 33 are
beyond the reach of pure CSP solvers.

3.2. Assignment formulation

Given a partial Latin square of order n, PLS, the Latin square completion problem can
be expressed as an integer program (Kumar, Russell, and Sundaram, 1999):

max
n∑

i=1

n∑
j=1

n∑
k=1

xi,j,k

subject to
n∑

i=1

xi,j,k � 1, ∀j, k,

n∑
j=1

xi,j,k � 1, ∀i, k,

n∑
k=1

xi,j,k � 1, ∀i, j,

xi,j,k = 1 ∀i, j, k such that PLSij = k,

xi,j,k ∈ {0, 1} ∀i, j, k,

i, j, k = 1, 2, . . . , n.

If PLS is completable, the optimal value of this integer program is n2, i.e., the
total number of cells in the n × n Latin square. Kumar, Russell, and Sundaram (1997,
1999) considered the design of approximation algorithms for this optimization variant
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of the problem based on first solving the linear programming relaxation of this integer
programming formulation; that is, the conditions xi,j,k ∈ {0, 1} above are replaced by
xi,j,k ∈ [0, 1]. Their algorithm repeatedly solves this linear programming relaxation,
focuses on the variable closest to 1 (among those not set to 1 by the PLS conditions),
and sets that variable to 1; this iterates until all variables are set. This algorithm is shown
to be a (1/3)-approximation algorithm; that is, if PLS is completable, then it manages
to find an extension that fills at least h/3 holes. Kumar, Russell, and Sundaram also
provide a more sophisticated algorithm in which the colors are considered in turn; in
the iteration corresponding to color k, the algorithm finds the extension (of at most n

cells) for which the linear programming relaxation places the greatest total weight. This
algorithm is shown to be a (1/2)-approximation algorithm; that is, if PLS is completable,
then the algorithm computes an extension that fills at least h/2 holes. In the experimental
evaluation of their algorithms, Kumar, Russell, and Sundaram solve problems up to
order 9.

3.3. Packing formulation

Alternate integer programming formulations of this problem can also be considered.
The packing formulation is one such formulation for which the linear programming re-
laxation produces stronger lower bounds. For the given PLS input, consider one color k.
If PLS is completable, then there must be an extension of this solution with respect to
this one color; that is, there is a set of cells (i, j) that can each be colored with color k so
that there is exactly one cell colored with color k in every row and column. We shall call
one such collection of cells a compatible matching for color k. Furthermore, any subset
of a compatible matching shall be called a compatible partial matching; let Mk denote
the family of all compatible partial matchings for color k.

With this notation in mind, then we can generate the following integer program-
ming formulation by introducing one variable yk,M for each compatible partial matching
M in Mk:

max
n∑

k=1

∑
M∈Mk

|M|yk,M

subject to ∑
M∈Mk

yk,M = 1, ∀k,

n∑
k=1

∑
M∈Mk :(i,j)∈M

yk,M � 1, ∀i, j,

yk,M ∈ {0, 1}, ∀k,M.

Once again, we can consider the linear programming relaxation of this formulation,
in which the binary constraints are relaxed to be in the interval [0, 1]. It is significant
to note that, for any feasible solution y to this linear programming relaxation, one can
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Figure 5. Families of compatible matchings for the partial Latin square in the left upper corner. For example,
the family of compatible matchings for symbol 1 has three compatible matchings.

generate a corresponding feasible solution x to the assignment formulation, by simply
computing xi,j,k = ∑

M∈Mk :(i,j)∈M yk,M . This construction implies that the value of the
linear programming relaxation of the assignment formulation (which provides an upper
bound on the desired integer programming formulation) is at least the bound implied by
the LP relaxation of the packing formulation; that is, the packing formulation provides
a tighter upper bound. However, note that the size of this formulation is exponential
in n. Despite this difficulty, one may apply the ellipsoid algorithm (via its dual) to solve
the packing LP relaxation in polynomial time (Grotschel, Lovász, and Schrijver, 1993),
or apply more specialized LP techniques designed to give fully polynomial approxima-
tion schemes for such packing-type linear programs (e.g., Plotkin, Shmoys, and Tardos,
1995). In practice, one can simply apply column generation techniques to compute an
optimal solution relatively efficiently.

4. Approximations based on randomized rounding

One important area of recent research has been the design of approximation algorithms.
Approximation algorithms run in polynomial time, with the additional guarantee of pro-
ducing solutions that are close to the optimal solution. The notion of being close to
the optimal solution is usually specified with a performance guarantee parameter α. An
α-approximation algorithm is a polynomial-time algorithm that finds a feasible solu-
tion of objective function value within a factor α of the optimal solution. We consider
approximation algorithms in which good solutions are computed for an integer program-
ming problem with variables constrained to be 0 or 1, by solving its linear programming



APPROXIMATIONS AND RANDOMIZATION TO BOOST CSP TECHNIQUES 129

relaxation, and (appropriately) interpreting the resulting fractional solution as providing
a probability distribution over which to set the variables to 1 (see, e.g., (Motwani, Naor,
and Raghavan, 1997)).

Consider the generic integer program max cz subject to Az = b, z ∈ {0, 1}N , and
solve its linear relaxation to obtain z∗. If each variable zj is then set to 1 with probability
zj

∗, then the expected value of the resulting integer solution is equal to the LP optimal
value, and, for each constraint, the expected value of the left-hand side is equal to the
right-hand side. Of course, this does not mean that the resulting solution is feasible,
but it provides a powerful intuition for why such a randomized rounding is a useful
algorithmic tool (see, e.g., (Motwani, Naor, and Raghavan, 1997)).

This approach has led to striking results in a number of settings. For example,
Goemans and Willianson (1994) have given a (3/4)-approximation algorithm based on
randomized rounding for the problem of satisfying the maximum number of clauses for
a boolean formula in conjunctive normal form. This algorithm outputs the better solution
found by two randomized rounding procedures, one that uses a fair coin to independently
set the variables, and another that randomly rounds based on the optimal solution to a
natural linear programming relaxation.

4.1. Assignment formulation

The assignment formulation can be used as the basis for a randomized rounding proce-
dure in a variety of ways. Let x∗ denote an optimal solution to the linear programming
relaxation of this integer program. For any randomized procedure in which the proba-
bility that cell (i, j) is colored k is equal to x∗

ijk , then we know that, in expectation, each
row i has at most one element of each color k, each column j has at most one element
of each color k, and each cell (i, j) is assigned at most one color k. For example, if
x∗

ijk = 0.8, we will assign color k to cell (i, j) with probability 0.8. However, having
these each hold “in expectation” is quite different than expecting that all of them will
hold simultaneously, which is extremely unlikely.

4.2. Packing formulation

In contrast to the situation for the assignment formulation, there is an easy theoretical
justification for the randomized rounding of the fractional optimal solution, as we pro-
posed in (Gomes, Regis, and Shmoys, 2003). Let y∗ be an optimal solution to the LP
relaxation of the packing formulation. Rather than the generic randomized rounding
mentioned above, instead, for each color k choose some compatible partial matching
M with probability y∗

k,M (so that some matching is therefore selected for each color).
These selections are done as independent random events. This independence implies
there might be some cell (i, j) included in the matching selected for two distinct col-
ors. However, the constraints in the linear program imply that the expected number of
matchings in which a cell is included is at most one. For each cell in which a overlap
occurs, we arbitrarily select a color from among the colors involved in the overlap. It
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is easy to see that the result is an extension of the original PLS. Furthermore, this pro-
cedure yields a (1 − 1/e)-approximation for the partial Latin square extension problem,
the optimization version of the (decision) problem of completing a Latin square.

Theorem 4.1. Randomized rounding based on the packing formulation yields a
(1 − 1/e)-approximation algorithm for the partial Latin square extension problem.

Proof sketch. Let y∗ be an optimal solution to the LP relaxation of the packing for-
mulation. The probability of cell (i, j) being colored by color k is given by x∗

i,j,k =∑
M∈Mk :(i,j)∈M y∗

k,M . So, the probability of a cell not being colored, corresponds to the
probability of a cell not being covered by any matching selected by the randomizing
rounding procedure, i.e.,

∏
k(1 − x∗

ijk). This expression is maximized when all the x∗
ijk

take the same value, i.e., when x∗
ijk = 1/n. Therefore,

∏
k(1 − x∗

i jk) � (1 − 1/n)n �
1/e, and the expected number of uncolored cells is at most Z∗/e, where Z∗ is the op-
timal solution, i.e., the maximum number of holes that can be filled in the problem of
extending the partial Latin square. Therefore, at least (1 − 1/e)Z∗ holes are expected to
be filled by this technique.

Note that if PLS is completable, and hence the linear programming relaxation sat-
isfies the inequality constraints with equality (and hence |M| = n whenever yk,M > 0),
then the expected number of cells not covered by any matching is is at most h/e; that is,
at least (1−1/e)h holes can expected to be filled by this technique. (See (Gomes, Regis,
and Shmoys, 2003) for details.) �

4.3. Assignment vs. packing formulation

Although the LP relaxation of the packing formulation appears to provide a stronger
lower bound, in fact, the bound is identical to the one given by the LP relaxation of the
assignment formulation. To see this, one needs only the fact that the extreme points of
each polytope

Pk =
{

x:
n∑

i=1

xijk � 1, j = 1, . . . , n,

n∑
j=1

xijk � 1, i = 1, . . . , n, x � 0

}
,

for each k = 1, . . . , n are integer, which is a direct consequence of the Birkhoff–von
Neumann Theorem (von Neumann, 1953). Furthermore, these extreme points corre-
spond to matchings, i.e., a collection of cells that can receive the same color.

Hence, given the optimal solution to the assignment relaxation, if we fix the color k,
and consider the values xijk , since this is a vector in Pk, we can write it as a convex
combination of extreme points, i.e., matchings, and hence obtain a feasible solution to
the packing formulation of the same objective function value. Hence, the optimal value
of the packing relaxation is at most the value of the assignment relaxation, i.e., the
optimal values are equal.

Finally, it is possible to compute the convex combination of the matchings effi-
ciently; one way to view this is as a special case of preemptive open shop scheduling
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and hence one can use a result of (Lawler and Labetoulle, 1978) to produce, in poly-
nomial time, a polynomial number of matchings, along with corresponding multipliers,
which specify the desired convex combination. Hence, the most natural view of the algo-
rithm is to solve the assignment relaxation, compute the decomposition into matchings,
and then perform randomized rounding to compute the partial completion.

5. Hybrid CSP/LP randomized rounding backtrack search

As mentioned in the Introduction, in recent years there has been an increasing interest
in hybrid approaches for combinatorial optimization (see, e.g., (Caseau and Laburthe,
1995; Darby-Dowman et al., 1997; Bockmayr and Kasper, 1998; Hooker et al., 1999;
Focacci, Lodi, and Milano, 2000)). This is especially true for problems characterized
by a mixture of combinatorial and linear constraints. The general approach underlying
hybrid approaches is to combine a constraint programming model with a mixed integer
programming formulation. The two models are linked and domain reductions and/or
infeasibility information discovered in one of the models is passed to the other, and
vice-versa.

Our approach follows the general philosophy of hybrid methods, maintaining two
linked models that share information discovered by the corresponding inference meth-
ods. However, a key difference in our approach is the use of a randomized rounding
LP approximation, with performance guarantees, to go from the relaxed LP solution
to the original problem, and based on that information, set variable/values in the back-
track search procedure. Randomization is a powerful tool, especially when combined
with restart strategies. Our randomized search method increases the robustness of stan-
dard backtrack search and extends the reach of such methods considerably, as we will
demonstrate on our quasigroup (Latin square) completion problem, a pure combinator-
ial problem domain. Our technique is general and therefore should apply to a range of
combinatorial problems.

We now describe our complete randomized backtrack search algorithm, applied to
the quasigroup (Latin square) completion problem.

The algorithm maintains two different formulations of the quasigroup completion
problem: a CSP formulation, as described in section 3.1, and a relaxation of the LP
formulation described in section 3.2. The hybrid nature of the algorithm results from
the combination of strategies for variable and value assignment, based on the LP ap-
proximation and on the CSP formulation, and propagation, based on the two underlying
models.

Algorithm 5.1. Given a problem instance I , a CSP model, an LP model, a pa-
rameter cutoff and a function �(cutoff), and parameters %LP and InterleaveLP:
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Initialization:
Instantiate variables in the CSP model; pre-process the CSP model.
Instantiate the variables in the LP model based on the pre-processed CSP model.
vars ← (number of variables in CSP model after propagation).

Repeat until proving optimality.
cutoff ← (cutoff + �(cutoff)), �(cutoff) � 0.
numVarAssignments ← 0.
Perform backtrack search until proving optimality or cutoff reached:

While numVarAssignments � (%LP × vars/100)):
Select variable/value based on the LP (randomized rounding);
Perform CSP inference; update LP model based on CSP inference.
Update numVarAssignments.
Re-solve LP with frequency according to parameter InterleaveLP;

Select variable/value based on the CSP model;
Perform CSP inference.

The algorithm is initialized by instantiating the variables in the CSP model and pre-
processing the CSP model. In this pre-processing phase inference is performed based
only on the CSP model. In CSP models, inference corresponds to variable domain reduc-
tion and propagation. Variable domain reduction (or filtering) corresponds to removing
values from the variable domains that provably do not belong to an optimal solution. In
the pre-processing phase domain reduction is performed for each constraint and for all
the variables involved in the constraints. Propagation occurs since performing domain
reduction on the variables associated with one constraint can lead to domain reduction
in the domains of other variables, involved in other constraints. When a variable domain
is modified, all the constraints involving this variable are considered for domain reduc-
tion, which leads to the modification of the domains of other variables, which in turn
may involve other constraints, and so on, until reaching a fixed point. The CSP model
is implemented in Ilog/Solver (Ilog, 2001b). For the domain reduction/propagation of
the ALLDIFF constraint we use the extended version provided by (Ilog, 2001b) (see
(Regin, 1994) for details on the ALLDIFF constraint). The updated domain values of
the variables in the CSP model (after the pre-processing phase) are then used to instan-
tiate the variables in the LP model. We solve the LP model using Ilog/Cplex Barrier
(Ilog, 2001a).

As we will see from our experiments below, the LP provides valuable search guid-
ance and pruning information for the CSP search. However, since solving the LP model
is relatively expensive compared to the inference steps in the CSP model, we have to
carefully manage the time spent on solving the LP model. The LP effort is controlled by
two parameters, as explained below.

In the initial phase of the backtrack search procedure, corresponding to the “top”
of the search tree, variable and value selection are based on the LP approximation. After
each variable/value assignment based on the LP randomized approximation, full prop-
agation is performed on the CSP model. The percentage of variables set in this initial
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phase corresponds to the %LP applied to the total number of variables in the original
CSP (after the initial propagation). After this initial phase, variable and value settings
are based purely on the CSP model. Note that deeper down in the search tree, the LP
formulation continues to provide information on variable settings and also on inconsis-
tent tree nodes. However, we have found that, at lower levels of the search tree, the
CSP model can infer inconsistent variable values and detect general inconsistency much
more efficiently than solving the relaxation of the LP. In other words, solving the LP
relaxation is not cost-effective at the lower levels of the search tree since the same, or
even higher, level of pruning information can be obtained by using only CSP pruning
techniques, that are less expensive than solving the LP relaxation.

Ideally, in order to increase the accuracy of the variable assignments based on the
LP-rounding approximation, one would like to update and re-solve the LP model after
each variable setting. However, in practice, this is too expensive. We therefore introduce
a parameter, Interleave-LP, which determines the frequency with which the LP model is
updated and re-solved. In our experiments, we found that updating the LP model after
every five variable settings (Interleave-LP = 5) is a good compromise.

In the search guided by the CSP model, we use a variant of the Brelaz heuris-
tic (Brelaz, 1979; Gomes and Selman, 1997) for the variable and value selections. The
Brelaz heuristic is a popular extension of the First-fail heuristic, which was originally
introduced for graph coloring procedures. In the First-fail heuristic, the next variable
to branch on is the one with the smallest remaining domain, i.e., the search procedure
chooses to branch on the variable with the fewest possible options left to explore, there-
fore leading to the smallest branching factor. In case of ties, the standard approach is to
break ties using lexicographical order. The Brelaz heuristic specifies a way for break-
ing ties in the First-fail rule: If two variables have equally small remaining domains,
the Brelaz heuristic chooses the variable that shares constraints with the largest number
of the remaining unassigned variables. We used a natural variation on this tie-breaking
rule, what we called “the reverse-Brelaz” heuristic, in which preference is given to the
variable that shares constraints with the smallest number of unassigned variables. Any
remaining ties after the reverse-Brelaz heuristic are resolved randomly.

Backtracking can occur as a result of an inconsistency detected either by the CSP
model or the LP relaxation. It is interesting to note that backtracking based on inconsis-
tencies detected by the LP model occurs rather frequently at the top of our search tree.
This means that the LP does indeed uncover global information not easily obtained via
CSP propagation, which is a more local inference process. Of course, as noted before,
lower down in the search tree, using the LP for pruning becomes ineffective since CSP
propagation can uncover the same information with only a few additional backtracks.

In this setting, we are effectively using the LP as heuristic guidance, using a ran-
domized rounding approach inspired by the rounding schemes used in approximation
algorithms. For the empirical results reported in this paper we used the LP rounding
strategy directly based on the assignment formulation.5 We first rank the variables ac-
cording to their LP values (i.e., variables with LP values closest to 1 are ranked near the
top). We then select the highest ranked variable and set its value to 1 (i.e., set the color
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of the corresponding cell) with a probability p given by its LP value. With probability
1 − p, we randomly select a color for the cell from the colors still allowed according
to the CSP model. After each variable setting, we perform CSP propagation. The CSP
propagation will set some of the variables on our ranked variable list. We then con-
sider the next highest ranked variable that is not yet assigned. A total of Interleave-LP
variables is assigned this way, before we update and re-solve the LP.

Finally, we use a cutoff parameter to control our backtrack search. As mentioned
in section 2, backtrack search methods are characterized by heavy-tailed behavior. That
is, a backtrack search is quite likely to encounter extremely long runs. To avoid getting
stuck in such unproductive runs, we use a cutoff parameter. This parameter defines the
number of backtracks after which the search is restarted, at the beginning of the search
tree, with a different random seed. Note that in order to maintain the completeness of the
algorithm we just have to increase the cutoff, according to some non-negative function,
�(cutoff). In practice, we increase the cutoff linearly every certain number of restarts. In
the limit, we run the algorithm without a cutoff. Restart strategies have also been shown
very powerful to boost performance of complete methods for Boolean Satisfiability (see,
e.g., (Moskewicz et al., 2001; Baptista, Lynce, and Marques-Silva, 2001)).

6. Empirical results

To investigate our hypothesis that the LP-based approximation can provide useful search
guidance, we focused our empirical evaluation on solvable instances. To do so, we
used a variant of the QCP problem, in which we generate instances for which we are
guaranteed that a solution exists. To obtain such instances, we start with a randomly
generated complete Latin square and uncolor a fraction of cells (randomly selected).
The random complete Latin square is generated using a Markov chain Monte Carlo
shuffling process (Jacobson and Matthews, 1996). The task again is to find a coloring
for the empty cells that completes the Latin square. We refer to this problem as the
“quasigroup with holes” (QWH) problem.6 We can again finely tune the complexity
of the completion task by varying the fraction of the uncolored cells (Achlioptas et al.,
2000).

In figure 6, we compare the performance of our hybrid CSP/LP strategy against
the pure CSP strategy. For the hybrid CSP/LP strategy we set %LP = 10 and
Interleave-LP = 5. Each data point was obtained by running the randomized search
procedures on 100 different instances, with a cutoff of 106, and computing the median
in number of backtracks (upper panel) and total runtime (lower panel). From the figure,
we again see the easy-hard-easy pattern, both in the hybrid CSP/LP and the pure CSP
strategy. Moreover, the hybrid CSP/LP strategy significantly outperforms the pure CSP
strategy, both in terms of the number of backtracks and total runtime. The relative payoff
of our hybrid strategy is largest for the hardest problem instances (about 33.6% holes).

We now consider more detailed performance data on three hard problem instances.
In table 1 we show the performance of the CSP/LP strategy and the pure CSP strategy
on an instance of order 35 with 405 holes (33% holes). (This instance is medium hard
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Figure 6. Median runtime (secs) for QWH instances, in the critically constrained area (order 35; 100
instances per data point).

– somewhat before the phase transition region.) The pure CSP strategy can solve this
instance using a high cutoff of 106, but only in 6% of the runs. On the other hand, the
CSP/LP strategy is much more effective. In fact, even with only %LP = 1, we can solve
the instance in 42% of the runs. With %LP � 10, we solve the instance on each run.
Looking at the overall runtime as a function of %LP, we see that at some point further
use of LP relaxations becomes counterproductive. The best performance is obtained
with %LP about 20.
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Table 1
Hybrid CSP/LP search on an instance of order 35 with 405 holes.

%LP Cutoff Num. % succ. Median Median
runs runs backtracks time

0 106 100 6% 474049 1312.58
1 106 100 42% 589438 1992.08
5 106 100 90% 188582 615.16

10 106 100 100% 26209 114.35
15 106 100 100% 22615 116.29
20 106 100 100% 17203 112.64
25 106 100 100% 21489 158.07
30 106 100 100% 24139 179.37
50 106 100 100% 19325 262.67
75 106 100 100% 17458 379.68

Table 2
Instance of order 40, with 528 holes.

%LP Cutoff Num. % succ. Median Median
runs runs backtracks time

0 105 100 0% N.A. N.A.
10 105 100 1% 48387 245.54
25 105 100 37% 17382 215.69
50 105 100 47% 21643 422.59
0 106 100 0% N.A. N.A.

10 106 100 8% 355362 1488.08
25 106 100 64% 123739 574.68
50 106 100 65.3% 128306 757.55

In tables 2 and 3, we consider, respectively, a critically constrained instance of
QWH of order 40, with 528 holes, and a medium constrained instance of QWH of order
40, with 544 holes. We were unable to solve these instances with a pure CSP strategy
using a cutoff of 105 (100 runs) and a cutoff of 106 (100 runs). Both instances can
be solved with the hybrid CSP/LP strategy. From the median overall runtime, we see
that the best performance is obtained for %LP about 20–25. For example, in the case
of the instance of order 35 with 405 holes, the median time for solution decreases as
we increase the value of %LP, achieving the best performance for %LP = 20. For
%LP > 20, the median time increases. In the case of the instances of order 40 (528 holes
and 544 holes) the best performance is achieved when %LP = 25.

We note that pure integer programming based methods perform very poorly on this
highly combinatorial domain, in comparison with CSP methods. In fact, hard instances
of QCP/QWH are out of reach of a pure integer programming strategy (i.e., no inter-
leaved CSP propagation): the pruning power provided by the CSP component is critical
in this highly combinatorial domain. Our hybrid method further extends the range of



APPROXIMATIONS AND RANDOMIZATION TO BOOST CSP TECHNIQUES 137

Table 3
Instance of order 40, with 544 holes.

%LP Cutoff Num. % succ. Median Median
runs runs backtracks time

0 105 100 0% N.A. N.A.
10 105 100 1% 41771 264.96
25 105 100 34% 31386 287.72
50 105 100 38% 13266 395.31
0 106 100 0% N.A. N.A.

10 106 100 5% 167897 813.58
25 106 100 53% 110787 560.56
50 106 100 92% 75234 648.87

QCP/QWH problems we can solve with CSP based methods. The hybrid method is
particularly suitable for hard instances, out of reach of the pure CSP strategy. In fact,
for instances that are easily solved by the pure CSP strategy, the hybrid strategy is less
efficient than the pure CSP strategy. The payoff of our hybrid strategy is largest for hard
problem instances, out of reach of the pure CSP strategy, The hybrid strategy allows us
to improve on the time performance of the pure CSP strategy and reliably solve larger
instances, out of reach of the pure CSP strategy, up to order 40–45. We also solved sev-
eral hard instances of order 50. On our very hardest problem, we had to increase %LP
to about 50%. So, apparently, more guidance was required from the LP relaxation.

7. Conclusions

We have demonstrated the use of approximations and randomization to boost CSP meth-
ods on hard purely combinatorial problems. Our approach involves an LP-based ran-
domized rounding strategy inspired by recent rounding methods used in approximation
algorithms. In this setting, the LP randomized rounding provides powerful guidance in
the CSP search. Randomization and restarts in the backtrack process are needed to make
the overall strategy robust and to recover from possible early branching mistakes. Essen-
tial to our approach is a tight coupling of a CSP and a LP model of the problem, that we
simultaneously maintain. The local nature and high efficiency of the CSP propagation
methods enable us to call such methods frequently. In particular, CSP propagation is
performed after each variable assignment. By frequently updating and resolving the LP
model, our LP-based approximation rounding decisions stay accurate during the search
process. The continuous interleaving of CSP propagation and LP guidance using a ran-
domized rounding approximation are key features of our approach. Also, we carefully
control the amount of time spent in solving the LP relaxations, by restricting this process
to the top of the backtrack search tree and not solving the LP at every node of the search
tree.

In experiments, we were able to significantly extend the reach of CSP and LP tech-
niques for solving instances of the quasigroup (Latin square) completion problem. Our
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technique is general and therefore holds promise for a range of combinatorial problems.
We believe there is still room for further improvement. For example, using different CSP
formulations and LP-based approximations. Furthermore, we believe that our analysis
of the packing formulation is, most likely, not tight. A possible avenue for improvement
is by means of a primal–dual approach. We hope this work provides researchers in the
Constraint Programming and Operations Research communities with new insights about
the power of randomization and approximation algorithms for boosting performance of
complete backtrack search methods.
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Notes

1. The designation of quasigroup completion problem was inspired by the work done by the theorem prov-
ing community on the study of quasigroups as highly structured combinatorial problems. For example,
the question of the existence and non-existence of certain quasigroups with intricate mathematical prop-
erties gives rise to some of the most challenging search problems (Slaney, Fujita, and Stickel, 1995). For
simplicity, in the remaining of the paper, we will use quasigroup and Latin square and partial quasigroup
completion problem and partial Latin square completion problem interchangeably.

2. Note that the ratio of pre-assigned cells corresponds to the complement of the ratio of holes.
3. Note that we use the median instead of the average to characterize the computational cost due to the fact

that the mean is not stable when computed over different ensembles of instances. This aspect will be
made clearer below.

4. In fact, the computational cost of any complete backtrack algorithm has a finite upper-bound. However,
because the upper-bound is exponential in the size of the problem, from a computational point of view
it can be treated as infinite in the probabilistic model.

5. We are currently implementing the strategy that maps the assignment formulation onto the packing
formulation, as described in section 4.3, as well as a column generation approach for the packing for-
mulation. It is not clear whether such approaches will improve considerably upon the results obtained
using the LP rounding strategy directly based on the assignment formulation.

6. The code for this generator is available by contacting Carla Gomes (gomes@cs.cornell.edu).
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