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Abstract. We introduce a new approach for focusing constraint rea-
soning using so-called streamlining constraints. Such constraints parti-
tion the solution space to drive the search first towards a small and
structured combinatorial subspace. The streamlining constraints capture
regularities observed in a subset of the solutions to smaller problem in-
stances. We demonstrate the effectiveness of our approach by solving a
number of hard combinatorial design problems. Our experiments show
that streamlining scales significantly beyond previous approaches.
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1 Introduction

In recent years there has been tremendous progress in the design of ever more
efficient constraint-based reasoning methods. Backtrack search, the underlying
solution method of complete solvers, has been enhanced with a range of tech-
niques. Current state-of-the-art complete solvers use a combination of strong
search heuristics, highly specialized constraint propagators, symmetry breaking
strategies, non-chronological backtracking, nogood learning, and randomization
and restarts.

In this paper, we propose a novel reasoning strategy based on streamlining
constraints. This work has been inspired by our desire to solve very hard problems
from combinatorial design. Combinatorial design is a large and active research
area where one studies combinatorial objects with a series of sophisticated global
properties [5]. For many combinatorial design problems it is not known whether
the combinatorial objects under consideration even exist. As a concrete example,
we have been studying an application in statistical experimental design. The
application involves the design of experiments in such a way that the outcomes
are minimally correlated. Mathematically, the task can be formulated as the
problem of generating totally spatially balanced Latin squares. To give the reader
a feel for the intricacy of the global constraints of this problem, we first give a
brief description.

? This work was supported in part by the Intelligent Information Systems Institute,
Cornell University (AFOSR grant F49620-01-1-0076).



A Latin square of order N is an N by N matrix, where each cell has one of
N symbols, such that each symbol occurs exactly once in each row and column.
(Each symbol corresponds to a “treatment” in experimental design.) In a given
row, we define the distance between two symbols by the difference between the
column indices of the cells in which the symbols occur. Note that each symbol
occurs exactly once in each row. So, in a given row, all possible pairs of symbols
occur, and for each pair of symbols, we have a well-defined distance between the
symbols. For each pair of symbols, we define the total distance over the Latin
square as the sum of the distances between the symbols over all rows. A totally
spatially balanced Latin square is now defined as a Latin square in which all pairs
of symbols have the same total distance [9]. Given the complexity of the total
balancing constraint, finding spatially balanced Latin squares is computationally
very hard, and, in fact, the very existence of spatially-balanced Latin squares
for all but the smallest values of N is an open question in combinatorics.

We performed a series of experiments with both a highly tailored local
search method and a state-of-the-art constraint programming approach (ILOG
implementation using AllDiff constraints, symmetry breaking, randomization,
restarts, and other enhancements). Both our local search method and our CSP-
based method could find solutions only up to size N = 9. Using the approach
introduced in this paper, called streamlining, we can solve considerably larger
instances, namely up to size N = 18. This is a significant advance given the size
of the search space and the complexity of the constraints. To the best of our
knowledge, no other method can solve instances of this size.

We will discuss a similar advance in terms of generating diagonally ordered
Magic Squares [11, 18]. A Magic Square of order N is an N by N matrix with
entries from 1 to N2, such that the sum of the entries in each column, row, and
the main diagonals is the same. In a diagonally ordered Magic Square the entries
on the main diagonals are strictly ordered. By using streamlined constraints, we
could boost the performance of a CSP-based method from N = 8 to order
N = 19. Again, we do not know of any other CSP approach that can handle
instances of this size. It is worth noting though, that local search approaches
perform very well for the magic square problem [4].

The key idea underlying “streamlining constraints” is to dramatically boost
the effectiveness of the propagation mechanisms. In the standard use of propa-
gation methods there is a hard limit placed on their effectiveness because it is
required that no feasible solutions are eliminated during propagation: Streamlin-
ing is a somewhat radical departure from this idea, since we explicitly partition
the solution and search space into sections with different global properties. For
example, in searching for totally balanced Latin squares, one can start by search-
ing for solutions that are symmetric. We will extend this idea much further by
introducing a range of more sophisticated streamlining properties — such as
composability — that are well-aligned with our propagation mechanisms, and
allow us to scale up solutions dramatically.

Our approach was inspired by the observations that for certain combinatorial
design problems there are constructive methods for generating a solution. Such



solutions contain an incredible amount of structure.1 Our conjecture is that for
many other intricate combinatorial problems — if solutions exists — there will
often also be highly regular ones. Of course, we do not know the full details of
the regularities in advance. The properties we introduce using the streamlining
constraints capture regularities at a high-level. In effect, search and propagation
is used to fill in the remaining necessary detail.

By imposing additional structural properties in advance we are steering the
search first towards a small and highly structured area of the search space.
Since our streamlining constraints express properties consistent with solutions of
smaller problem instances, we expect these subspaces to still contain solutions.
Moreover, by selecting properties that match well with advanced propagation
techniques, while allowing for compact representations, our propagation becomes
much more effective with the added constraints. In fact, there appears to be a
clear limit to the effectiveness of constraint propagation when one insists on
maintaining all solutions. The reason for this is that the set of all solutions of a
combinatorial problem often does not have a compact representation, neither in
theory nor in practice. For example, in the area of Boolean satisfiability testing,
it has been found that binary decision diagrams (BDDs), which, in effect, provide
an encoding of all satisfying assignments, often grow exponentially large even
on moderate size problem instances. So, there may be a hard practical limit on
the effectiveness of constraint propagation methods, if one insists on maintaining
the full solution set. Streamlining constraints provide an effective mechanism to
circumvent this problem.

The paper is organized as follows: In the next section, we introduce the idea
of streamlining constraints. In section 3, we present our streamlining results for
the diagonally ordered magic squares. In section 4, we discuss a streamlining
approach for totally spatially balanced Latin squares. Finally, we conclude in
Section 5.

2 Streamlining

In streamlining, we partition the search space of a problem P into disjoint sub-
problems with respect to a specific set (S) of solution properties that are com-
putationally interesting: Sub-problem P1 that corresponds to problem P with
the additional constraint that S holds; and sub-problem P2, the complement of
the sub-problem P1, with respect to the property S. Since the addition of the
constraints enforcing S shapes the problem in a favorable way, we name them

1 Note that such constructions are far from “straightforward”. For example, the great
Euler extensively studied Latin squares and considered a special case, so-called or-
thogonal Latin squares (OLS). He conjectured that there did not exist solution for
orthogonal Latin squares for an infinite number of orders. It took more than a cen-
tury until a construction for all orders (except 2 and 6 for which it was proven that
no solution exists [14]) was developed [3]. Until today, for the mutually orthogonal
Latin square problem (MOLS), which is a generalization of OLS, no construction is
known — despite the valiant efforts undertaken by mathematicians in combinatorial
design theory.
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Fig. 1. Streamlining to focus the search on a small, structured part of the search space
with hopefully high solution density.

streamlining constraints (or streamliners) and the resulting sub-problem P1 the
streamlined sub-problem. We can further streamline the resulting sub-problems
by considering additional solution properties (see Fig.1).

In general, the search space for problem P1 will be substantially smaller than
that of its complement P2. However, more importantly, we look for sub-spaces
where our constraint propagation methods are highly effective.

Instead of a description in terms of a partitioning of the solution space, one
can also describe the effect of streamlining constraints directly in terms of search.
For backtrack search, streamlining constraints can be viewed as a strong branch-
ing mechanism, used at high levels of the search tree: Streamlining constraints
steer the search toward portions of the search space for which streamlined prop-
erties hold. As a general global search algorithm, the process can be described as
a tree search in which a node represents a portion of the search space and an arc
represents the splitting of the search space by enforcing a given property. The top
node of the tree represents the entire search space, containing all the solutions
to the given problem instance. At the top level(s) of the search tree, we split
the search space into sub-sets by enforcing streamlining constraints. For a given
node, the branching based on a streamlining constraint originates two nodes:
the left node, the first to be explored by the search procedure, corresponds to a
streamlined sub-problem for which the streamlining constraint is enforced; the
right node corresponds to the complement of the left node with respect to the



parent node and the property enforced by the streamlining constraint. Once the
search reaches a streamlined sub-problem, further branching decisions may be
done based on additional streamlining constraints or using standard branching
strategies. If the portion of the search space that corresponds to the streamlined
sub-problem P1 (resulting from enforcing property S) is searched exhaustively
without finding a solution, backtracking occurs to the node that is the comple-
ment of the streamlined sub-problem, i.e., P2, for which property S does not
hold.

The selection of streamlining constraints is based on the identification of
properties of the solution space. Note that we can view redundant constraints as
a particular case of streamlining constraints, in which the streamlining property
considered holds for all the solutions. However, redundant constraints, while
effective since they eliminate portions of the search space that do not contain any
solution, are a very conservative example of streamlining constraint reasoning:
they do not partition the solution space. In general, streamlining constraints do
partition the solution space into disjoints subsets.

The goal of streamlined reasoning is to focus the search on a subspace that is
relatively small, highly structured, and that has a good probability of containing
a solution. In our current approach, we manually analyze the set of solutions of
small problem instances and try to identify properties that hold for a good part of
the solutions — without necessarily holding for all the solutions — but that will
structure and reduce the remaining search space in this branch considerably.
For example, in the case of the problem of generating totally balanced Latin
squares, we observed that for instances of small orders, several of the solutions
were highly symmetric. So, our streamlining constraint steers the search toward
a region of symmetric totally balanced Latin squares. An exciting direction for
future work is to develop statistical methods to automatically generate potential
streamlining constraints from the solutions of small example instances.

In the selection of streamlining properties there are several tradeoffs to con-
sider that emerge from the conflicting goals of increasing solution density, re-
ducing the search space drastically, and enforcing a structure that can easily
be checked: On the one hand, it would be desirable to select properties that
hold for most of the solutions (or even for all the solutions, as in redundant
constraints) to ensure that many solutions are in the streamlined subproblem.
However, the aim to preserve a larger part of the solutions will usually con-
flict with the goal of structuring and significantly reducing the remaining search
space. As we will see later in the paper, more aggressive streamlining strategies,
based on selecting properties that hold only for a very small subset of solutions,
can in fact be much more effective in steering the search toward a solution in a
drastically reduced search space. Another aspect that is important to consider is
how well a streamlining constraint propagates: good candidates for streamlining
constraints should propagate easily. Finally, we consider the power of a stream-
lining constraints based on the compactness of the representation of the induced
streamlined subproblem. For example, for the problem of totally balanced Latin
squares, by choosing a very strong streamliner, we go from a representation that



requires N2 variables to a much more compact representation that requires only
N variables.

3 Streamlining Diagonally Ordered Magic Squares

To provide a first illustration of our streamlining approach, we consider the
problem of constructing a special class of magic squares. In the next section, we
consider the more practically relevant, but also more complex, case of construct-
ing spatially balanced Latin squares.

Definition 1. Diagonally Ordered Magic Squares (DOMS)

Given a natural number n, let us set S = n(n2+1)
2 .

– A square M = (mij)1≤i,j≤n with n2 pairwise disjoint entries 1 ≤ mij ≤ n2

is called a magic square of order n iff
1. For all rows, the sum of all entries in that row adds up to S, i.e.∑

j mij = S for all 1 ≤ i ≤ n.
2. For all columns, the sum of all entries in that column adds up to S, i.e.∑

i mij = S for all 1 ≤ j ≤ n.
3. The sum of all entries in each of the two main diagonals adds up to S,

i.e.
∑

i mii = S and
∑

i mn+1−i,i = S.
– A magic square is called diagonally ordered iff both main diagonals, when

traversed from left to right, have strictly increasing values, i.e. mii < mi+1,i+1

and mn+1−i,i < mn−i,i+1 for all 1 ≤ i < n.
– Given a natural number n, the Diagonally Ordered Magic Squares Problem

(DOMS) consists in the construction of a diagonally ordered magic square.

While there exist polynomial-time construction methods for standard magic
squares, i.e. without the diagonality constraints, no such construction is know
for DOMS. We start out by using a standard constraint programming model,
similar to the one used [10]. For details, see the experimental section below. Our
experiments show that even small instances are already quite difficult. In partic-
ular, we did not find any solutions for order nine or higher. By studying solutions
of small order, we found that, for a large number of solutions, the largest entries
(n2 − n, . . . , n2) and the smallest entries (1, . . . , n) are fairly evenly distributed
over the square — which makes perfect sense, since one cannot have too many
large or too many small numbers clustered together in one row or column (see
Fig.3). The question arises: how could one formalize this observation?

Given a DOMS M of order n, let us define L = (lij) with lij = b(mi,j −
1)/nc+ 1. In effect, we associate the numbers kn + 1, . . . , (k + 1)n with symbol
k ∈ [1, . . . , n]. If no two numbers of any interval [kn + 1, . . . , (k + 1)n] occur
in the same row or column of M , one can expect that the numbers are quite
evenly distributed over the square, which is exactly what we need to do in a
magic square.2 And if this is the case, then L is a Latin square. Now, in order

2 Note that other, less balanced, solutions do exists. However, the whole idea of stream-
lining is to focus in on a well-structured subset of the solution space.



(M) (D) (L)
6 9 3 16 * 2 3 1 4
12 7 13 2 * 3 2 4 1
15 4 10 5 * 4 1 3 2
1 14 8 11 * 1 4 2 3

Fig. 2. Structure of solutions: Square M shows a typical diagonally ordered magic
square of order 4. In D, we can see how the n largest numbers are distributed very
nicely over the square. By associating symbol 1 with numbers 1, . . . , 4, symbol 2 with
numbers 5, . . . , 8, symbol 3 with numbers 9, . . . , 12 and finally symbol 4 with numbers
13, . . . , 16, we get the square L. We observe: L is a Latin square!

to boost our search, we use “Latin squareness” as a streamliner: By adding the
corresponding constraints on the first level of our backtrack search, we focus on
squares that are hiding a Latin square structure.3

Although we observed Latin square structure in many solutions of diagonally
ordered magic squares of small orders, it is of course not guaranteed that there
exist such magic squares for all orders. However, given that the number of magic
squares grows quite rapidly with the order, it appears likely that magic squares
with hidden Latin square structure exist for all orders. Moreover, we also do not
know in advance whether the additional constraints will actually facilitate the
search for magic squares. However, as we will see below, our empirical results
show that the constraints dramatically boost our ability to find higher order
magic squares.

3.1 Experimental Results

For our base constraint programming model, we used an approach similar to the
one described in [10]. Each entry of the square is represented by a variable taking
values in {1, . . . , n2}. We add an All-Different constraint [12] on all variables and
also add the sum-constraints and diagonal constraints as given by Definition 1.
For the branching variable selection, we use a randomized min-domain strategy
with restarts.

In the streamlined approach, we also need to provide a structure for the hid-
den Latin square structure. We add the usual variables and constraints, combined
with a dual model defined by the column conjugate.4 Channeling constraints be-
tween the Latin square structure and the magic square are of the form:

mij > (k − 1)n ⇔ lij ≥ k ∀ 1 ≤ k ≤ n
mij ≤ kn ⇔ lij ≤ k ∀ 1 ≤ k ≤ n

3 Since these magic squares have such beautiful hidden structure, we informally call
these Dumbledore Squares, in reference of the idea of hiding one magic item within
another, as the Sorcerer’s Stone in the Mirror of Erised [13].

4 The notion of row conjugate is defined in our description of spatially balanced Latin
squares (Section 4).



The Latin square streamliner comes with additional variables, so we have to
take them into account in the subsequent tree search. In the branch of the tree
where we impose the streamliner, we first assign the Latin square variables and
only then search over the original variables. We follow a randomized min-domain
strategy for both types of variables with restarts.

order 3 4 5 6 7 8 9 10

pure 0.01 0.01 0.03 1.19 5.05 5391 — —
streamlined 0.03 0.03 0.03 0.11 0.12 0.42 0.55 0.72

Table 1. Solution times in seconds for finding the first diagonally ordered Magic square
using the pure and the streamlined CP approach (— means not solved after 10 hours).

order 11 12 13 14 15 16 17

time 37.67 112 140 3432 7419 28.6K 61K
last fails 1430 2380 5017 6879 8494 1162 11.6K
total cps 24K 47K 59K 726K 1.9M 4.2M 9.1M
restarts 5 9 10 106 222 399 663

Table 2. Detailed results for higher order streamlined Magic squares. We give the
CPU times in seconds that are required to find the first solution, the number of fails
on the final restart, the total number of choice points, and the number of restarts.

Tables 1 and 2 summarize the results of our experimentation. All experiments
in this paper were implemented using ILOG Solver 5.1 and the gnu g++ compiler
version 2.91 and run on an Intel Pentium III 550 MHz CPU and 4.0 GB RAM.

Table 1 shows how the streamlining constraint leads to much smaller solution
times compared to running on only the original set of constraints (two or more
orders of magnitude speedup). We also solve a number instances that were out of
reach before. Table 2 summarizes the statistics on those runs. We can see clearly
that streamlining significantly boosts performance. Since it took a couple of
days to compute them, we do not report details on our experiments with orders
18 and 19 here, but we still want to mention that we were able to compute
Dumbledore Squares (i.e. diagonally ordered magic squares with a hidden Latin
square structure) of those sizes.

4 Streamlining Spatially Balanced Experiment Design

We now discuss an example of streamlining on a combinatorial design prob-
lem of significantly higher practical value. In particular, we consider computing
spatially balanced Latin squares. As mention in the introduction, these special
Latin squares are used in the design of practical agronomics and other treatment
experiments where it is important to minimize overall correlations.



Definition 2. [Latin square and conjugates] Given a natural number n ∈
IN, a Latin square L on n symbols is an n × n matrix in which each of the n
symbols occurs exactly once in each row and in each column. We denote each
element of L by lij, i, j ∈ {1, 2, · · · , n}. n is the order of the Latin square.
[Row (column) conjugate of a given Latin square] Given a Latin square
L of order n, its row (column) conjugate R (C) is also a Latin square of order
n, with symbols, 1, 2, · · · , n. Each element rij (cij) of R (C) corresponds to the
row (column) index of L in which the symbol j occurs in column (row) i.
[Row distance of a pair of symbols] Given a Latin square L, the distance of
a pair of symbols (k, l) in row i, denoted by di(k, l), is the absolute difference of
the column indices in which the symbols k and l appear in row i.
[Average distance of a pair of symbols in a Latin square] Given a
Latin square L, the average distance of a pair of symbols (k, l) in L is d̄(k, l) =∑n

i=1 di(k, l)/n.

It can be shown that for a given Latin square L of order n ∈ IN, the expected
distance of any pair in any row is n+1

3 [16]. Therefore, a square is totally spa-
tially balanced iff every pair of symbols 1 ≤ k < l ≤ n has an average distance
d̄(k, l) = n+1

3 . (Note that in the introduction we slightly simplified our descrip-
tion by considering the total row distance for each pair without dividing by n,
the number of rows.) We define:

Definition 3. [Totally spatially balanced Latin square] Given a natural
number n ∈ IN, a totally spatially balanced Latin square (TBLS) is a Latin
square of order n in which d̄(k, l) = n+1

3 ∀ 1 ≤ k < l ≤ n.

(L) (C) (R)
1 2 3 4 5 1 2 3 4 5 1 5 4 3 2
5 1 2 3 4 2 3 4 5 1 2 1 5 4 3
4 5 1 2 3 3 4 5 1 2 3 2 1 5 4
3 4 5 1 2 4 5 1 2 3 4 3 2 1 5
2 3 4 5 1 5 1 2 3 4 5 4 3 2 1

Fig. 3. A Latin square L, its row conjugate R, and
its column conjugate C. The distance of pair (1, 5)
in row 1 is d1(1, 5) = 4, in row 2 it is d2(1, 5) = 1,
and the average distance for this pair is d̄(1, 5) = 8

5 .

Fig.3 provides an ex-
ample illustrating our
definitions. In [9] we de-
veloped two different ap-
proaches for TBLS, one
based on local search, the
other based on constraint
programming. Neither of
the two pure approaches
is able to compute so-
lutions for orders larger
than 9, and only by using
a specialized composition
technique that works for orders that are multiples of 6, we were able to compute
a solution for orders 12 and 18. We will describe this technique in Section 4.3 as
another example of streamlining.

When working on the CP approach, we first tried to use symmetry breaking
by dominance detection (SBDD [6, 7]) to avoid that equivalent search regions are
investigated multiple times. We were surprised to find that a partially symmetry
breaking initialization of the first row and the first column yielded far better
computation times than our SBDD approach.



We investigated the matter by analyzing the solutions that are found after
the initial setting of the first row and column. We found that most solutions
exhibited a diagonal symmetry. That is, for a large number of solutions (around
50% when fixing the first column and row) it is the case that lij = lji. This gave
rise to the idea to “streamline” our problem by adding the additional constraint
that the solutions we look for should be diagonally symmetric, and then to
analyze the set of solutions found in that manner again.

First, we observed that the computation time in the presence of the addi-
tional constraint went down considerably. When we then analyzed the newly
found set of solutions, we found that all solutions computed were unique in the
following sense: not a single pair of solutions to the diagonally symmetric TBLS
was symmetric to one another. The question arises: Could we use this fact to
streamline our search further?

4.1 Analyzing Solutions to Small TBLS Instances

Before we can formulate the streamlining constraints that evolved out of the
observation that all observed solutions to the diagonally symmetric TBLS are
unique, let us discuss the inherent symmetries of the problem.

Clearly, any permutation of the rows has no effect on the “Latin square-
ness” nor does it affect the spatial balance of the square. The same holds when
renaming the symbols. Thus, applying any combination of row and symbol per-
mutations to a feasible solution yields a (possibly new) square that we call “sym-
metric” to the original one.

Now, by enforcing diagonal symmetry of the squares and initializing both the
first row and the first column with 1, . . . , n, we found that all solutions computed
were self-symmetric. (Note that this is an empirical observations based on small
order instances.) With the term self-symmetric we denote those squares that are
only symmetric to themselves when applying any combination of row and symbol
permutations that preserves the initial setting of the first row and column. In
some sense, one may want to think of these solutions as located on the “symmetry
axis”.

(A) 1 2 3 4 5 (B) (C) (D)

1 2 3 4 5 3 5 2 1 4 1 2 3 4 5 1 2 3 4 5
2 4 5 3 1 ρ1 5 4 1 2 3 4 3 1 5 2 5 1 4 2 3 2 4 5 3 1
3 5 2 1 4 σ 4 3 1 5 2 5 1 4 2 3 2 4 5 3 1 3 5 2 1 4
4 3 1 5 2 ρ2 1 5 2 3 4 2 4 5 3 1 3 5 2 1 4 4 3 1 5 2
5 1 4 2 3 1 2 3 4 5 4 3 1 5 2 5 1 4 2 3

Fig. 4. An example for a self-symmetric solution to diagonally symmetric TBLS. B
denotes the square that evolves out of A by applying row permutation ρ1. C shows the
result after applying the symbol-permutation σ that re-establishes the initial setting of
the first row. Finally, we get D after applying the row permutation ρ2 that re-establishes
the initial setting of the first column. For self-symmetric squares we observe: A=D, no
matter how we choose ρ1.



An example for a self-symmetric square is given in Figure 4. When we start
with solution A and consider a permutation of the rows according to the given
permutation ρ1, we get solution B that is symmetric to A in the sense that B is
totally balanced if and only if A is totally balanced. If we want to ensure that
our solution preserves the pre-assignments in the first row and the first column,
we need to apply unique permutations σ and ρ2 of symbols and columns next.
As a result of this operation, we get square D. For self-symmetric squares, we
have that A=D, no matter how we choose the initial row permutation. Note that
it is actually enough to consider the permutations ρ1 and σ only. We chose to
allow an additional row permutation ρ2 so that ρ1 can be chosen arbitrarily.

For the purpose of streamlining the search for solutions to TBLS, the question
arises what constraints we could post to focus our search on self-symmetric
squares first. For this purpose, we prove a theorem that allows us to judge
easily whether a given square is self-symmetric or not. Let us denote with xi the
permutation of symbols that is defined by row i in some square X. Then:

Theorem 1. A square A that solves the diagonally symmetric TBLS is self-
symmetric iff all permutations defined by A commute with each other, i.e.

ai ◦ aj = aj ◦ ai ∀ 1 ≤ i < j ≤ n,

whereby ai denotes the i-th row of A, n denotes the order of the square and ◦
denotes the composition of permutations.

For the proof of this theorem, we refer to Appendix A. The proof is based
on concepts from permutation group theory. To briefly illustrate the theorem,
consider the totally spatially balanced Latin square A in Fig. 4. Consider, for
example, permutations defined by the second and the third row of A. We obtain
a2 ◦ a3 = 5 1 4 2 3 which equals a3 ◦ a2.

4.2 Experimental Results

Our approach is based on constraint programming and can be sketched as fol-
lows: Every cell of our square is represented by a variable that takes the symbols
as values. We use an All-Different constraint [12] over all cells in the same col-
umn as well as all cells in the same row to ensure the Latin square requirement.
We also keep a dual model in form of the column conjugate that is connected to
the primal model via channeling constraints that were developed for permuta-
tion problems [17]. This formulation is particularly advantageous given that by
having the dual variables at hand it becomes easier to select a “good” branching
variable. In order to enforce the balancedness of the Latin square, we introduce

variables for the values d̄(k, l) and enforce that they are equal to (n+1)
3 .

With respect to the branching variable selection, for Latin square type prob-
lems it has been suggested to use a strategy that minimizes the options both in
terms of the position as well as the value that is chosen. In our problem, how-
ever, we must also be careful that we can detect unbalancedness very early in the



search. Therefore, we traverse the search space symbol by symbol by assigning
a whole column in the column conjugate before moving on to the next symbol.
For a given symbol, we then choose a row in which the chosen symbol has the
fewest possible cells that it can still be assigned to. Finally, we first choose the
cell in the chosen row that belongs to the column in which the symbol has the
fewest possible cells left.

With Theorem 1, we can now easily streamline this approach by guiding our
search towards solutions that are both diagonally symmetric and self-symmetric
Latin squares. Based on our experience with smaller problem instances, we con-
jecture that such solutions will also exist for higher orders. So, following our
streamlining approach, at the first two levels of our tree search, before choosing
the branching variable as described above, we enforce as branching constraints:

1. aij = aji for all 1 ≤ i < j ≤ n, and
2. aiaj = ajai for all 1 ≤ i < j ≤ n.

order 3 5 6 8 9 11 12 14

pure 0.01 0.02 0.06 16.14 241 — — —
streamlined 0.01 0.03 0.05 0.88 0.91 9.84 531 5434

Table 3. Solution times in seconds for finding the first totally spatially balanced Latin
square.

Table 3 shows the effect of streamlining. We can see clearly how the new
method dramatically reduces the runtime, and allows us to solve much larger in-
stances compared to what was possible with the pure model without the stream-
lining constraints. It is worth noting here that, for all instances, we found di-
agonally symmetric, self-symmetric solutions, which provides empirical evidence
that such solutions exist if the problem is solvable at all. An interesting chal-
lenge is to prove this formally. Note, however, that in order to apply streamlining
constraints, one need not have such a guarantee.

4.3 Balanced Square Composition

order 6 12 18
time 0.02 14.36 107K

last fails 1 12K 43K
total cps 2 36K 100M
restarts 0 2 504

Table 4. Results using composition streamlin-
ing. We give CPU times in seconds for finding
the first solution, the number of fails on the
last restart, the total number of choice points,
and the number of restarts.

As mentioned earlier, we have
also developed a composition
technique that builds a bal-
anced square of order 2n us-
ing as a building block a bal-
anced square of order n. This
method is suitable for orders
2n mod 6 = 0. Composition
is an extreme (and elegant)
case of streamlining. Due to
space constraints, we describe
the method only briefly.
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Fig. 5. Illustration of streamlining by composition. A Latin square of order 6 is obtained
using as building block a totally balanced Latin square of order 3 (A, left top corner).
Latin square A is duplicated with its symbols relabeled, producing Latin square B. The
composed Latin square C (order 6) is obtained by selecting entire columns of A and
B, such that C is also a totally balanced Latin square of order 6 with the additional
property that each of its columns is either of type (AT

i , BT
i )T or (BT

i , AT
i )T ( i =

1, 2, or 3). By using composition as a streamliner we obtain a much more compact
representation for our streamlined problem, with only N variables. The domain of each
variable is {A1, A2, A3, B1, B2, B3}, denoting the column that appears in the column i

of the composed Latin square in the top part.

The idea works as follows: Given a totally balanced square A of order n such
that 2n mod 6 = 0, we denote the columns of A by A1, . . . , An. Let us define
a shifted copy of A by setting B = (bij) with bij = aij + n. We denote the
columns of B by B1, . . . , Bn. Now, we would like to compose a solution for order
2n out of two copies of each square A and B, whereby a column Xk in the new
square X = (xij)1≤i,j≤2n is forced to equal either (AT

l , BT
l )T or (BT

l , AT
l )T for

some 1 ≤ l ≤ n. The balancedness constraints are then expressed in terms of the
column indices of A and B. Note how this streamliner reduces the size of our
problem from n2 variables to just n variables. See Fig.5 for an illustration.



Table 4 gives our computational results. We see that with streamlining based
on composition, we find totally spatially balanced Latin squares of order 18.

5 Conclusion

We have introduced a new framework for boosting constraint reasoning based on
streamlining constraints. The idea consists in adding constraints that partition
the set of solutions, thereby focusing the search and propagation mechanism
on a small and structured part of the full combinatorial space. We used hard
combinatorial design problems to demonstrate that this approach can be very
effective. To develop good streamlining constraints, we studied regularities of
solutions of small problem instances. A promising area for future work is to use
statistical methods to try to discover useful solution regularities automatically.
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Appendix A.

Proof (Thm. 1). We use standard permutation group theory for our proof. Denote
with Sn the set of bijective functions π : {1, . . . , n} → {1, . . . , n}. We call the elements
of Sn permutations. It is a well know fact that (Sn, ◦) forms a group, whereby the
operator ◦ : Sn × Sn → Sn denotes the standard composition of permutations, i.e.
(π1 ◦ π2)(j) = π1(π2(j)) for all 1 ≤ j ≤ n (π1 ◦ π2 reads π1 after π2). For simplicity,
when the notation is unambiguous, we leave out the ◦-operator sign and simply write
π1π2 for the composition of two permutations. With id ∈ Sn we denote the identity
defined by id(j) = j for all 1 ≤ j ≤ n. Finally, for all π ∈ Sn, the unique function
φ ∈ Sn with φπ = id = πφ is denoted with π−1. Note that (Sn, ◦) is not abelian, i.e.
in general the elements of the group do not commute.

Now, denote with A,B, C, D the subsequent squares that we get by applying per-
mutations ρ1, σ, and ρ2. Further, let us set s = ρ−1

1 (1) the index of the row that is
permuted into the first position by ρ1. Then, we can identify σ = a−1

s , since by defi-
nition of σ it holds that σas = id. Similar to σ, also ρ2 is already determined by the
choice of ρ1. Since the first column of B, when read as a permutation, is equal to ρ−1

1 ,
it follows that ρ2 = σρ−1

1 = a−1
s ρ−1

1 , which implies ρ−1
2 = ρ1as. Now, let 1 ≤ k ≤ n

denote some arbitrary row index. Then:

1. By definition of B, it holds bk = a
ρ
−1

1
(k)

.

2. By definition of C, we have ck = σbk = a−1
s a

ρ
−1

1
(k)

.

3. For D, it holds that dk = c
ρ
−1

2
(k)

= cρ1as(k).

Equipped with these three facts, let us now prove the desired equivalence:

“⇒” By using our assumption that A is self-symmetric (i.e. A=D), we have:

ak = dk = cρ1as(k) = a
−1
s a

ρ
−1

1
ρ1as(k)

= a
−1
s aas(k). (1)

Next, we exploit that A is diagonally symmetric (i.e. aij = aji, or, written as
permutations, ai(j) = aj(i)):

asak(j) = aas(k)(j) = aj(as(k)) = ajas(k) ∀ 1 ≤ j ≤ n. (2)

And therefore

asaj(k) = ajas(k) ∀ 1 ≤ j ≤ n. (3)

Note that the above must hold for all 1 ≤ s, j, k ≤ n, since A = D for arbitrary
choices of ρ1. Thus, we have

aiaj = ajai ∀ 1 ≤ i < j ≤ n. (4)

“⇐” Now let us assume a solution A to a diagonally symmetric TBLS has its first row
and column fixed to id (this assumption is important since we will need to use
our three facts again in the following). Let us assume further that A contains only
commuting permutations. By exploiting the diagonal symmetry of A, we have:

asak(j) = asaj(k) = ajas(k) = aj(as(k)) = aas(k)(j) ∀ 1 ≤ k, j ≤ n. (5)

And thus

ak = a
−1
s aas(k) = a

−1
s a

ρ
−1

1
ρ1as(k)

= cρ1as(k) = dk ∀ 1 ≤ k ≤ n. (6)

Consequently, A is a self-symmetric square.
ut


