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Abstract

Previous work on the partial Latin square extension (PLSE) problem resulted in a 2-approximation algorithm based on
the LP relaxation of a three-dimensional assignment IP formulation. We present an e/(e — 1)-approximation algorithm that
is based on the LP relaxation of a packing IP formulation of the PLSE problem.
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1. Problem statement

The problem of completing partial Latin squares
arises in a number of applications, including
conflict-free wavelength routing in wide-area optical
networks [1], statistical designs, and error-correcting
codes [4,5]. A partial Latin square (PLS) of order n
is an n x n array such that each cell is either empty or
contains exactly one of the “colors” 1,...,n, and each
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“color” occurs at most once in any row or column. A
Latin square (LS) of order n is a PLS of order n with
no empty cells. A PLS is said to be completable if one
can color its empty cells to obtain a Latin square. More
generally, one PLS, I, is an extension of another,
I1,, if one can color (some of) IT,’s empty cells to
obtain I1,. The problem of deciding if a given PLS is
completable is NP-complete [3].

In this paper, we consider the problem of finding
an extension of a PLS with the maximum number
of colored cells. Approximation algorithms for this
problem were introduced by Kumar et al. [11], who
gave two results for this problem: they showed that
a natural greedy algorithm is a 3-approximation al-
gorithm (where a p-approximation algorithm is a
polynomial-time algorithm that finds a feasible solu-
tion of objective function value within a factor of p
of the optimum); they then gave a matching-based
2-approximation algorithm that relies on the so-called
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assignment linear programming relaxation of the
problem. We introduce a packing linear program-
ming relaxation for this problem, which turns out
to be equivalent to the assignment linear program-
ming relaxation, and show that a natural randomized
rounding algorithm yields an e/(e — 1)-approximation
algorithm.

2. An alternative integer programming formulation

The most natural integer programming formulation
of our optimization problem is as follows. Given a
PLS II of order n, we introduce a 0-1 variable x;j
for each cell of the array (i, ) and each color k. This
gives rise to the following IP formulation:

n n n
max E E E Xijk

i=1 j=1 k=1

n
s.t. injk <1 foreachjk=1,...,n,
i=1
n
le:,-k <1 foreachik=1,...,n,
j=1

n
g X <1 foreachi,j=1,...,n,
k=1

xijk =1
Xijk S {0, 1}

This is the assignment formulation used in [11].

Instead, observe that each color in a PLS corre-
sponds to a (not necessarily perfect) matching of
the rows and columns of the PLS. (If a color is not
pre-assigned, then it is associated with the empty
matching.) For each color k =1,...,n, let ./#; denote
the set of all matchings of rows and columns that
extend the matching associated with color k. Now,
for each color k and for each M € .#, we introduce
a binary variable yy,. This gives us the following IP
formulation:

max Z Z M| yim
k=1 Me.;

s.t. Z viy =1 foreachk=1,...,n,
Me.

for each i, j, k such that I1;; =k,

foreach i,j,k=1,...,n.

yvim <1 foreachi,j=1,...,n,

n
k=1 Me.ll:(i,j)eM

vim €{0,1} foreachk=1,...,n, M € M.

Note that the size of the packing formulation is
exponential in the order of the PLS. In spite of
this difficulty, one can apply the ellipsoid algorithm
(via its dual) to solve the packing LP relaxation in
polynomial time [10], or apply more specialized LP
techniques designed to give fully polynomial ap-
proximation schemes for such packing-type linear
programs (e.g. [13]), or more likely in practice, to
simply apply column generation techniques (e.g. [2]).
Here, we recall that the LP relaxation of an integer
program is simply the linear program obtained by re-
laxing the integrality constraints on the IP variables.
However, it turns out that the packing LP relaxation
is actually equivalent to the assignment LP relax-
ation. We prove this result in the next theorem using
some ideas from open shop scheduling [12]. Hence,
an easier way to solve the packing LP relaxation is
via the assignment of LP relaxation.

Theorem 1. The packing LP relaxation and the as-
signment LP relaxation are equivalent in the follow-
ing sense: For any feasible solution to the packing LP
relaxation, there is a feasible solution to the assign-
ment LP relaxation with the same objective function
value, and vice versa.

Proof. Suppose y is a feasible solution to the packing
LP relaxation. Define a solution x to the assignment
LP relaxation as follows: For each triple (i, j, k), where
1 <i,j,k<n,let

Xijk = Z Vi - (D)

MEMi,))EM

It is easy to check that x is feasible for the assignment
LP relaxation. Moreover,

i=1 j=1 k=1 k=1 i=1 j=1 Me(i,j)eEM
n
k=1 Me.y
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Conversely, suppose that x is a feasible solution to
the assignment LP relaxation. For each color £, let
X®) be the n by n matrix whose (i, /) entry is Xijk-
Moreover, let D®) = diag(d\",...,d") and E® =

diag(e(lk), . ,eﬁk)) be diagonal matrices such that
n n
k k
df ):1—2)«71‘]‘1( and QE):I—injk.
j=1 i=1

Construct the 2n X 2n matrix

xX® D)
U® = : (2)
E® ( x® )T

Clearly, U®) is a doubly stochastic matrix, and so by
the Birkhoff-von Neumann theorem, U*) is a convex
combination of permutation matrices, i.e.

NG ,

U0 =200+ 20U (3)
for some permutation matrices Ul(k),...,U,(,,/;) and
some strictly positive X(lk), .., 25 satisfying S izk)
= 1. Let Yl(k),..., Y,S,]Z) be the upper left n by n sub-
matrices of Ul(k),...,U,E,IZ), respectively. Note that

each Y,fk) corresponds to a (not necessarily perfect)
matching M,gk) € M. Now define a solution y to the
packing LP relaxation as follows: For each color k&
and for each matching M € %, let

izk) if M :M,fk) for some h=1,...,my,
Yim =

0 otherwise.

It is easy to check that y is a feasible solution to
the packing LP relaxation. Moreover, y satisfies (1),
and hence, y has the same objective function value
as the feasible solution x in the assignment LP relax-
ation. [

Observe that Theorem 1 can also be stated as fol-
lows: The map from the set of feasible solutions of
the packing LP relaxation to the set of feasible solu-
tions of the assignment LP relaxation defined by (1)
is surjective. However, the decomposition of U*) in
(3) is not necessarily unique, and so, the map is not
necessarily a one-to-one correspondence.

Now suppose we are given an optimal solution to
the assignment LP relaxation. In order to obtain an

optimal solution to the packing LP relaxation, we need
an algorithm that can decompose each doubly stochas-
tic matrix U®) k = 1,...,n, in (2) into a convex
combination of permutation matrices. The results of
Gonzalez and Sahni [9] on open shop scheduling show
that this can be accomplished in O(#*) time. We sum-
marize their ideas into the following algorithm.

Input: An n by n doubly stochastic matrix U.

Output: A decomposition U =)', ;U such
that Uy,...,U, are permutation matrices,
ih > 0 Vh and ZZ:I )uh =1.

(1) Let Z={Ry,...,R,} be the set of rows of
U and let ¥ = {Cy,...,C,} be the set of
columns of U.

(2) Set h 1.

(3) While U # 0

(3a) Construct a bipartite graph %) whose
vertex set is ZU% and whose edge set
is g)h = {(Rl‘, Cj) . ljij 7& 0}

(3b) Determine a perfect matching ., in
%,. (It can be shown that a perfect
matching always exists provided U is
not yet the zero matrix.)

(3c) Let Uy, be the permutation matrix that
corresponds to .#; and let
/lh = min U,j

(Ri.CES

(3d) For each edge (R;,C;) € I},
Uij — Uij = Zn.

(3¢) Reset h — h+ 1.
end.

Gonzalez and Sahni [9] used Hall’s theorem on bi-
partite matching to show that a perfect matching will
always be found in each iteration provided U is not yet
the zero matrix. In step (3b), an initial perfect match-
ing can be found in O(r°/?/log n) time by the algorithm
of Feder and Motwani [6]. For each & > 2, a perfect
matching ., in %), can be obtained by simply finding
augmenting paths, using as initial matching the per-
fect matching .#;_, with some edges removed by the
previous step (3d). Note that each augmenting path
can be found in O(n?) time by breadth-first search.
Moreover, the number of entries of U that become 0
(or the number of edges removed in a perfect match-
ing) in each iteration is also the number of augment-
ing paths that are needed to find a perfect matching
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in the next iteration. Since a total of O(n?) augment-
ing paths are needed for the algorithm to terminate, it
follows that the running time of the above algorithm
is O(n*). Of course, this running time is dominated
by the time needed to find an optimal solution to the
assignment LP relaxation.

3. Applying randomized rounding

We now describe an improved approximation algo-
rithm. Let y* be an optimal solution to the packing LP
relaxation. For each color k, we interpret the values
{¥jy tmec.u, as probabilities and select exactly one
matching for color k& according to these probabilities.
Note that this procedure could result in matchings that
overlap. In that case, we proceed as follows: For each
cell where an overlap occurs, we arbitrarily select a
color from among the colors involved in the overlap.
It is easy to see that the result is an extension of the
original PLS.

Theorem 2. Randomized rounding yields an e/(e —
1)-approximation algorithm for the partial Latin
square extension (PLSE) problem.

Proof. Let yj, be an optimal solution to the
LP relaxation of the packing formulation, and
for each pair (i,j) and for each color k, define
¥ = L. * d t ZT"A = Zn xfk.
Xijk ZMGJ/A.:(LJ)GM Yiar> DA S€L z;; k=1"ijk*
We proceed in a manner similar to the approach used
by Goemans and Williamson [7] for the maximum
satisfiability problem. Note that

Pr[cell (i, ) is left uncolored]

n n * n
n— 1 X
:H(l *X;ij) < ( Zkfl tjk>
n
k=1

= l—ﬁn
n s

where the previous inequality follows from the arith-
metic mean—geometric mean inequality. Hence,

ZE\"
Pr[cell (i, ) is colored] > 1 — (1 - :) :

Next, observe that f(x)=1—(1—(x/n))" is a concave
function with f(0)=0and f(1)=1— (1 —(1/n))",

and so it follows that
1 n

f(x)= {1 — (1 — ) ]x, Vx €[0,1].
n

In particular, we obtain

1 n
Pr[cell (i,) is colored] > {1 — (1 — ) } z};

n

1 *
> <1 — e) Zij'

Hence, we find that the expected number of cells that
are colored in the solution found by the algorithm is

n

Z Z Pr[cell (i,) is colored]

i=1 j=I

n n
e—1 N
> =2 05
i=1 j=1
n n n
e—1 N
=220 D i
i=1 j=1 k=1 Meuy
(i, j))EM

n
IS S iy,
e

k=1 Mec.y

e—1 e—1
= e LPopt = T[Popb U (4)

4. Derandomizing the algorithm

It is straightforward to derandomize the above algo-
rithm by the method of conditional expectations. Let
C be the random variable representing the number of
colored cells in a feasible solution to PLSE. Further-
more, for each color k, let A; be the random element
representing the matching selected for color £ in a
feasible solution to PLSE. A derandomized version of
the algorithm is as follows:

Input: An optimal solution y* to the packing
LP relaxation.
Output: A matching M) for each color k.

(1) fork=1ton
(la) define .4} ={M € My : yj,, > 0}
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(1b) compute Cy(M) = E[C|A; = M,,...,
Aj—1 =Mj_1, A =M] for each M € M},
(lc) se;ect M = argmax ¢ -« Cr(M)
end.

Note that we may assume without loss of generality
that the matching selected for color £ does not over-
lap with the matchings M;,..., M;_,. Moreover, the
objective value of the solution obtained by this algo-
rithm (i.e. the actual number of colored cells, including
pre-assignments) is given by E[C|A; = M;,..., A, =
M,].

The conditional expectations in the algorithm are
computed as follows:

Ck(M) = COlOl’ed(Ml,...,Mkfl,M)

Ay <1_ 11 (I—X?},->, (5)
anel i) my r=k-+1
(i, ))EM

where the first term is the number of cells colored by

M,,...,M;_,M (including pre-assignments) and the

expression inside the sum is the conditional probability

that cell (7, /) is colored by one of the colors k+1,...,n

given that A} =M,,..., Ay =My_1, Ay =M.
Observe that for k = 1,...,n, we have

E[C|A; =M,,..., Ay = M;_1]

= Y Pr[4 = MIE[C|A,
Me .y

=Mi,...,Ap_1 =Mj_1, A = M]

< Pr[ A= =M,,...,
> Prid, M](A?g;/(kE[CA, M,
Me My

A1 =M1, Ay ZM])
=E[ClA =M\,..., A1 = My—1, A = My]

Therefore,

e—1

E[C|A, =M,,..., A, =M,] > E[C] > IPop.

5. A stronger objective function for PLSE

From the perspective of computing an opti-
mal solution, a problem that is equivalent to the
one considered here is to find an extension for
the given PLS that maximizes the number of
additional cells that are colored. However, the
two problems are not equivalent from the per-
spective of approximation; a p-approximation al-
gorithm for this augmentation version is also a
p-approximation algorithm for the original ver-
sion of the problem, but not necessarily vice versa.
The earlier approximation guarantees by Kumar et
al. [11] were stated in terms of this stronger aug-
mentation objective function. However, since our
analysis merely computes the expectation cell by
cell, it is easy to see that our algorithm has pre-
cisely the same performance with respect to the
augmentation objective function. Hence, our re-
sult is an improvement over the earlier known
results.

To verify that the analysis holds for the augmenta-
tion version, let M be the pre-assigned partial match-
ing for color &, for each k=1, ..., n. The augmentation
objective is given by

maxz Z |M|J’kM_Z|M/?|

k=1 Mec.y k=1

Let B be the set of empty cells in the given PLS.
Theorem 2 still holds for the augmentation objective
since the proof is the same except that Eq. (4) needs
to be changed to the following:

Z Pr[cell (i,) is colored]
(i.j)EB

e—1 N
= B g Z;

(i,j)EB

n
e—1 N
= 22D vim
j,j)EB k=1 Me.ty
(&) G.j)em

D D S S

k=1 M.y (i,j)eMUB
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n

SIS S ) Mg
e

k=1 Me.y

:% LPoy > % IPyy.

For the derandomized version, C now represents
the number of additional cells colored. Moreover, in
Eq. (5), the first term is now the number of additional
cells colored by My, ..., M;_, M, and the summation
in the second term should be taken over all (i, j) € (B\

MI\USZ) My

6. Future work

Our analysis of the packing LP formulation is, most
likely, not tight. It would be very interesting to show
improved bounds based on this formulation, possi-
bly by means of a primal-dual approach. Finally, it
is interesting to note that a randomized selection rule
(based on the assignment LP relaxation) has recently
been incorporated within the inner workings of a con-
straint programming approach with striking success in
speeding up such an enumerative approach to solving
the decision version of this problem [8].

Acknowledgements
We would like to thank Michel Goemans for

suggesting the equivalence between the packing and
assignment formulations.

References

[1] R.A. Barry, P.A. Hublet, Latin routers, design and implement-
ation, IEEE/OSA J. Lightwave Tech. 11 (1993) 891-899.

[2] V. Chvatal, Linear Programming, W.H. Freeman Company,
San Francisco, 1983.

[3] C.J. Colbourn, The complexity of completing partial Latin
squares, Discrete Appl. Math. 8 (1984) 25-30.

[4] J. Denes, A.D. Keedwell, Latin Squares and their
Applications, Academic Press, Inc., New York, 1974.

[5]J. Denes, A.D. Keedwell (Eds.), Latin squares: New
developments in the theory and applications, Ann. Discrete
Math. 46 (1991).

[6] T. Feder, R. Motwani, Clique partitions, graph compression
and speeding-up algorithms, in: Proceedings of the 23rd
Annual ACM Symposium on the Theory of Computing, New
Orleans, 1991, pp. 122-133.

[71 M.X. Goemans, D.P. Williamson, New 3/4-approximation
algorithms for MAX SAT, SIAM J. Discrete Math. 7 (1994)
656—6066.

[8] C.P. Gomes, D.B. Shmoys, The promise of LP to boost CSP
techniques for combinatorial problems, in: Proceedings of
the Fourth International Workshop on Integration of Al and
OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CP-AI-OR’02), Le Croisic, France,
2002, pp. 291-305.

[9] T. Gonzalez, S. Sahni, Open shop scheduling to minimize
finish time, J. ACM 23 (4) (1976) 665—679.

[10] M. Grétschel, L. Lovasz, A. Schrijver, Geometric Algorithms
and Combinatorial Optimization, Springer, New York, 1993.

[11] S.R. Kumar, A. Russell, R. Sundaram, Approximating Latin
square extensions, Algorithmica 24 (1999) 128-138.

[12] E.L. Lawler, J. Labetoulle, On Preemptive scheduling of
unrelated parallel processors by linear programming, J. ACM
25 (4) (1978) 612-619.

[13] S.A. Plotkin, D.B. Shmoys, E. Tardos, Approximation
algorithms for fractional packing and covering problems,
Math. Oper. Res. 20 (1995) 257-301.



	An improved approximation algorithm for the partial Latin square extension problem
	Problem statement
	An alternative integer programming formulation
	Applying randomized rounding
	Derandomizing the algorithm
	A stronger objective function for PLSE
	Future work
	Acknowledgements
	References


