PROGRAMMING METHODOLOGY
Making a Science Out of an Art

by David Gries and Fred B. Schneider

It doesn’t take too long for an intel-
ligent, scientifically oriented person to
learn to cobble programs together in
FORTRAN, BASIC, or Pascal. Sure,
there are mistakes, but everyone makes
mistakes, so one simply spends the
necessary time debugging. And one gets
better at programming simply by doing
lots of it. So what do they teach about
programming? What is there to it?

This attitude is common and may
even be reasonable for casual pro-
gramming. For any serious program-
ming, however, it invites disaster. A
casual program bears little resemblance
to the system of a thousand to a million
lines of codes that a professional must
be able to write (and read) in concert
with as many as fifty other people. Such
a program must be correct, as simple as
possible, and capable of being readily
understood, modified, and used by
others.

How does one write programs that
satisfy these requirements? That was the
subject of a NATO conference held in

23 Germany in 1968. At the conference the

term software crisis was often heard, for
there was indeed a crisis. The pro-
gramming industry was being asked to
develop larger and more complicated
systems of programs, and they didn’t
have the expertise to do so effectively.
The conference led to world-wide re-
cognition that programming was indeed
a difficult intellectual activity. The term
software engineering was coined there
to denote the collection of technical and
managerial techniques used in the
“software life cycle”—in the planning,
analysis, design, implementation, test-
ing, documentation, distribution, and
maintenance of a programming system—
and research in all these aspects began
in earnest.

A SCIENCE CONCERNED
WITH MENTAL TOOLS
At Cornell, prompted partly by our lack
of understanding of how to teach
programming, we became involved in
the study of methods for developing and
understanding programs, a field that
has become known as programming
methodology.

Programming methodology has been

a central theme in the Cornell de-
partment for fifteen years and has
influenced our work in other areas. For
example, ideas about the process of
program development influence thought
on compiler construction, programming-
language design, structured editors,
debugging tools, “pretty printers”
(which print a program in an indented
format in accordance with the program
structure), and computer verification of
the correctness of a program or, indeed,
of any mathematical proof. These
related areas deal with supplemental
tools used by the programmer; pro-
gramming methodology in its narrowest
sense is more concerned with the mental
tools that are needed.

Research done so far has convinced
us that programming can become a
science, based on the knowledge and
application of principles, rather than an
art, which can be learned simply by
watching and doing. We have dis-
covered that programming at its best is
a mathematical activity, requiring from
the programmer all the taste, elegance,
and desire for simplicity that char-
acterizes mathematicians. Our exper-



ience has greatly influenced how we
teach programming and how we present
algorithms in higher-level courses. So
far, most of the research has dealt with
small programs, but larger ones are
being considered.

In this article we describe some of the
basic ideas involved in programming
methodology. We use only one small
example, but this should be enough to
whet your appetite for more. Toward
the end we present a couple of problems
with the solutions we developed; we
encourage you to try to solve them
before looking at the solutions.

TAMING COMPLEXITY:
THE FIRST NECESSITY
As any programmer will tell you, even a
ten-line program can be complex and
difficult to understand. Think, then, of
the complexity of a ten-thousand-line
program! Somehow, the programmer
must master the complexity, must
prevent it from rearing its ugly head.
The amount of work required to
understand a program must be pro-
portional to its length. This will only be
the case if the program structure and
the interactions between the program
segments are kept simple. And the
longer the program, the more important
it is to keep things simple. Computer
science already has a branch called
computational complexity; in contrast,
we like to call the field of programming
methodology computational simplicity.
How do we achieve simplicity? The
general method is to introduce suitable
notations and use abstraction: various
aspects of a problem are brought to the
fore and others are hidden in the
background to be dealt with later. New
formalisms are developed, along with

notations that allow the expression of
concepts and the manipulation of
formulas in various ways in order to
prove things about them. In essence,
mathematics is used, as in any scientific
field, to master complexity.

In our research we have turned
mostly to formal logic to help us
determine what is meant by correctness
of a program, for without knowing that,
it is difficult to write correct programs.
This has led to definitions of pro-
gramming languages in terms of correct-
ness rather than in terms of how a
program is executed. And from these
mathematical definitions, theories and
principles for developing programs have
arisen.

This does not mean that every
program must be developed and proved
correct in a formal manner. It does
mean, however, that the programmer
with a sound knowledge of the theory
and principles behind program correct-
ness and program development can use
them in an informal manner, relying on
the formalism when it is needed—when
the problems become more complex.

WHAT DOES PROGRAM
CORRECTNESS MEAN?

A program (or a segment of one) is
correct if its execution, begun in any
“reasonable” state, ends in a desired
final state. That is: if its input variables
have proper values, then so will its
output variables.

We describe sets of reasonable or
desired states by true-false statements,
called assertions, about the program
variables. To illustrate, let us suppose
we want a program S to store in an
array the cubes of the first n natural
numbers, where integer value n is at

least 0 and the array is denoted by
b[0..n-1]. (By convention, if n = 0 the
array is assumed to be empty.) For
example, if we execute the program
with n = 4, the resulting array will be
b[0] = 0, B[1] = 1, b[2] = 8, b[3] = 27.
Below, we specify S by giving a
precondition P that describes the set of
possible initial states and a post-
condition R that describes the correspond-
ing final states. In assertion R, the
phrase 0 < i < n means we are interested
only in integers at least 0 and less than
n; for such integers Z, b[i] = 2.

P-n=90
R:(forall i: 0 < i< n:b[i]=#5)

We say that S is correct with respect to
P and R, written as {P} S {R}, if
execution of S begun in a state in which
P is true terminates in a state in which
Ris true. Nothing is said about execution
of S begun in a state in which P is not
true.

HOW CAN CORRECTNESS

BE PROVED?

It is difficult to prove {P} S {R} using
only our operational understanding of
how § is executed. Given some initial
state, we can execute the program by
hand (or let the computer do it) to
determine what the final state is, but to
prove correctness using this approach
we would have to execute the program
once for each possible initial state, and
most of us don’t have time for that! No,
a way must be found that allows us to
deduce correctness without relying on
the notion of execution, and this calls
for a mathematical theory of correct-
ness. For each kind of statement, we
need a definition that gives the pairs of
pre- and post-conditions related by it.
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