
PROGRAMMING METHODOLOGY
Making a Science Out of an Art

by David Gries and Fred B. Schneider
It doesn 't take too long for an intel-
ligent, scientifically oriented person to
learn to cobble programs together in
FORTRAN, BASIC, or Pascal Sure,
there are mistakes, but everyone makes
mistakes, so one simply spends the
necessary time debugging. And one gets
better at programming simply by doing
lots of it. So what do they teach about
programming? What is there to it?

This attitude is common and may
even be reasonable for casual pro-
gramming. For any serious program-
ming, however, it invites disaster. A
casual program bears little resemblance
to the system of a thousand to a million
lines of codes that a professional must
be able to write (and read) in concert
with as many as fifty other people. Such
a program must be correct, as simple as
possible, and capable of being readily
understood, modified, and used by
others.

How does one write programs that
satisfy these requirements? That was the
subject of a NATO conference held in

23 Germany in 1968. At the conference the

term software crisis was often heard, for
there was indeed a crisis. The pro-
gramming industry was being asked to
develop larger and more complicated
systems of programs, and they didn't
have the expertise to do so effectively.
The conference led to world-wide re-
cognition that programming was indeed
a difficult intellectual activity. The term
software engineering was coined there
to denote the collection of technical and
managerial techniques used in the
"software life cycle"—in the planning,
analysis, design, implementation, test-
ing, documentation, distribution, and
maintenance of a programming system—
and research in all these aspects began
in earnest.

A SCIENCE CONCERNED
WITH MENTAL TOOLS
At Cornell, prompted partly by our lack
of understanding of how to teach
programming, we became involved in
the study of methods for developing and
understanding programs, a field that
has become known as programming
methodology.

Programming methodology has been

a central theme in the Cornell de-
partment for fifteen years and has
influenced our work in other areas. For
example, ideas about the process of
program development influence thought
on compiler construction, programming-
language design, structured editors,
debugging tools, "pretty printers"
(which print a program in an indented
format in accordance with the program
structure), and computer verification of
the correctness of a program or, indeed,
of any mathematical proof. These
related areas deal with supplemental
tools used by the programmer; pro-
gramming methodology in its narrowest
sense is more concerned with the mental
tools that are needed.

Research done so far has convinced
us that programming can become a
science, based on the knowledge and
application of principles, rather than an
art, which can be learned simply by
watching and doing. We have dis-
covered that programming at its best is
a mathematical activity, requiring from
the programmer all the taste, elegance,
and desire for simplicity that char-
acterizes mathematicians. Our exper-



ience has greatly influenced how we
teach programming and how we present
algorithms in higher-level courses. So
far, most of the research has dealt with
small programs, but larger ones are
being considered.

In this article we describe some of the
basic ideas involved in programming
methodology. We use only one small
example, but this should be enough to
whet your appetite for more. Toward
the end we present a couple of problems
with the solutions we developed; we
encourage you to try to solve them
before looking at the solutions.

TAMING COMPLEXITY:
THE FIRST NECESSITY
As any programmer will tell you, even a
ten-line program can be complex and
difficult to understand. Think, then, of
the complexity of a ten-thousand-line
program! Somehow, the programmer
must master the complexity, must
prevent it from rearing its ugly head.

The amount of work required to
understand a program must be pro-
portional to its length. This will only be
the case if the program structure and
the interactions between the program
segments are kept simple. And the
longer the program, the more important
it is to keep things simple. Computer
science already has a branch called
computational complexity, in contrast,
we like to call the field of programming
methodology computational simplicity.

How do we achieve simplicity? The
general method is to introduce suitable
notations and use abstraction: various
aspects of a problem are brought to the
fore and others are hidden in the
background to be dealt with later. New
formalisms are developed, along with

notations that allow the expression of
concepts and the manipulation of
formulas in various ways in order to
prove things about them. In essence,
mathematics is used, as in any scientific
field, to master complexity.

In our research we have turned
mostly to formal logic to help us
determine what is meant by correctness
of a program, for without knowing that,
it is difficult to write correct programs.
This has led to definitions of pro-
gramming languages in terms of correct-
ness rather than in terms of how a
program is executed. And from these
mathematical definitions, theories and
principles for developing programs have
arisen.

This does not mean that every
program must be developed and proved
correct in a formal manner. It does
mean, however, that the programmer
with a sound knowledge of the theory
and principles behind program correct-
ness and program development can use
them in an informal manner, relying on
the formalism when it is needed—when
the problems become more complex.

WHAT DOES PROGRAM
CORRECTNESS MEAN?
A program (or a segment of one) is
correct if its execution, begun in any
"reasonable" state, ends in a desired
final state. That is: if its input variables
have proper values, then so will its
output variables.

We describe sets of reasonable or
desired states by true-false statements,
called assertions, about the program
variables. To illustrate, let us suppose
we want a program S to store in an
array the cubes of the first n natural
numbers, where integer value n is at

least 0 and the array is denoted by
b[0..n-l]. (By convention, if n = 0 the
array is assumed to be empty.) For
example, if we execute the program
with n = 4, the resulting array will be
b[0] = 0, b[l] = 1, b[2] = 8, b[3] = 27.
Below, we specify S by giving a
precondition P that describes the set of
possible initial states and a post-
condition R that describes the correspond-
ing final states. In assertion R, the
phrase 0 < i < n means we are interested
only in integers at least 0 and less than
n; for such integers i, b[i] = i3.

P:n>0
R: (for all i: 0 < i < n: b\i\ - P)

We say that S is correct with respect to
P and /?, written as {P} S {R}, if
execution of S begun in a state in which
P is true terminates in a state in which
R is true. Nothing is said about execution
of S begun in a state in which P is not
true.

HOW CAN CORRECTNESS
BE PROVED?
It is difficult to prove {P} S {R} using
only our operational understanding of
how S is executed. Given some initial
state, we can execute the program by
hand (or let the computer do it) to
determine what the final state is, but to
prove correctness using this approach
we would have to execute the program
once for each possible initial state, and
most of us don't have time for that! No,
a way must be found that allows us to
deduce correctness without relying on
the notion of execution, and this calls
for a mathematical theory of correct-
ness. For each kind of statement, we
need a definition that gives the pairs of
pre- and post-conditions related by it. 24



The theory will tell us, for example, that
the following are true about the as-
signments x :- 0 and x :- x + 1 to integer
variable JC:

{OV = 0} JC := 0 {x^y = 0},
{x+1 > 0 } JC := jc+l { J C > 0 } .

(Note that ()• y - 0 is always true, so that
precondition is equivalent to true.
Similarly, the second precondition is
equivalent to JC > 0.)

The possible pre- and post-conditions
for a statement should be related by a
simple syntactic transformation, and
not only by meaning, so that one really
can manipulate statements the way one
does arithmetic or logical statements.
For example, the statement JC := ey

which assigns the value of expression e
to variable JC, is defined by the rule

{Rj!} x := e {R}
(for all assertions R).

In this expression R£ is the assertion
obtained by simultaneously replacing
every occurrence of "JC" in R by *V\
Thus, given that R is to be true after
execution of JC := e, we can determine
easily what has to be true before
execution: R*. We see that this holds
for the two examples given above. For
example, in

{P: 0\y = 0} JC := 0 {R: x\y = 0},

P is the result of substituting 0 for x in
R.

It is rather neat that this simple
notion of textual substitution, which is
a basic concept of mathematical logic,
can be used so simply to define the
assignment statement.

Other statements are defined similarly.
For example, sequencing of two state-

25 ments SO and S\ is defined:

Problem 1
COMPUTING CUBES

Write a program to store the cubes of
the first n natural numbers in array
b[0..n-\]. Use only addition oper-
ations. (See page 26 for a solution.)

Problem 2
THE MAXIMUM-SUM

SEGMENT

Suppose we are given integer array
b[0..n~\] for n > 0. Let 5fJ denote the
sum of the values of segment b[i\.j-\].
(If / =j, the segment is empty and the
sum is 0.) Write a program to store in
variable s the largest sum SQ over all
segments b[i..j~\] of array b[0..n-l].
(See page 27 for a solution.)

U {P} SO {Q} SI { l
then {P} SO; SI {R}
(for any assertions P, Q, and R).

This definition allows us to compute the
precondition for a sequence of assign-
ments simply by beginning with the
postcondition and iteratively working
"backward", using the assignment state-
ment definition. For example, it allows
us to prove that the sequence t := JC; JC .:=
y\ y :- t exchanges the values of
variables x and y. (Below, X and Y
denote the final values of JC and y,
respectively.)

{y = X and x = Y}
t := JC;

{v = X and t = Y}
x :- y\
{x = X and t = Y]

{JC = X and v = Y}

WHAT ABOUT
PROGRAM DEVELOPMENT?
Proving a program correct after it has
been written is difficult. It makes more
sense to develop a program and its
correctness proof hand-in-hand, with
the proof leading the way. When doing
this, it is important to write the program
specification as precisely as possible (in
terms of pre- and post-conditions)
because the specification should drive
program development. To convey this
idea through an example, we will
consider again the problem of writing a
program to store the cubes of the first n
natural numbers in array b[0..n-l], with
the restriction that since exponentiation
and multiplication are expensive, only
additive operations should be used in
the program. Try writing a program for
PROBLEM 1 yourself before looking
at our development on the following
page.

In the event that you have a little
trouble, we should point out that
SOLUTION 1 was developed using
various principles of programming
methodology that have only been out-
lined here. Naturally, you might have
difficulty applying them yourself at this
point. However, any programmer well
versed in the methodology would derive
essentially the same program as the one
in SOLUTION 1 in perhaps twenty
minutes. How did your solution
compare?

We give one more example without
the program development. Try to
develop PROBLEM 2 yourself before
reading our solution on a following
page.

The program for PROBLEM 2 has
an interesting history. Jon Bentley at
Carnegie-Mellon and Bell Laboratories



SOLUTION TO PROBLEM 1

The first step is to specify the program formally by writing
pre-and post-conditions:

Precondition P: 0 < n
Postcondition R: (for all i: 0 < i < n: b[i\ - i3)

Assuming the use of a loop to calculate the elements of array b,
our correctness ideas require writing an assertion that indicates
what is true of b just before and after each iteration of the loop.
To find this assertion, we introduce a fresh variable k (say),
which in this case will be what is often called a "loop counter",
put suitable bounds on it, and replace n in R by k, yielding the
following two assertions PO and PI:

PO: 0 < k < n
PI: (for all /: 0 < i < k: b[i\ = f)

We can make PO and PI true by setting k to 0. Also, when
k - n, R is true. And we write the following program:

fc:=0;
while k ^ n do begin b[k] := k3;

k := k + 1
end

PO and P\ are known as loop invariants, for they are
"invariantly true" before and after each iteration of the loop.
One understands the loop in four steps: (0) show that the loop
invariants are true just before execution of the loop; (1) show
that each iteration leaves them true, so that they are true before
and after each iteration and thus upon loop termination; (2)
show that the desired result R follows from the loop invariants
and the falsity of the loop condition; and (3) show that the loop
terminates.

The process used here to argue about correctness should be
used to argue about the correctness of every nontrivial loop. It
is the programmer's task to annotate each nontrivial loop with
the necessary loop invariants, because they are a necessary part
of understanding the loop. It may seem like a lot of work, but,
we maintain, it is simply formalizing what a programmer does
anyway when reasoning about why a loop works.

We now have a correct program. However, it uses

exponentiation k3. To get rid of it, we simply introduce a fresh
variable x (say) and its definition:

PI: x = k3

With this new loop invariant, we can replace the assignment
b[k] := k3 by b[k] := x. However, PI also depends on k. Before
k is increased by 1, x has to be changed to contain (k + I)3 in
order to maintain the truth of PI. Since

(k + I)3 = k3 + 3*k2 + 3*k+ \

and since x - A:3 just before each iteration, x can be changed to
contain (k + I)3 by executing the assignment

x := x+ 3*k2 + 3*k + 1.

This yields the program

k := 0; x := 0;
while k ¥=• n do begin b[k] := JC;

x := JC + 3«&2 + 3*£+ 1;
k := k + 1

end

The program still contains exponentiation and multiplication.
Repeating (twice) the process that introduced x yields the
program

k :=0; JC := 0; j> := 1; z := 6;
while k ¥" n do begin b[k] :- x;

x := x + y;
y - y + z\
z := z + 6;
k := k + 1

end

where there are five loop invariants:

P0: 0 < k < n
PI: (for all i: 0 < i < k: b[i\ = P)
Fl:x^k3

P3: y - 3*k2 + 3*k + 1
P4: z = 6*k + 6

26



SOLUTION TO PROBLEM 2

The formal specification, using some
notation that should be fairly obvious,

Precondition P: 0 < n
Postcondition R: s -

MAX(iJ: 0 < i <j < n: Sitj)

The program is

k := 0; c := 0; s := 0;
while & # « do begin

c := mfl.v(c + b[kl 0);
5 := wa;c(5, c);
A: := A: + 1

end

The program is understood in a
manner similar to that described for
understanding the cube program, using
the following loop invariants:

P0: 0 < k < n
P\: 5 = MAX(i,j: 0 < i < y < A: S,v)

(i: 0 < i < A: Sa)

discovered that a statistician was using
a program for this problem that re-
quired time proportional to n3 —the
program was actually computing the
sums of all segments of the array.
Several days later, Bentley returned
with an algorithm that required time
proportional to A?2, and later one that
required time nm\og(n). Another statis-
tician then showed Bentley a program,
similar to ours, that required time
proportional only to n. During a visit
to Cornell, Bentley asked us to write a

27 program for his problem. Several of us

who were experienced with the pro-
gramming methodology came up with
the program, independently, in about a
half-hour. (Of course, it took time to
present it as cleanly as SOLUTION 2 is
presented.) We never had to think of
the n2 or nm\og(n) algorithms; the
methodology led us quite directly to the
solution we have shown here.

WHERE TO LEARN MORE
ABOUT PROGRAMMING
Some of the concepts underlying pro-
gramming methodology have found
their way down to undergraduate
courses at Cornell such as CS100 and
CS211, although in an informal manner,
and more will do so as we gain
experience and hone our skills. Pro-
gramming methodology is taught at the
upperclass level in course CS400,
introduced this spring, as well as at the
graduate level; both courses are based
on The Science of Programming, which
was written by Gries in 1981. An
additional graduate course, CS613,
extends the concepts to deal with
concurrency, which arises in operating
systems, networks, and databases, where
various programs are executed simul-
taneously and communicate through
shared data or message-passing.
Schneider is writing a text on the
subject of this course.

Because of the youth of the field,
computer science enjoys the problem
that many research results are incor-
porated quite rapidly into education.
Last year's research problem has moved
into this year's first-year graduate course
and will be in next year's senior-level
course. Our students, even in the early
undergraduate years, are learning about
a relatively new discipine as it develops.

The practicality of theoretical research
is demonstrated every day not only in
advanced computing centers, but in
university classrooms where tomorrow's
practitioners are learning their skills.

David Gries is chairman of the Department
of Computer Science and a specialist in
programming methodology (see the bio-
graphical sketch on page II).

Fred B. Schneider is an associate professor
in the department. A specialist in concurrent
programming, operating systems, and dis-
tributed systems, he has also written another
article in this issue in collaboration with
three of his colleagues (see pages 18 22). He
is on the College Board Committee on
Advanced Placement in Computer Science,
which prepares an examination that reflects
much of what is taught at Cornell in the
introductory courses.




