

 209

Least Privilege and More1

Fred B. Schneider
Cornell University, Ithaca, New York, USA

Introduction

What today is known as the Principle of Least Privilege was described as a design
principle in a paper by Jerry Saltzer and Mike Schroeder [4] first submitted for
publication roughly 30 years ago:

“f) Least privilege: Every program and every user of the system should
operate using the least set of privileges necessary to complete the job.
Primarily, this principle limits the damage that can result from an accident or
error. It also reduces the number of potential interactions among privileged
programs to the minimum for correct operation, so that unintentional,
unwanted, or improper uses of privilege are less likely to occur. Thus, if a
question arises related to misuse of a privilege, the number of programs that
must be audited is minimized. Put another way, if a mechanism can provide
‘firewalls,’ the principle of least privilege provides a rationale for where to
install the firewalls. The military security rule of ‘need-to-know’ is an
example of this principle.”

The power of this principle comes from leaving unspecified how frequently privileges
might change and their granularity. Back in 1972, Roger Needham certainly understood
the value of support for dynamic assignments of privileges, writing [3]:

“Protection regimes are not constant during the life of a process. They may
change as the work proceeds, and in a fully general discussion they should be
allowed to change arbitrarily. Statements would be allowed, for example, to
the effect that certain segments were only accessible if the value standing in a
system microsecond clock were prime. In practice one departs from full
generality, and limits those circumstances which may give rise to a change of
protection regime.”

My own interest in the Principle of Least Privilege developed in connection with devising
security enforcement mechanisms for systems structured in terms of a base and a set of
extensions which augment the functionality of that base. Such extensible systems are
prevalent today in mass-market PC software, where we see new hardware being
accommodated in Microsoft Windows platforms through “plug and play” and we see web

1 Supported in part by AFOSR grant F49620-00-1-0198, Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory Air Force Material Command USAF under Agreement
number F30602-99-1-0533, National Science Foundation Grant 9703470, and ONR Grant N00014-01-1-
0968. The views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of these
organizations or the U.S. Government.

210

browsers—hence, the web itself—supporting new data formats by use of downloaded
“helper apps” that extend a browser’s functionality.

A misbehaving extension Ext has the potential to compromise the base system B it
extends. Examples abound: email containing executable attachments, Microsoft Word
documents bearing hostile macros, and new browser “helper apps” that are a far cry from
being helpful. This situation could be improved if we posit some sort of reference
monitor that intercepts all program actions and, based on privileges held by the issuer of
the action, blocks those that would be disruptive. However, to make this vision a reality,
two technical questions must be solved:

(1) Implementing the reference monitor.

(2) Determining a policy for it to enforce.

Regarding (1), my collaborators and I have elsewhere reported success with program
rewriters to modify an object program before execution, adding tests that effectively in-
line a fine-grained reference monitor [2]. This paper sketches my current thinking on (2).

What policy to enforce?

Least privilege. Policies consistent with the Principle of Least Privilege depend not only
on the code to be executed but also on what job that code is intended to do. For an
extension Ext and some specification ΣExt of a job to be done, we define µPriv(Ext,ΣExt) to
be the policy that grants the minimum privileges needed for execution of Ext to satisfy
ΣExt. (A policy here is a mapping from system histories to sets of privileges.) As an
example, specification ΣExt of a spell-checker extension Ext for a word processor might
specify that misspelled words be flagged in the word processor’s open file F; we would
then expect µPriv(Ext,ΣExt) to be a policy that permits the spell-checker read (but not
write) access to F, read (but not write) access to a file containing a spelling dictionary,
and read/write access to a file containing user-added spellings for local jargon terms.

It is clear how the base system comes to get an extension Ext, but how does it get
µPriv(Ext, ΣExt) for use by its reference monitor? Here are two possible approaches.

(1) The base system could itself compute µPriv(Ext, ΣExt).
(2) The base system could fetch µPriv(Ext, ΣExt) from some site S.

Approach (1) presumes that µPriv(Ext, ΣExt) can be computed—a questionable
supposition. Implicit in computing µPriv(Ext, ΣExt) is establishing that extension Ext
satisfies specification ΣExt, and we know that question cannot be decided for general-
purpose programming and specification languages. There might exist specialized
languages, however, for which µPriv(Ext, ΣExt) could be computed; this is a research
question that bears closer scrutiny. One might start by restricting consideration to
specifications ΣExt that are safety properties, because the language of specifications now
can be restricted to state predicates that hold throughout system execution. The weakest
precondition (wp) predicate transformer might then provide a starting point for defining
µPriv by structural induction on Ext.

Approach (1) also presumes that ΣExt is known. This, too, is a supposition of dubious
practicality. Since extensions are generally downloaded with some expectation of the job
they are intended to do, one might suspect that a high-level, task-oriented specification

 211

ΣExt would be known to the initiator and serve as the impetus for the Ext download. But
employing such a high-level task-oriented specification does not suffice if Ext involves
implementation details that are not obvious for the task and thus have been omitted from
ΣExt. For example, recall the spell-checker extension introduced above, which is specified
in terms of a single file F. This spell-checker actually also involves accessing two other
files (a spelling dictionary and a jargon dictionary) and might in addition even access a
backing-store file perhaps over a local network. Such knowledge of implementation
details is not going to be available to the initiator of an Ext download and, therefore,
would not be included in high-level task-oriented specification ΣExt, though clearly
µPriv(Ext, ΣExt) would need to include privileges for accessing the spelling dictionary, the
jargon dictionary, and the backing-store.

If Ext cannot be deduced locally, then perhaps it could be downloaded and checked?
Unfortunately, this architecture also has problems. The local checking is really a form of
policy review, and policy review is a hard problem whenever the policy being checked is
complicated. A specification ΣExt that involves internal details is going to be complicated
and thus difficult for a human to understand. The alternative to policy review is simply to
trust the source of ΣExt. But, then, why not simply trust the source of Ext to provide a safe
extension and dispense with reference monitoring altogether?

For approach (2) to be workable, either S must be trusted or the base system must itself
have some means to check whether what it has fetched equals µPriv(Ext, ΣExt). The latter
is unworkable for the reasons argued above. Regarding the former, an obvious question is
whether trusting S to provide µPriv(Ext, ΣExt) could be materially different from trusting S
to provide a safe implementation of Ext.

And more. At least for the time being, then, it seems as though obtaining µPriv(Ext, ΣExt)
for use by a reference monitor associated with the base of an extensible system is
infeasible, and an alternative must be sought. So the policies we are now investigating
seek to prevent extensions from subverting a base system or, equivalently, seek to prevent
any extension from violating the assumptions underlying the design and implementation
of that base. Such assumptions include:

• Characteristics of the programming model employed for building the base, such as
properties of underlying system abstractions and language-level abstractions. For
example, the separate address spaces usually accorded to process abstractions bring
guarantees about integrity of storage; and type systems in modern programming
languages, like Java and C#, bring guarantees about how certain variables can be
used.

• Invariants that the base maintains about state. For example, a complicated linked-
list data structure might be characterized by an invariant stating which nodes are
reachable from each other; each routine to manipulate the data structure is then
designed to (i) work correctly if that invariant holds prior to execution and (ii) upon
termination, leave the data structure in a state satisfying the invariant.

Provided these assumptions can be expressed as safety properties—and most can—then
they can be enforced by use of in-lined reference monitoring. Prior to execution, each
extension is rewritten by adding checks that ensure no action the extension performs will
violate any assumption required by the base system.

212

Notice that in this alternative to µPriv(Ext, ΣExt), a single policy is being employed,
independent of extension Ext. The problems of deciding what specification ΣExt to use
with a given extension Ext is thus eliminated. But the use of a single policy for all
extensions implies that the policy being enforced might not be as restrictive as it could be
(thereby admitting attacks) or might be too restrictive (thereby ruling-out execution of
certain extensions). And there is thus some flexibility in formulating a policy for a given
base.

Some final comments

The articulation of abstractions and principles is an important facet of doing research in
computing systems. An implementation is certainly one way to demonstrate the utility of
a new systems abstraction or principle, with system performance a sensible figure of
merit. However, some abstractions are useful even though they cannot be implemented.
Belady’s optimal page replacement policy [1], which involves predicting future memory
references and therefore is unrealizable in practice, is one example. The Principle of
Least Privilege might be another, offering value primarily as a benchmark against which
to compare policies that are being enforced—when compared with µPriv(Ext, ΣExt), a
deployed policy would be considered inferior if it either admits additional attacks or it
excludes certain classes of extensions.

The classical approach to computer security—address space isolation associated with
processes—would seem a good place to start in a comparison of security policies for
extensible systems. It isn’t. The context switches required on modern processors for
communication and synchronization between separate processes make it impractical to
have fine-grained interaction between a base implemented as one process and an
extension as another. Without the possibility of such fine-grained interaction, the set of
functions that can be implemented as extensions becomes quite limited.

But with in-lined reference monitors, different programs can be isolated from each other
without incurring the high cost of context switches. In fact, many forms of fine-grained
access control that are not practical with traditional reference monitors become practical
with in-lined reference monitors. Another concern now confronts us, though: How best
to exploit the flexibility. To make progress here, not only must we learn the art of writing
policies but we must also develop the mathematical tools for analyzing them. Collections
of weak policies are likely to provide workable defenses for broad sets of extensions, for
example. Weak policies might well be easier for humans to understand, too. Exactly how
these advantages trade with the “security” µPriv(Ext, ΣExt) provides is the ultimate
question. For the present, however, it seems that practical protection for extensible
systems is most easily obtained using policies that grant more privileges than would
µPriv(Ext, ΣExt)—the least privilege and more.

Acknowledgments. Helpful comments on a preliminary draft of this paper were
provided by Lorenzo Alvisi, Butler Lampson, Greg Morrisett, Andrew Myers, and Mike
Schroeder.

References

1. BELADY, L.A., ‘A study of replacement algorithms in a virtual storage computer,’
IBM Systems Journal vol. 5, no. 2,1966, pp. 78-101.

 213

2. ERLINGSSON, U. AND SCHNEIDER, F.B., ‘SASI enforcement of security policies: a
retrospective,’ Proceedings of the New Security Paradigms Workshop, Caledon Hills,
Ontario, Canada, September 1999, ACM, pp. 87-95.

3. NEEDHAM, R.M., ‘Protection systems and protection implementations,’ Proc. 1972
Fall Joint Computer Conference, AFIPS Conf. Proc., vol. 41, pt. 1, pp. 571-578.

4. SALTZER, J.H. AND SCHROEDER, M.D., ‘The Protection of information in computer
systems,’ Proceedings of the IEEE, vol. 63, no. 9 (Sept 1975), pp. 1278-1308.

