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Introduction 

What today is known as the Principle of Least Privilege was described as a design 
principle in a paper by Jerry Saltzer and Mike Schroeder [4] first submitted for 
publication roughly 30 years ago: 

“f) Least privilege:  Every program and every user of the system should 
operate using the least set of privileges necessary to complete the job.  
Primarily, this principle limits the damage that can result from an accident or 
error. It also reduces the number of potential interactions among privileged 
programs to the minimum for correct operation, so that unintentional, 
unwanted, or improper uses of privilege are less likely to occur. Thus, if a 
question arises related to misuse of a privilege, the number of programs that 
must be audited is minimized. Put another way, if a mechanism can provide 
‘firewalls,’ the principle of least privilege provides a rationale for where to 
install the firewalls. The military security rule of ‘need-to-know’ is an 
example of this principle.” 
 

The power of this principle comes from leaving unspecified how frequently privileges 
might change and their granularity.  Back in 1972, Roger Needham certainly understood 
the value of support for dynamic assignments of privileges, writing [3]: 

“Protection regimes are not constant during the life of a process. They may 
change as the work proceeds, and in a fully general discussion they should be 
allowed to change arbitrarily.  Statements would be allowed, for example, to 
the effect that certain segments were only accessible if the value standing in a 
system microsecond clock were prime.  In practice one departs from full 
generality, and limits those circumstances which may give rise to a change of 
protection regime.” 

 
My own interest in the Principle of Least Privilege developed in connection with devising 
security enforcement mechanisms for systems structured in terms of a base and a set of 
extensions which augment the functionality of that base.  Such extensible systems are 
prevalent today in mass-market PC software, where we see new hardware being 
accommodated in Microsoft Windows platforms through “plug and play” and we see web 
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browsers—hence, the web itself—supporting new data formats by use of downloaded 
“helper apps” that extend a browser’s functionality. 

A misbehaving extension Ext has the potential to compromise the base system B it 
extends.  Examples abound: email containing executable attachments, Microsoft Word 
documents bearing hostile macros, and new browser “helper apps” that are a far cry from 
being helpful.  This situation could be improved if we posit some sort of reference 
monitor that intercepts all program actions and, based on privileges held by the issuer of 
the action, blocks those that would be disruptive. However, to make this vision a reality, 
two technical questions must be solved: 

(1)  Implementing the reference monitor. 

(2)  Determining a policy for it to enforce. 

Regarding (1), my collaborators and I have elsewhere reported success with program 
rewriters to modify an object program before execution, adding tests that effectively in-
line a fine-grained reference monitor [2].  This paper sketches my current thinking on (2). 

What policy to enforce? 

Least privilege. Policies consistent with the Principle of Least Privilege depend not only 
on the code to be executed but also on what job that code is intended to do.  For an 
extension Ext and some specification ΣExt of a job to be done, we define µPriv(Ext,ΣExt) to 
be the policy that grants the minimum privileges needed for execution of Ext to satisfy 
ΣExt. (A policy here is a mapping from system histories to sets of privileges.)  As an 
example, specification ΣExt of a spell-checker extension Ext for a word processor might 
specify that misspelled words be flagged in the word processor’s open file F; we would 
then expect µPriv(Ext,ΣExt) to be a policy that permits the spell-checker read (but not 
write) access to F, read (but not write) access to a file containing a spelling dictionary, 
and read/write access to a file containing user-added spellings for local jargon terms. 

It is clear how the base system comes to get an extension Ext, but how does it get 
µPriv(Ext, ΣExt) for use by its reference monitor?  Here are two possible approaches. 

(1)  The base system could itself compute µPriv(Ext, ΣExt).   
(2)  The base system could fetch µPriv(Ext, ΣExt) from some site S.   

Approach (1) presumes that µPriv(Ext, ΣExt) can be computed—a questionable 
supposition. Implicit in computing µPriv(Ext, ΣExt) is establishing that extension Ext 
satisfies specification ΣExt, and we know that question cannot be decided for general-
purpose programming and specification languages.  There might exist specialized 
languages, however, for which µPriv(Ext, ΣExt) could be computed; this is a research 
question that bears closer scrutiny.  One might start by restricting consideration to 
specifications ΣExt that are safety properties, because the language of specifications now 
can be restricted to state predicates that hold throughout system execution.  The weakest 
precondition (wp) predicate transformer might then provide a starting point for defining 
µPriv by structural induction on Ext. 

Approach (1) also presumes that ΣExt is known.  This, too, is a supposition of dubious 
practicality.  Since extensions are generally downloaded with some expectation of the job 
they are intended to do, one might suspect that a high-level, task-oriented specification 
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ΣExt would be known to the initiator and serve as the impetus for the Ext download. But 
employing such a high-level task-oriented specification does not suffice if Ext involves 
implementation details that are not obvious for the task and thus have been omitted from 
ΣExt.  For example, recall the spell-checker extension introduced above, which is specified 
in terms of a single file F.  This spell-checker actually also involves accessing two other 
files (a spelling dictionary and a jargon dictionary) and might in addition even access a 
backing-store file perhaps over a local network.  Such knowledge of implementation 
details is not going to be available to the initiator of an Ext download and, therefore, 
would not be included in high-level task-oriented specification ΣExt, though clearly 
µPriv(Ext, ΣExt) would need to include privileges for accessing the spelling dictionary, the 
jargon dictionary, and the backing-store. 

If Ext cannot be deduced locally, then perhaps it could be downloaded and checked?  
Unfortunately, this architecture also has problems.  The local checking is really a form of 
policy review, and policy review is a hard problem whenever the policy being checked is 
complicated.  A specification ΣExt that involves internal details is going to be complicated 
and thus difficult for a human to understand.  The alternative to policy review is simply to 
trust the source of ΣExt.  But, then, why not simply trust the source of Ext to provide a safe 
extension and dispense with reference monitoring altogether? 

For approach (2) to be workable, either S must be trusted or the base system must itself 
have some means to check whether what it has fetched equals µPriv(Ext, ΣExt). The latter 
is unworkable for the reasons argued above.  Regarding the former, an obvious question is 
whether trusting S to provide µPriv(Ext, ΣExt) could be materially different from trusting S 
to provide a safe implementation of Ext.  

And more.  At least for the time being, then, it seems as though obtaining µPriv(Ext, ΣExt) 
for use by a reference monitor associated with the base of an extensible system is 
infeasible, and an alternative must be sought.  So the policies we are now investigating 
seek to prevent extensions from subverting a base system or, equivalently, seek to prevent 
any extension from violating the assumptions underlying the design and implementation 
of that base.  Such assumptions include: 

• Characteristics of the programming model employed for building the base, such as 
properties of underlying system abstractions and language-level abstractions.  For 
example, the separate address spaces usually accorded to process abstractions bring 
guarantees about integrity of storage; and type systems in modern programming 
languages, like Java and C#, bring guarantees about how certain variables can be 
used. 

• Invariants that the base maintains about state.  For example, a complicated linked-
list data structure might be characterized by an invariant stating which nodes are 
reachable from each other; each routine to manipulate the data structure is then 
designed to (i) work correctly if that invariant holds prior to execution and (ii) upon 
termination, leave the data structure in a state satisfying the invariant. 

Provided these assumptions can be expressed as safety properties—and most can—then 
they can be enforced by use of in-lined reference monitoring.  Prior to execution, each 
extension is rewritten by adding checks that ensure no action the extension performs will 
violate any assumption required by the base system.   
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Notice that in this alternative to µPriv(Ext, ΣExt), a single policy is being employed, 
independent of extension Ext.  The problems of deciding what specification ΣExt to use 
with a given extension Ext is thus eliminated.  But the use of a single policy for all 
extensions implies that the policy being enforced might not be as restrictive as it could be 
(thereby admitting attacks) or might be too restrictive (thereby ruling-out execution of 
certain extensions).  And there is thus some flexibility in formulating a policy for a given 
base. 

Some final comments 

The articulation of abstractions and principles is an important facet of doing research in 
computing systems.  An implementation is certainly one way to demonstrate the utility of 
a new systems abstraction or principle, with system performance a sensible figure of 
merit.  However, some abstractions are useful even though they cannot be implemented.  
Belady’s optimal page replacement policy [1], which involves predicting future memory 
references and therefore is unrealizable in practice, is one example.  The Principle of 
Least Privilege might be another, offering value primarily as a benchmark against which 
to compare policies that are being enforced—when compared with µPriv(Ext, ΣExt), a 
deployed policy would be considered inferior if it either admits additional attacks or it 
excludes certain classes of extensions. 

The classical approach to computer security—address space isolation associated with 
processes—would seem a good place to start in a comparison of security policies for 
extensible systems.  It isn’t. The context switches required on modern processors for 
communication and synchronization between separate processes make it impractical to 
have fine-grained interaction between a base implemented as one process and an 
extension as another.  Without the possibility of such fine-grained interaction, the set of 
functions that can be implemented as extensions becomes quite limited. 

But with in-lined reference monitors, different programs can be isolated from each other 
without incurring the high cost of context switches. In fact, many forms of fine-grained 
access control that are not practical with traditional reference monitors become practical 
with in-lined reference monitors.  Another concern now confronts us, though:  How best 
to exploit the flexibility.  To make progress here, not only must we learn the art of writing 
policies but we must also develop the mathematical tools for analyzing them.  Collections 
of weak policies are likely to provide workable defenses for broad sets of extensions, for 
example.  Weak policies might well be easier for humans to understand, too.  Exactly how 
these advantages trade with the “security” µPriv(Ext, ΣExt) provides is the ultimate 
question. For the present, however, it seems that practical protection for extensible 
systems is most easily obtained using policies that grant more privileges than would 
µPriv(Ext, ΣExt)—the least privilege and more. 
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