Credentials-Based Authorization:
Evaluation and Implementation
Abstract of Plenary Lecture

Fred B. Schneider*

Department of Computer Science
Cornell University
Ithaca, New York 14558
U.S.A

fbs@cs.cornell.edu

Nexus is a new operating system that runs on computers equipped with tamper-
proof secure co-processors; it is designed to support the construction of trust-
worthy applications—applications where actions can be attributed with some
measure of confidence and where trust assumptions are explicit. To realize these
goals, Nexus implements

— a novel architecture, which enables the trusted computing base to be rela-
tively small,

— an expressive and flexible framework for making and using attestations about
current and future states of a computation, and

— a high-performance cryptographically-implemented memory-isolation
abstraction.

This talk focuses on how authorization policies are specified and implemented
in Nexus.

We posit a guard for each resource, as has become standard. That guard
receives client requests for access to the resource; it either grants or denies each
request. Nexus innovates in how guards make authorization decisions and in what
information is used. Our approach builds on logics having “says” and “speaks
for” operators, and some surprising technical issues arise (some of which present
opportunities for future research).

In Nexus, authorization decisions can involve a set of credentials that either
accompany the request or that the guard obtains from elsewhere. Each credential
is a statement whose validity can be checked by any principal. An authorization
policy defines a set of requirements satisfied by suitable credentials. Given, for
example, the policy that some file is accessible only to students, a guard would
authorize a read request from Alice only if that guard obtains credentials attest-
ing to Alice being a student: an attribute certificate about Alice’s student status
this semester, signed by a key purporting to speak for a dean; a delegation cer-
tificate asserting that the dean’s key speaks for the dean; a delegation certificate

* Supported in part by AFOSR grant F9550-06-0019, National Science Foundation
Grants 0430161 and CCF-0424422 (TRUST), and a gift from Microsoft Corporation.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 12-{T4] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Credentials-Based Authorization: Evaluation and Implementation 13

signed by the university president’s key asserting that the dean is indeed the
holder of that office; and so on.

The advantage of such credentials-based authorization is that it can decentral-
ize authorization decisions in a way that mirrors an actual authority structure.
Different principals are trusted on different aspects of the over-all authoriza-
tion decision, according to their expertise or access to appropriate information.
Moreover, the existence of suitable credentials at a guard documents the role par-
ticipating principals played in determining each authorization decision outcome
and, therefore, provides an auditable justification for that decision.

In Nexus, as in prior work, every authorization policy is encoded as a formula,
herein called the authorization goal formula, in a logic. Credentials are checked
for validity, and the (sub)set of valid credentials are treated as axioms of a logic.
In the prior work, however, access requests are allowed if and only if the guard
can establish that the authorization goal formula for that request is valid in
all models satisfying the axioms (viz, associated credentials). The guard thus
must implement a theorem prover, a decision procedure, or—if requests must be
accompanied by a proof of the authorization goal formula—a proof checker.

By requiring that an authorization goal formula be valid, guards in the prior
work are limited to implementing monotonic authorization policies. This is a
significant restriction. It rules out many authorization policies that depend on
the system state (which is always changing and might over time change in ways
that invalidate a conjunct). Authorization policies that limit the number of times
a particular resource may be read are an important class of authorization policies
that depend on state. Also, policies that admit revocation become difficult to
specify, hence enforce.

Authorization policies in Nexus need not be monotonic and may depend on
the state. Implementation realities do force us to prohibit certain non-monotonic
authorization polices—in particular, those that include conjuncts asserting the
absence of credentials. First, it is difficult to ascertain whether such a conjunct is
true; a denial of service attack might block the guard from receiving a credential
even though that credential exists. Second, it is difficult to ensure that such a
conjunct remains true short of freezing activity elsewhere in the system.

Nexus guards can support non-monotonic policies because the guard merely
determines whether an authorization goal formula is satisfied[] That is, guards
are evaluators and not validity checkers. Theorem proving is still necessary for
determining the truth-value of certain clauses, because some conjuncts (e.g.,
“A speaks for B”) cannot always be evaluated directly by inspecting a single
credential or the system state. Nexus guards thus do have access to a proof
checker and, when necessary, expect requests to be accompanied by proofs.

The implementation of guards in Nexus involves:

— a means to check whether formulas in the logic are satisfied, which leads to
a (new) operational interpretation of “says” and “speaks for” operators,

! This raises some interesting but not insurmountable issues in connection with the
usual Kripke interpretations of “says” and “speaks for” logics.

14 F.B. Schneider et al.

— trusted ways to make system state available to guards, including a kernel-
supported introspection service that provides a window not only into each
process’s memory but also into various other aspects (e.g., the presence of
channels and the identities of their endpoints) of executing processes,

— ways of representing credentials and conjuncts of authorization goal formulas
as executables rather than only as static certificates, and

— various protocols to freeze aspects of system operation so that an authoriza-
tion goal formula that is found to be true can be forced to remain true as
long as needed by the semantics of the operation whose authorization was
being regulated.

These innovations, supported by examples, form the core of the talk.

Acknowledgment. Nexus is a collaboration involving Cornell Ph.D. students
Oliver Kennedy, Alan Shieh, Kevin Walsh, and Dan Williams; postdoctoral as-
sociate Patrick Reynolds; and faculty E. Giin Sirer and Fred B. Schneider. The
work on credentials-based authorization reported herein is being done jointly
with Kevin Walsh and E. Giin Sirer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

