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Abstract—Hyperproperties generalize ordinary properties by
expressing relations among multiple executions of a system. Self-
composition has been used to reduce verifying that a system
satisfies certain classes of hyperproperties to verifying that a
derived system satisfies an ordinary property. By describing
systems and their properties in the temporal logic TLA, we
use self-composition to handle a larger class of hyperproperties
that includes those we have seen that express security conditions.
TLA tools are used to verify that high-level designs of industrial
systems satisfy properties. Now, they can also verify that those
systems satisfy these hyperproperties. No prior knowledge of
hyperproperties or TLA is assumed.

Index Terms—TLA, hyperproperties, verification

I. INTRODUCTION

A property is a predicate on executions; it is true or false
of an individual execution. Classical verification shows that a
system satisfies a property. A hyperproperty is a predicate on
sets of executions; it is true or false of a set of executions. New
logics and tools have been developed to verify that systems
satisfy certain classes of hyperproperties [3, 5, 6, 9, 12, 15, 18,
30]. We instead use TLA [19], a temporal logic supported by
languages (TLA+ and PlusCal) along with tools that have been
developed and used in industry for two decades. A concluding
discussion section compares our approach to prior work.

We show how to reduce verifying that systems satisfy
a large class of hyperproperties—which we call finitary
hyperproperties—to verifying TLA formulas. We start with a
system described by a TLA formula P and a hyperproperty
expressed by a formula H involving k behaviors. To assert
that the system satisfies H, we give a TLA formula Q ⇒ R
containing k copies of P . Formula Q describes a new system
comprising multiple copies of the system running in parallel, so
Q ⇒ R asserts that this new system satisfies property R. Such
an approach is called self-composition [6] and has been used
before when R does not contain P . Because TLA is expressive
enough to describe systems, we can allow R to contain copies
of P and thereby handle a larger class of hyperproperties.

Such a reduction would be of little interest without a practical
method to represent real systems and to verify the resulting
formulas Q ⇒ R. TLA+ [20] is a language based on TLA
that is used in industry [28] to specify and verify high-level
designs of complex concurrent and distributed software and
hardware systems. Its tools include a model checker and a
proof checker. Those tools were developed for verifying a TLA
formula asserting that a system satisfies a property, including

∗Microsoft Research http://lamport.org
†Computer Science Department, Cornell University, Ithaca, New York.

Email: fbs@cs.cornell.edu . Supported, in part, by AFOSR grant
F9550-19-1-0264, and NSF grant 1642120.

the case of a system implementing a higher-level system. We
show that the tools can also verify a subclass of finitary
hyperproperties called ∀∃ -hyperproperties, which includes
specifications of system security and other examples that
motivate hyperproperty verification in the literature. Accurately
expressing these specifications uses a property of TLA called
stuttering insensitivity in a new way.

In principle, TLA+ can be used to verify descriptions of
systems at any level of abstraction. In practice, TLA+ and
its tools are most useful for verifying high-level designs of
systems—designs at the algorithm level rather than the code
level. Such verification is especially important for concurrent
systems, where it is easy to make algorithmic errors and difficult
to find and correct those errors in the code. Having verified
a high-level design, we would like to know that the property
verified is preserved under refinement to an implementation.
A simple condition ensures this to be the case for ordinary
properties. It had already been observed in the context of
security that hyperproperties need not be preserved under
refinement [27]. We give a new mathematical analysis of when
a refinement does preserve a ∀∃ -hyperproperty.

We assume no knowledge of hyperproperties or TLA.
After some preliminaries, we describe a representation of
hyperproperties in temporal logic. We then introduce RTLA,
a temporal logic similar to TLA but lacking stuttering insen-
sitivity. How hyperproperties are verified is illustrated with
RTLA by verifying that a tiny system satisfies generalized
noninterference (GNI)—a hyperproperty chosen to illustrate
most of the issues that arise with our approach. Another small
example shows that stuttering insensitivity is required to state
GNI properly. We then introduce TLA and sketch a TLA
verification that both small examples satisfy GNI; a TLA+

formalization is available on the Web [22]. TLA+ has already
been used [4] to prove that a model of a commercial system
satisfies a hyperproperty called observational determinism, but
that proof required recording the execution history using an
auxiliary variable. Section VII describes that work and shows
how our method allows a direct proof that the system satisfies
the hyperproperty, with no auxiliary variables. In Section VIII,
we formulate other well-known security hyperproperties in
TLA.

II. PRELIMINARIES

An execution is often modeled as a sequence of states. Even
in methods that describe executions in terms of events, a system
is usually described by a state machine in which events are
generated by state transitions—examples are Mealy machines,
Büchi automata, and I/O automata [23]. Such a description

http://lamport.org


corresponds to a state-based one, where events correspond to
state changes.

A. Behaviors and State Machines

We call a sequence of states a behavior, and we call a pair of
consecutive states in a behavior a step. Behaviors representing
executions have usually been described by state machines,
written in diverse ways such as Turing machines, Petri nets, and
C++ programs. A state machine can be described by an initial
predicate I on states and a next-state predicate N on pairs
of states. (The set of states need not be finite.) The behaviors
generated by the state machine are ones in which predicate I
is true on the first state of the sequence and predicate N is
true on every step.

A concurrent system can be described by a state machine
in which each step represents operations performed by one or
more processes at the same time. (Usually, when describing
asynchronous systems, each step represents an operation of
a single process.) The state machine representing an asyn-
chronous system is generally nondeterministic, allowing a state
to have multiple next states.

We consider state machines whose states are assignments
of values to variables. For example, we can describe an hour-
minute clock by a state containing variables hr and min that
represent the hour and minute, respectively. We write this state
machine’s initial predicate as a formula containing the variables
hr and min . For a 12-hour clock that reads 12:00 when first
plugged in, the initial predicate is:

Ihm
∆
= (min = 0) ∧ (hr = 12)

The clock’s next-state predicate N is a formula containing
unprimed and primed variables, where v represents the value
of variable v in the first state and v ′ represents its value in the
second state. For the hour-minute clock, the next-state predicate
is:

Nhm
∆
= min ′ = (min + 1) mod 60

∧ hr ′ = IF min = 59
THEN IF hr = 12 THEN 1

ELSE hr + 1
ELSE hr

B. Properties

Since we represent executions as behaviors, a property is a
predicate on behaviors. We write b |= P to mean that property
P is true of behavior b. For a set S of behaviors, we let
S |= P mean that b |= P is true for all b ∈ S . Verification
traditionally establishes that all behaviors of a state machine
that corresponds to a system satisfy some property P , which
means verifying S |= P where S is the set of all behaviors
generated by the machine. For example, termination can be
expressed as S |= Term , where b |= Term is true iff (if and
only if) b reaches a terminating state.

There is a natural correspondence between subsets of a set
and predicates on the elements of that set. A predicate P on
a set U corresponds to the subset of all elements of U for

which P is true. Thus, a property corresponds to a set of
behaviors.1 We consider a property both to be a predicate on
behaviors and the set of behaviors satisfying that predicate; each
view is at times the more useful. Propositional logic operators
on the predicates correspond to ordinary set operations—for
example, ∨ corresponds to ∪ (set union), ⇒ (implication)
corresponds to ⊆ (subset), ≡ (equivalence) corresponds to =,
and ¬ corresponds to set complement.

If we identify the property P with the set of behaviors
satisfying P , then S |= P means that S ⊆ P is valid. If we
regard the set S of behaviors to be a property, then S |= P
means that b |= (S ⇒ P) is true for all behaviors b. For a
property Q , let |= Q mean that Q is true for all behaviors, so
S |= P is equivalent to |= (S ⇒ P). Verification traditionally
has been formulated as showing S |= P rather than |= (S ⇒ P)
because state machines and properties were written and thought
of in different ways.

C. Making State Machines Do Something

In our description of a state machine, the next-state predicate
specifies only what steps are allowed. It says nothing about what
steps must occur. This omission was deliberate. For reasons
irrelevant to this paper, we want the initial predicate and next-
state predicate to allow behaviors that end at any point—even
though the next-state predicate allows further steps. To require
that certain steps must occur, we add to the description a
supplementary property that must also be satisfied by behaviors
of the state machine. For example, the supplementary property
of the state machine describing a concurrent system might
require that steps representing operations performed by a
non-terminated process keep occurring in the behavior. The
supplementary property is generally a liveness property [2],
and most often a fairness property [16]. However, here we
make no assumption about supplementary properties.

III. HYPERPROPERTIES

A. Hyperproperties as Predicates on Sets of Behaviors

Properties cannot directly describe certain security condi-
tions [27], so they were generalized to hyperproperties [10]. A
hyperproperty is a predicate on sets of behaviors rather than
on a single behavior, making it a predicate on properties. An
example is the hyperproperty H where, for a property P , we
define H(P) to be true iff:

Any two terminating behaviors satisfying P that have
different initial values of x have different terminal
values of y .

Viewing a property P to be a set of behaviors, we define H to
be a finitary hyperproperty iffH(P) can be written as a formula
using propositional logic operators and quantification of the
form ∀ b ∈ P with predicates F (b1, . . . , bn) that depend only

1We do not require states to form a set, so behaviors form a class—a
collection that may be “too big” to be a set. (For example, the class of all
sets is not a set.) We informally use the term set because it is more familiar
than class.



on the behaviors bi and not on P .2 (Since negation is allowed,
we can also write quantification of the form ∃ b ∈ P .)

B. Hyperproperties as Predicates on Behaviors

By a standard result in predicate logic, it is always pos-
sible to “move all the quantifiers to the outside” (renaming
bound variables, if necessary) in the definition of a finitary
hyperproperty H and rewrite H(P) as

∀∃ b1 ∈ P : . . . ∀∃ bk ∈ P : J (b1, . . . , bk ) (1)

where each ∀∃ is either ∀ or ∃ , and J does not depend on P .
Verifying that a property P satisfies the hyperproperty H means
verifying formula (1). Verifying that P satisfies a property is
the special case:

∀ b ∈ P : J (b) (2)

Methods developed over the past half century for verifying
(2) (when P is described by a state machine) are not directly
applicable to (1).

Our goal is to find a way to apply methods for verifying
(2)—that is, verifying ordinary properties—to finitary hyper-
properties. Self-composition has been used for the special
case in which every quantifier ∀∃ of (1) is the universal
quantifier ∀ [6, 15, 30]. In that case, we let Pk be the state
machine defined by running k copies of the state machine P in
parallel, where a possible state of Pk is a k -tuple of possible
states of P . We can then write (1) as

∀ b ∈ Pk : J (π1(b), . . . , πk (b)) (3)

where πi is the element-by-element projection that maps from
a sequence of k -tuples to the sequence of their i th components.
Formula (3) has the same form as (2).

We will generalize this approach to the class we call ∀∃ -
hyperproperties—those with definitions of the form:

∀ b1 ∈ P : . . . ∀ bj ∈ P :
K (b1, . . . , bj ) ⇒

∃ bj+1 ∈ P : . . . ∃ bk ∈ P : L(b1, . . . , bk )

(4)

The methods we use might generalize further, but (4) is the most
general form for which we know that a practical approach for
verifying ordinary properties can be directly applied. Moreover,
all published finitary hyperproperties that we have found are
of this form.

Formula (4) views P as a set of behaviors. We now rewrite
it with P viewed as a predicate on behaviors. We replace
“∀ b ∈ P :” by “∀ b :P(b)⇒ ” and replace “ ∃ b ∈ P :” by
“ ∃ b :P(b)∧ ”. Doing that and applying a bit of predicate logic,
(4) becomes:

∀ b1, . . . , bj : P(b1) ∧ . . . ∧ P(bj ) ∧K (b1, . . . , bj )
⇒ ∃ bj+1, . . . , bk :

P(bj+1) ∧ . . . ∧ P(bk ) ∧ L(b1, . . . , bk )

(5)

2The only non-finitary hyperpropertiesH we know for which it is interesting
to verify thatH(P) holds involve the probability of system P doing something.
Those hyperproperties require a probability measure on P .

In this formula, P , K , and L are predicates on behaviors. We
will write them in a state-based temporal logic. The value of
a variable in such a logic describes part of the system state
at some instant of time. Therefore, we must assume that the
dependence of P , K , and L on any behavior bi is formulated
using only a finite number of variables that describe the system
state. Such an assumption seems necessary for using a state-
based logic to describe properties or hyperproperties.

C. Hyperproperties as Temporal Logic Formulas

We use a linear-time temporal logic, so the meaning of a
formula is a predicate on behaviors. Temporal formulas are
obtained from state predicates by applying temporal operators
and the ordinary operators of predicate logic. For example,
state predicate x > y is true on a state iff the value of x in
that state is greater than the value of y in that state. Interpreted
as a temporal formula, it is true of a behavior iff it is true in
the first state of that behavior. The temporal operator 2 (read
always or henceforth) is defined by letting b |= 2F be true
iff c |= F is true for c equal to b and all suffixes of b. Thus,
b |= 2(x > y) is true iff x > y is true for all states of b.

In temporal logic, variables can have different values
in different states of a behavior,3 just like variables in a
programming language. We assume that our temporal logic has
the usual temporal existential quantifier ∃∃∃∃∃∃ over variables [24],
where b |= ∃∃∃∃∃∃ x :F asserts that there exists a behavior b̂ that is
the same as b, except that the values of x in the states of b̂ and
b may differ, such that b̂ |= F is true. Unlike formula ∃ x :F
of ordinary predicate logic, which is true iff there exists a
single value for x that makes F true, the temporal operator
∃∃∃∃∃∃ x :F is true for a behavior iff there exists a sequence of
values for x , one for each state of the behavior, that make F
true. The quantifier ∃∃∃∃∃∃ obeys all the rules that the quantifier ∃
of predicate logic does.

Formulas ∃∃∃∃∃∃ x :F (x ) and ∃∃∃∃∃∃ y :F (y) say nothing about the
values actually assumed by the variables x and y in a behavior.
The symbols x and y in these formulas are called bound
variables. It can be useful to think of ∃∃∃∃∃∃ x :F (x ) as the formula
obtained by “hiding” variable x of F (x ), and we sometimes
use the term hidden variables for bound variables. Unbound
variables are called free variables.

We now rewrite (5) as a temporal logic formula. Formula (5)
refers to k behaviors bi . A temporal logic formula can refer
only to a single behavior, which we call b. So, we encode the
k behaviors bi in b. As assumed above, (5) depends only on
the values that the states of the behaviors bi assign to some
variables. Call those variables v1, . . . , vn . We now also assume
that formula P can then be written as a temporal logic formula
P̃ containing only those variables. To write (5) as a temporal
formula about a single behavior b, we replace P(bi) in (5)
with the formula obtained from P̃ by substituting new variables
for v1, . . . , vn — a different set of variables for each i .

3What we call variables here are usually called flexible variables. Temporal
logic also has rigid variables whose values are the same in all states of a
behavior, but they will not concern us.



We need a notation for the formula obtained from P̃ by
substituting new variables x 1, . . . , xn for v1, . . . , vn . Existing
notations for writing this formula are cumbersome. So, we
introduce some new notation that is informal, but whose
meaning should be clear. We write the formula produced by
the substitution as P̃(x 1, . . . , xn). Moreover, we let x be an
abbreviation for x 1, . . . , xn , so we can write the formula as
P̃(x); and we do the same for other boldface identifiers. We
also let xi denote the list x i,1, . . . , x i,n of variables.

To write (5) as a temporal formula, which is a predicate on
behaviors b, we replace each P(bi) by P̃(xi). The values that
b assigns to the variables xi are thus interpreted as the values
that the behavior bi assigns to the variables v1, . . . , vn . We also
assume that K (b1, . . . , bj ) and L(b1, . . . , bk ) can be written
as temporal logic formulas K̃ (x1, . . . ,xj) and L̃(x1, . . . ,xk).
We can then write (5) as

|= P̃(x1) ∧ . . . ∧ P̃(xj) ∧ K̃ (x1, . . . ,xj)
⇒ ∃∃∃∃∃∃xj+1, . . . ,xk :

P̃(xj+1) ∧ . . . ∧ P̃(xk) ∧ L̃(x1, . . . ,xk)

(6)

because |= F asserts that F is true for all behaviors. For
convenience, we drop the “˜” and let P identify both the
temporal formula P̃ and the predicate on behaviors that it
represents, and we do the same for K and L, so (6) becomes:

|= P(x1) ∧ . . . ∧ P(xj) ∧K (x1, . . . ,xj)

⇒ ∃∃∃∃∃∃xj+1, . . . ,xk :
P(xj+1) ∧ . . . ∧ P(xk) ∧ L(x1, . . . ,xk)

(7)

This formula asserts that the system described by the temporal
logic formula P satisfies the hyperproperty defined by (5).
Thus, if the predicates P , K , and L on behaviors can be
written as temporal logic formulas, then the assertion (5) that
a system satisfies a hyperproperty can also be written as a
temporal logic formula.

D. RTLA

The introduction of temporal logic to verification provided
a formalism for stating and verifying a rich class of properties.
The original logic given by Amir Pnueli [29] had only the
single temporal operator 2, described above. The logic could
not express many properties of interest, so additional temporal
operators were subsequently proposed, including ∃∃∃∃∃∃ (though it
was not widely used). However, attempts to express (the sets
of behaviors generated by) state machines as temporal logic
properties still did not prove to be practical. So temporal logic
verification consisted of proving formulas S |= P , where the
property P was expressed in temporal logic and state machine
S was expressed in some other way—usually as an automaton
or in something like a programming language.

One way TLA differs from other temporal logics is by
building its formulas not from state predicates, but from
predicates on steps (pairs of states). We call these predicates
actions. In TLA, an action is written as a formula containing
primed and unprimed variables, the way we wrote the next-state
predicate Nhm in Section II-A. A state predicate in TLA is just

an action containing no primed variables, so it depends only
on the first state of a state pair. The only temporal operators
in TLA are 2, ∃∃∃∃∃∃ , and operators defined in terms of them.

Instead of explaining TLA directly, we begin with the slightly
simpler logic RTLA. It contains the operators 2 and ∃∃∃∃∃∃ defined
above. An action, interpreted as an RTLA formula, is true of
a behavior iff it is true of the first step of the behavior. So,
the definition of 2 implies that b is a possible behavior of
the state machine described by the initial predicate I and the
next-state predicate N iff b |= I ∧2N is true, since b |= I
asserts that the first state of b satisfies I , and b |= 2N asserts
that the first step of every suffix of b satisfies N . (Every step
of b is the first step of a suffix of b).

A supplementary property asserting that the state machine
must generate some steps is expressed by an RTLA formula,
but we will not explain how. The only supplementary property
we need in this paper is one asserting that the behavior cannot
end in a state in which an N step is possible. It is written
WF(N ).

E. Hiding

It would be impossible to express even rather simple temporal
properties in RTLA without the operator ∃∃∃∃∃∃ . For example,
consider the property that is true of a behavior iff the value of
x cannot equal 1 unless it has previously equaled 42. Since this
property depends only on the value of x , it can contain only the
variable x ; but it can’t be expressed by a formula containing
only x just by using the temporal operator 2. However, it’s
easy to write that property as follows using a (Boolean-valued)
hidden variable y :

∃∃∃∃∃∃ y : (y = (x = 42))

∧ 2((¬y ⇒ (x ′ 6= 1)) ∧ (y ′ = (y ∨ (x = 42))))

This property has the form I ∧2N of a state machine, but
with a hidden variable y . The property is easy to express
without a hidden variable using the temporal operators of
most temporal logics. However, more complicated temporal
properties are easier to understand when written as a state
machine with hidden variables than when written in terms of
those temporal operators.

F. Verification

Traditionally, verification has meant showing S |= P , for
a state machine S and a property P . This can be written in
temporal logic as |= (S ⇒ P) . Properties can be written with
∃∃∃∃∃∃ , so |= (S ⇒ P) can have the form

|= (∃∃∃∃∃∃y : S (x,y)) ⇒ (∃∃∃∃∃∃ z : P(x, z)) (8)

where x are the free variables of S and P , and y and z are
their respective hidden variables. By simple predicate logic,
(8) is equivalent to

|= S (x,y) ⇒ (∃∃∃∃∃∃ z : P(x, z)) (9)

which asserts that, for any behavior satisfying S (x,y), we can
find assignments of values to the variables z in each state of the
behavior that makes P(x, z) true. The value assigned to z in



any state of the behavior might depend on the values assigned
to x and y in all the states of the behavior. Verification of (9)
becomes much simpler if the assignment of values to z in any
state depends only on the values of x and y in that state. Let
a state function be any expression containing constants and
unprimed variables (so a state predicate is a Boolean-valued
state function). Letting n be such that z is z 1, . . . , zn , we
verify (9) by finding state functions f1(x,y), . . . , fn(x,y) that
make this formula true:

|= S (x,y) ⇒ P(x, f(x,y)) (10)

where f is the list f1, . . . , fn of state functions and
P(x, f(x,y)) is the formula obtained from P(x, z) by substi-
tuting fi(x,y) for z i , for each i . The formulas fi(x,y) are
called a refinement mapping [1].

In (10), we are substituting state functions f(x,y) for the
variables z. Substituting a state function f for a variable v in
an RTLA formula includes substituting f ′ for v ′, where the
value of f ′ is the value of f in the next state, so the formula
f ′ is obtained by priming all variables in f .

The validity of (9) does not imply that there exists a
refinement mapping f satisfying (10). However, we can (in
principle) always find such a refinement mapping if we replace
S by an equivalent formula obtained by adding auxiliary
variables to it [1]. Adding auxiliary variables a to S (x,y)
means finding a formula Sa(x,y,a) that is equivalent to
S (x,y) when the variables a are hidden—that is, where
∃∃∃∃∃∃a : Sa(x,y,a) is equivalent to S (x,y) [21]. We can then
verify (9) by verifying:

|= Sa(x,y,a) ⇒ P(x, f(x,y,a))

IV. GNI

Generalized noninterference (GNI) [26] is a hyperproperty
that was proposed as a security condition for systems. We
illustrate our method by showing that two example state
machines satisfy GNI. Notable features of these verifications
are: the refinement mappings for an existentially quantified copy
of P in (7) and the use of stuttering insensitivity to express
GNI in a state-based formalism. Whether GNI is useful is
irrelevant.

GNI and other security conditions are usually stated in a
model where an execution is described as a sequence of events
rather than as a sequence of states. Events are classified as
public, which are visible to all observers, or secret, which are
visible only to privileged observers. GNI is a condition meant
to ensure that a system’s public events provide no information
about its secret events. It asserts that for any two possible
executions, there is a third possible execution having the public
events of the first and the secret events of the second.

We first express GNI in RTLA and then describe a tiny
example state machine that is easily be seen to satisfy GNI.

A. GNI in RTLA

In a state-based formulation of GNI, part of the state is
public and part is secret. We take GNI to mean that observing

public state reveals no information about secret state. Our state-
based assertion that a system satisfies GNI can be written in
the form (5) as follows:

∀ b1, b2 : P(b1) ∧ P(b2) ⇒
∃ b3 : P(b3) ∧ L(b1, b2, b3)

(11)

where P(bi) asserts that bi is a possible behavior of the system,
and L(b1, b2, b3) asserts that the public state of b3 is always
the same as that of b1 and the secret state of b3 is always the
same as that of b2. We translate (11) to temporal logic the way
we translated (5) to (7). To express L(b1, b2, b3) as a temporal
logic formula, we assume that we are given state functions
public and secret that characterize the public and secret state
of the system. These state functions are parameters of the
definition, just like P . The translation of (11) to temporal logic
is then:

|= P(x1) ∧ P(x2)⇒ ∃∃∃∃∃∃x3 : P(x3) ∧ L(x1,x2,x3)

where L(x1,x2,x3)
∆
=

2 ( public(x3) = public(x1)

∧ secret(x3) = secret(x2) )

(12)

Remember that (12) asserts that a temporal logic formula,
which is a predicate on behaviors, is true for every behavior b.
In that formula, the values that b assigns to the variables xi

correspond to behavior bi of (11).

B. System Tiny

System Tiny alternately produces a public output value and
reads a secret input value, where values are elements of a set
Val . The value of the variable in is the last input value read,
and the value of the variable out is the last value output. The
initial values of in and out are arbitrary. The value of the
hidden variable nin determines whether the next step is a Pub
step that produces a public output or a Sec step that reads a
secret input. These steps can produce or read any value in Val .

System Tiny cannot satisfy GNI if a behavior could stop
after taking an arbitrary numbers of steps. This is because
Tiny produces one input value for every output value, so a
behavior can have the public outputs of behavior b1 and the
secret inputs of b2 only if the lengths of b1 and b2 differ by
at most 1. We make Tiny satisfy GNI by requiring that its
executions never stop, which we do by requiring it to satisfy
the liveness condition WF(N ).

RTLA formula P that describes the Tiny state machine is
defined in Figure 1. Also defined there are the state functions
public and secret for which we expect Tiny to satisfy GNI.
Since nin is a hidden variable, it is not part of the actual state
of Tiny , so it makes no sense to consider it either public or
secret.

C. Verifying That Tiny Satisfies GNI

For j in {1, 2, 3}, let Ij , . . . , secret j be the formulas
obtained from the formulas I, . . . , secret defined in Figure 1



I ∆
= in ∈ Val
∧ out ∈ Val
∧ nin = 0

N ∆
= Pub ∨ Sec

where Pub
∆
= nin = 0 ∧ nin ′ = 1
∧ out ′ ∈ Val
∧ in ′ = in

Sec
∆
= nin = 1 ∧ nin ′ = 0
∧ in ′ ∈ Val
∧ out ′ = out

L ∆
= WF(N )

Q
∆
= I ∧ 2N ∧ L

P
∆
= ∃∃∃∃∃∃nin : Q

public
∆
= out

secret
∆
= in

Fig. 1. The RTLA Description of System Tiny.

by substituting new variables inj , out j , ninj for the variables
in , out , nin . With this notation, (12) becomes

|= P1 ∧ P2 ⇒
∃∃∃∃∃∃ in3, out3 :
P3 ∧ 2 ((public3 = public1) ∧ (secret3 = secret2))

(13)

The definition of P in Figure 1 and predicate logic reasoning
shows that (13) is equivalent to

|= Q1 ∧ Q2 ⇒
∃∃∃∃∃∃ in3, out3,nin3 :
Q3 ∧ 2 ((public3 = public1) ∧ (secret3 = secret2))

(14)

Expanding the definitions of Q and L and using the tem-
poral logic tautology 2(F ∧G) ≡ 2F ∧2G , we see that
Q1 ∧Q2 is equivalent to

(I1 ∧ I2) ∧ 2(N 1 ∧N 2) ∧ (WF(N 1) ∧ WF(N 2)) (15)

Formula (14) has the form of (9), and the equivalence of
Q1 ∧Q2 and (15) shows that the left-hand side of the
implication is equivalent to the standard RTLA description
of a state machine. Thus (13) has the form of (9), the kind of
formula that arises in verifying that a state machine satisfies a
temporal property.

As we observed above, we verify (9) by finding an appro-
priate refinement mapping f and verifying (10). The required
refinement mapping should assign to each of the variables of
P3 the following functions of the variables of P1 and P2:

in3 ← in2 out3 ← out1 nin3 ← nin2 (16)

Tiny is a tiny finite-state system, and it should be easy to
verify (14) with a model checker. However, there are no tools
for RTLA. We will see that it is easy to capture the meaning
of (14) in a TLA formula, and that formula is easy to verify
with TLC, the TLA model checker.

V. FROM RTLA TO TLA
A. Stuttering Insensitivity

We have eliminated the distinction between state machines
and properties by representing both with RTLA formulas. The
assertion that a state machine S satisfies a property P is
|= (S ⇒ P). It would seem natural for implementation to be
the same as satisfying a property, so for a state machine S 1

to implement a state machine S 2 would mean this formula is
valid:

|= S 1 ⇒ S 2 (17)

A description of an hour-minute clock should not imply that
the clock has no display showing seconds—or no radio, or no
alarm. So, (17) should be valid even if S 1 describes an hour-
minute-second clock and S 2 describes an hour-minute clock.
An hour-minute clock (that is allowed to stop) is described by
this RTLA formula

Shm
∆
= Ihm ∧ 2Nhm (18)

where Ihm and Nhm are defined in Section II-A. It is
straightforward to modify Shm by adding a variable scd,
which represents seconds, to obtain an RTLA formula Shms

that describes an hour-minute-second clock. For these clock
descriptions, (17) becomes

|= Shms ⇒ Shm (19)

However, (19) is invalid. A behavior satisfying Shms must take
59 steps that change only scd between steps that change min,
but those scd-changing steps are not allowed by Shm.

Formula (19) is invalid because Shm describes an hour-
minute clock only in a universe consisting just of the clock—
or more precisely, a universe described by just the variables
hr and min. Formula Shm does not describe an hour-minute
clock in a universe also containing the variable scd. For that
universe, the description of an hour-minute clock must also
allow steps that leave hr and min unchanged. We should write
a description of the clock that is satisfied by every system that
implements it. Moreover, that description should be appropriate
for a universe containing other systems too—a universe for
which a state consists of an assignment of values to scd and
all other possible variables.

Having a potentially infinite number of variables might seem
strange, but it’s what math does. An equation like x+ y = 3
is not about a universe containing only the variables x and
y. There is no problem combining this equation with one
containing the variable z. Every math formula is about a
universe in which you can always talk about another variable.
So a temporal logic formula containing only the variables hr
and min should not rule out other variables; it should just
make no explicit statement about their values.

The problem with RTLA formula Shm is that it makes an
implicit statement about every possible variable—namely, that
the values of those variables change only when the value of min
changes. In addition to steps satisfying next-state action Nhm,
formula Shm should permit steps that allow other variables, in-
cluding scd , to change but leave hr and min unchanged. Those



additional steps satisfy (hr ′ = hr) ∧ (min ′ = min). Since a
tuple is left unchanged iff its components are left unchanged,
we can write this formula as 〈hr ,min 〉′ = 〈hr ,min 〉 , where
angle brackets 〈 〉 enclose tuples. So, to obtain an RTLA
formula that describes an hour-minute clock and does not
constrain the rest of the universe, we redefine Shm:

Shm
∆
= Ihm ∧ 2(Nhm∨(〈hr ,min 〉′ = 〈hr ,min 〉)) (20)

Formula Shm defined by (20) is stuttering insensitive (SI),
meaning that whether it is satisfied by a behavior is not affected
by adding and/or removing from the behavior steps that leave
its free variables (hr and min) unchanged.

We now define SI more precisely. Two sequences of values
are stuttering-equivalent iff removing all repeated values from
both produces identical sequences. For example, these two
sequences of numbers are stuttering equivalent, since removing
all repeated values from each produces the increasing sequence
of all positive integers:

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, . . .

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, . . .

For any state function f and behavior b, define b|f to be the
sequence of values obtained by evaluating f on the states of
b. Define behaviors b1 and b2 to be f -stuttering equivalent iff
b1|f and b2|f are stuttering equivalent. For Shm , SI means that
for any two behaviors b1 and b2 that are 〈hr ,min 〉-stuttering
equivalent, b1 |= Shm is true iff b2 |= Shm is. In general,
a temporal formula F (x) with free variables x is SI iff, for
any two behaviors b1 and b2 that are 〈x〉-stuttering equivalent,
b1 |= F (x) is equivalent to b2 |= F (x) .

There are many ways to view SI. For our purposes, the best
is to consider a behavior not as representing an execution of a
system, but rather as being a movie film of an execution. Each
frame of the film depicts a state, and the entire film is taken
by a camera that can record at a varying speed, taking more
or fewer frames. The only requirement for the film is that the
state produced by each step during an execution of the system
appears in at least one frame.

A formula is a predicate on behaviors, and we want it to be
an assertion about executions—not about films of executions.
If a system is described by the variables x, then two behaviors
b1 and b2 are films of the same execution iff they are 〈x〉-
stuttering equivalent. Therefore, a formula F (x), which is a
predicate on behaviors, is an assertion about executions and
not just about particular films of executions iff b1 |= F (x)
is equivalent to b2 |= F (x) for any 〈x〉-stuttering equivalent
behaviors b1 and b2—precisely the definition of what it means
for F (x) to be SI.

There is another way to express SI. We introduce a new
temporal operator ∼ on state functions such that b |= (f ∼ g)
is true for a behavior b iff b|f is stuttering equivalent to b|g .
For lists of variables x and y, we abbreviate 〈x〉 ∼ 〈y〉 as
x ∼ y. A temporal formula F (x) is SI iff

|= (x ∼ y)⇒ (F (x) = F (y)) (21)

for lists x and y of variables. The operator ∼ can be defined
in TLA; it is used in expressing hyperproperties.

B. TLA

TLA is obtained by modifying RTLA so that every syntac-
tically correct TLA formula is SI. This requires two changes
to RTLA. Define [A]f to equal A ∨ (f ′ = f ) for an action A
and a state function f . The first change to RTLA is that, in
TLA, primed variables may appear in a temporal formula only
in an action A in a subformula 2[A]f , for some state function
f . Thus (20) is written in TLA as

Shm
∆
= Ihm ∧ 2[Nhm]〈hr ,min 〉 (22)

The second change to RTLA to ensure SI is to the definition
of ∃∃∃∃∃∃ . In TLA, b |= ∃∃∃∃∃∃ y :F (x, y) is defined to be true iff
there exists a behavior b̂ that is 〈x〉-stuttering equivalent to b
such that b̂ |= F is true. (Note that b̂ can be obtained from a
behavior b that is 〈x, y 〉-stuttering equivalent to b by changing
the values that the states of b assign to y .) If Shms is redefined
to be the TLA formula describing an hour-minute-second clock
with the definition analogous to (22), then ∃∃∃∃∃∃ scd : Shms is
equivalent to Shm . With the RTLA definition of ∃∃∃∃∃∃ , formula
∃∃∃∃∃∃ scd : Shms would not be SI because it would be true only
of behaviors that contain at least 59 steps (corresponding to
steps changing scd required by Shms ) that leave hr and min
unchanged between every step that changes min .

Formula Shm defined in (22) allows behaviors ending with
an infinite number of steps that leave hr and min unchanged.
Such a behavior represents an execution in which the clock
has stopped. (As explained in Section II-C, a supplementary
property is needed to ensure that the clock doesn’t stop.) Since
termination can always be represented as a system’s variables
remaining forever unchanged, we do not need finite behaviors.
So, for simplicity, we assume all behaviors are infinite.

VI. GNI REVISITED

A TLA formula is also an RTLA formula; so (12), which
defines what it means for P to satisfy GNI, is a TLA assertion
if P and L are TLA formulas. Although (12) was written for
systems P described in RTLA, we might expect it also to be
suitable for systems described in TLA. It isn’t. In particular,
we would expect Tiny to satisfy GNI, but we will show that
its TLA description (given below) does not satisfy (12). We
then describe a system Little that should satisfy GNI, but even
its RTLA description does not satisfy (12). That example leads
us to replace (12) with a TLA formula that corresponds to the
usual event-based definition of GNI.

A. Tiny in TLA

To describe Tiny in TLA, we replace the definition of Q
in Figure 1 by

Q
∆
= I ∧ 2[N ]〈in,out,nin 〉 ∧ L

Also, the RTLA formula WF(N ) is not SI and must be replaced
in the definition of L by WF〈in,out,nin 〉(N ), whose definition
can be found elsewhere [20].



We now show that the resulting TLA formula P does not
satisfy (12), where each xi is the list ini , out i of variables.
Consider a behavior b in which the variables x1 and x2 assume
sequences s1, s2, . . . and t1, t2, . . . of values that describe two
behaviors b1 and b2 satisfying P . Suppose that these sequences
begin as follows where, for example, Pub(x2) indicates that a
step satisfies Pub(x2,nin) for some values of nin and nin ′.

Pub(x1) Sec(x1) Pub(x1)x1 : s1 s2 s3 s4 . . .

Pub(x2) Sec(x2)x2 : t1 t2 t2 t3 . . .

The lists x1 and x2 of variables represent the values of the
variables in and out in a behavior b that encodes behaviors
b1 and b2. As allowed by the TLA formula P , the values t2
of variables x2 do not change in the second step of behavior
b. Let’s also suppose that each of the Pub steps changes the
value of out , and each of the Sec steps changes the value of
in .

For behavior b to satisfy (12), there must exist values for x3

representing a behavior b3 that satisfies P , where the public
part of the state (the value for out) of x3 comes from x1 and
the secret part (the value for in) comes from x2. But in the
third step of the behavior, the variables of x3 that represent
both in and out change, which is not allowed for a step of a
behavior of Tiny . Therefore, no such x3 exists, and behavior
b does not satisfy (12). So the RTLA definition (12) of P
satisfying GNI is not satisfied for the TLA formula P that
represents Tiny . Our TLA definition of GNI will be satisfied
by the TLA formula P .

B. System Little

Little is like Tiny , except instead of performing one Sec
step between every two Pub steps, Little can perform any
number (including 0). The definition of the Little state machine
is obtained from the Tiny specification of Figure 1 by letting
the Pub action set nin to an arbitrary natural number, and
letting the Sec action be enabled when nin 6= 0 and decrement
nin by 1.

If we made just these changes, then there would be a
problem in the resulting description of Little. A Pub step
that output the same value as in the previous step (a step with
out ′ = out) and set nin to 0 would be leaving all the variables
unchanged. It would represent the system doing nothing—
including producing no output—thus describing a system that
is not allowed to produce the same output value twice in a row
without performing a secret input. (This is not a problem for
Tiny , in which the value of nin changes whenever an output
is produced.) To allow successive Pub steps to output the same
value, we include in out a bit that changes with each Pub
step, so the value of out is a pair 〈v , i 〉 with v in the set Val
and i in {0, 1}. Such a change to the description of Little is
not needed for inputs, since every Sec step changes nin; but
we make the same change to the value of in for consistency.

A TLA formula P that describes system Little is defined
in Figure 2, where ⊕ is the exclusive-or operator, p[2] equals

I ∆
= in ∈ Val × {0}
∧ out ∈ Val × {0}
∧ nin = 0

N ∆
= Pub ∨ Sec

where Pub
∆
= nin = 0 ∧ nin ′ ∈ Nat
∧ out ′ ∈ Val × {out [2]⊕ 1}
∧ in ′ = in

Sec
∆
= nin 6= 0 ∧ nin ′ = nin − 1
∧ in ′ ∈ Val × {in[2]⊕ 1}
∧ out ′ = out

L ∆
= WF〈in,out,nin 〉(N )

Q
∆
= I ∧ 2[N ]〈in,out,nin 〉 ∧ L

P
∆
= ∃∃∃∃∃∃nin : Q

public
∆
= out

secret
∆
= in

Fig. 2. The TLA Description of System Little

the second element of an ordered pair p, and Val × {i} is the
set of ordered pairs 〈v , i 〉 with v in Val .

C. GNI in TLA

It is obvious how to convert Figure 2 to an RTLA description
of Little, but the result would not satisfy the RTLA formula
(12) for essentially the same reason that the TLA description
of Tiny doesn’t. Choose the values of x1 and x2 representing
behaviors b1 and b2 of Little shown here:

Pub(x1) Pub(x1) Sec(x1)x1 : s1 s2 s3 s4 . . .

Pub(x2) Sec(x2) Pub(x2)x2 : t1 t2 t3 t4 . . .

These behaviors are allowed by both the TLA and RTLA
versions of Little. In the second step, the value of out
represented by x1 and the value of in represented by x2

both change, so they both change for their values represented
by x3. But, like Tiny , Little allows no behavior in which
a step changes both in and out , so the required values for
x3, which must describe a behavior b3 of Little , do not exist.
Hence, the RTLA version of Little does not satisfy (12), the
RTLA version of a system satisfying GNI.

A description of Little should not satisfy an RTLA definition
of GNI. Satisfying GNI should imply that observing a system’s
public events provides no information about its secret events.
However, the RTLA specification implies that from behavior
b2 in our example, an observer can see that a secret input
event occurred between the first two public output events,
which is potentially useful information. This information is
observable for the same reason RTLA does not consider a
behavior described by an hour-minute-second clock with the
seconds hidden to be a behavior of an hour-minute clock. That
reason is the implicit assumption that a step is an observable
event, even if the step changes the values of no variables



(perhaps because any step takes an observable amount of time).
With this assumption, from behavior b2 in our example, the
public Pub steps reveal the existence of the secret Sec step.

While it doesn’t satisfy our RTLA definition of GNI, Little
does satisfy the usual event-based definition of GNI. Given any
behaviors b1 and b2 of Little, it’s easy to find a third behavior
b3 that has the Pub events (changes to out) of b1 and the Sec
events (changes to in) of b2. For example, suppose b1 has an
infinite number of Sec events. (The fairness condition L of P
implies only that it must have infinitely many Pub events.) Let
b3 have a sequence of Pub steps that change out the same as
the Pub steps of b1 do, but set nin to 1, so each Pub step
is followed by one Sec step. Let the Sec steps of b3 perform
the same changes to in as the Sec steps of b2. Then b3 is a
behavior of Little having the same Pub events as b1 and the
same Sec events of b2, as required to satisfy event-based GNI.

We now present a TLA formula defining GNI that is a state-
based version that corresponds to the event-based one. We do
so by modifying (12), which is a legal TLA formula if P and
L are, but not the right one. Formula (12) states how behavior
b3 must be obtained by combining behaviors b1 and b2. But
in TLA, a behavior represents a film of a system execution.
GNI is about combining executions, not films.

Whatever we want to express in TLA about system ex-
ecutions must be stated in terms of films of executions—
including how to construct a film b3 from films b1 and b2.
Formally, a film is a behavior. The way to make GNI be
about combining executions is to construct behavior b3 not by
combining behaviors b1 and b2, but by combining behaviors
b̂1 and b̂2 of our choice that describe the same executions as
b1 and b2.

To translate this idea from behaviors to formulas, consider the
formula P(x1) in (12). A behavior b satisfies this formula iff
the values that b assigns to variables x1 constitute a behavior
in which the system described by P is satisfied when its
variables are renamed to x1. Moreover, values b assigns to
other variables x̂1 constitute a behavior of the same execution
as the values b assigns to variables x1 iff b|〈x1〉 equals b|〈x̂1〉,
which is equivalent to the condition b |= x1 ∼ x̂1. To obtain
b3 from a behavior b̂1 describing the same execution as b1,
we must replace public(x3) = public(x1) with public(x3) =
public(x̂1) for some x̂1 satisfying x1 ∼ x̂1. Applying the
same reasoning to x2, we get the following TLA definition
of P satisfying GNI, where x1, x2, x3, x̂1, and x̂2 are all
different variables.

|= P(x1) ∧ P(x2) ⇒
∃∃∃∃∃∃ x̂1, x̂2,x3 :
(x̂1 ∼ x1) ∧ (x̂2 ∼ x2) ∧ P(x3) ∧ L(x̂1, x̂2,x3)

where L(x̂1, x̂2,x3)
∆
= 2 ( public(x3) = public(x̂1)

∧ secret(x3) = secret(x̂2))

(23)

This formula is an assertion about behaviors b in which the
values of the list of variables xi describe behavior bi (for i
= 1,2,3), and the values of the list of variables x̂i describe
behavior b̂i .

D. Aligning Films

Little does not satisfy the RTLA definition of GNI because
there are films b1 and b2 in which a step of b1 satisfying Pub
and a step of b2 satisfying Sec occur in corresponding frames.
To show that Little satisfies the TLA definition, we construct
films b̂1 and b̂2 (of the same executions as b1 and b2) in which
every Pub step of b̂1 occurs in the same frames as a Pub step
of b̂2. We can achieve this by adding extra frames—steps that
leave the values of in , out , and nin unchanged. For example:

Pub(x1) Pub(x1) Sec(x1)x1 : s1 s2 s3 s4 . . .

Pub(x2) Sec(x2) Pub(x2)x2 : t1 t2 t3 t4 . . .

Pub(x̂1) Pub(x̂1) Sec(x̂1)x̂1 : s1 s2 s2 s3 s4 . . .

Pub(x̂2) Sec(x̂2) Pub(x̂2)x̂2 : t1 t2 t3 t4 . . .

To make Pub steps happen in corresponding frames of b̂1 and
b̂2 by adding frames to b1 and b2, the same number of Pub
steps must occur in both behaviors. Behaviors b1 and b2 do
have the same number of Pub steps—namely,∞—because the
supplementary property L of Little implies that every behavior
has infinitely many Pub steps.

The ability to match Pub steps in different films is an
instance of a general matching rule: For actions A and B ,
behaviors b, and disjoint lists of variables x and y, if there
are the same number (possibly ∞) of A(x) and B(y) steps in
b, then there exist values for x̂ and ŷ such that x ∼ x̂, y ∼ ŷ,
and a step is an A(x̂) step iff it is a B(ŷ) step.

To state the rule precisely, we need a temporal operator
#
= ,

where b |= A
#
= B is true for actions A and B iff there are

the same number of A and B steps in b. However, A
#
= B is

not SI if A or B could be satisfied by a step that changes no
variables, since adding such a step could change whether the
behavior has the same number of A and B steps. Just as we
apply 2 only to actions of the form [C ]v to ensure that TLA
formulas are SI, we apply

#
= only to actions of the form 〈C 〉v ,

an action defined to equal C ∧ (v ′ 6= v) . A 〈C 〉v step is thus
a C step that changes v . When applying the rule, v is usually
a tuple of variables and at least one of them is changed by C ,
so C equals 〈C 〉v .

The general rule we are using can now be stated as validity
of the following formula for all actions A(x) and B(y), where
x and y are disjoint lists of variables.

|= (〈A(x)〉〈x〉
#
= 〈B(y)〉〈y〉) ⇒

∃∃∃∃∃∃ x̂, ŷ : (x̂ ∼ x) ∧ (ŷ ∼ y)
∧ 2[〈A(x̂)〉〈x̂〉 ≡ 〈B(ŷ)〉〈ŷ〉]〈x̂, ŷ〉

(24)

We use this rule in Section VI-E to verify that Little satisfies
GNI.

E. Verifying That Little Satisfies GNI

To show that Little satisfies GNI, we must show that the
TLA formula P that describes Little satisfies (23), where
each of the variable lists xi and x̂i comprises two variables
representing in and out. Let Pi equal P (xi), and for the other



defined quantities like Q that also depend on nin, let Qi equal
Q(xi, nini). Expanding the definitions of P1 and P2, (23)
becomes

|= ( ∃∃∃∃∃∃nin1 :Q1 ) ∧ (∃∃∃∃∃∃nin2 :Q2 ) ⇒
∃∃∃∃∃∃ x̂1, x̂2,x3 :
(x̂1 ∼ x1) ∧ (x̂2 ∼ x2) ∧ P3 ∧ L(x̂1, x̂2,x3)

where L(x̂1, x̂2,x3)
∆
= 2 ( public3 = public(x̂1)

∧ secret3 = secret(x̂2) )

(25)

By predicate logic reasoning, (25) is equivalent to

|= Q1 ∧ Q2 ⇒
∃∃∃∃∃∃ x̂1, x̂2,x3 :
(x̂1 ∼ x1) ∧ (x̂2 ∼ x2) ∧ P3 ∧ L(x̂1, x̂2,x3)

(26)

Instead of verifying (26), we will verify a condition that implies
(26). The definition of ∼ implies that x̂i ∼ xi follows from
x̂i, ŷ ∼ xi, y for any variables y and ŷ . Therefore, (26) is
implied by:

|= Q1 ∧ Q2 ⇒
∃∃∃∃∃∃ x̂1, n̂in1, x̂2, n̂in2,x3 :

(x̂1, n̂in1 ∼ x1,nin1) ∧ (x̂2, n̂in2 ∼ x2,nin2)
∧ P3 ∧ L(x̂1, x̂2,x3)

(27)
Verifying (27) verifies (26), which verifies that Little satisfies
GNI.

Recall that for every behavior b1 and b2, we must align
the Pub steps. Observe that because every behavior satis-
fying Q has infinitely many Pub steps, Q1 ∧ Q2 implies
〈Pub(x1,nin1)〉〈x1,nin1 〉

#
= 〈Pub(x2,nin2)〉〈x2,nin2 〉. We

can thus apply (24), substituting Pub for both A and B . A
Pub step changes out , which implies 〈Pub(xi,nini)〉〈xi,nin1 〉
equals Pub(xi,nini). Therefore, instantiating (24) yields:

|= Q1 ∧Q2 ⇒
∃∃∃∃∃∃ x̂1, n̂in1, x̂2, n̂in2 :

(x̂1, n̂in1 ∼ x1,nin1) ∧ (x̂2, n̂in2 ∼ x2,nin2) ∧
2[Pub(x̂1, n̂in1) ≡ Pub(x̂2, n̂in2)]〈x̂1,n̂in1,x̂2,n̂in2 〉

(28)

By predicate logic reasoning, (28) implies that to verify (27),
it suffices to verify:

|= Q1 ∧ Q2 ∧
(x̂1, n̂in1 ∼ x1,nin1) ∧ (x̂2, n̂in2 ∼ x2,nin2) ∧

2[Pub(x̂1, n̂in1) ≡ Pub(x̂2, n̂in2)]〈x̂1,n̂in1,x̂2,n̂in2 〉
⇒ (∃∃∃∃∃∃x3 :P3 ∧ L(x̂1, x̂2,x3))

(29)

Because Q is SI, which is expressed in rule (21), x̂i, n̂ini ∼
xi,nini implies that Q i is equivalent to Q(x̂i, n̂ini). So, we
can verify (29) by verifying

|= Q(x̂1, n̂in1) ∧Q(x̂2, n̂in2) ∧
2[Pub(x̂1, n̂in1) ≡ Pub(x̂2, n̂in2)]〈x̂1,n̂in1,x̂2,n̂in2 〉
⇒ (∃∃∃∃∃∃x3 :P(x3) ∧ L(x̂1, x̂2,x3))

(30)

Comparing this with the RTLA version (14) of GNI, we see that
we have used the freedom the TLA version provides to replace

the films x1 and x2 with equivalent films x̂1 and x̂2 and used
rule (24) to add the hypothesis 2[Pub(x̂1) ≡ Pub(x̂2)]〈x̂1,x̂2 〉
that synchronizes the two films.

By substituting xi and nini for x̂i and n̂ini , expanding the
definition of P3, and predicate logic, (30) becomes

|= Q1 ∧Q2 ∧2[Pub1 ≡ Pub2]〈x1,nin1,x2,nin2 〉 ⇒
(∃∃∃∃∃∃x3,nin3 :Q3 ∧ L(x1,x2,x3))

(31)

We show in Section VII that this method of reducing verification
of (23) to verification of (31) by using rule (24) also works
for other hyperproperties that, like GNI, assert for variables x
the existence of values for variables x̂ with x̂ ∼ x that satisfy
some condition.

We verify that Little satisfies (31) in the same way we
verified that Tiny satisfies (14): We rewrite

Q1 ∧Q2 ∧2[Pub1 ≡ Pub2]〈x1,nin1,x2,nin2 〉 (32)

in the form of a state machine description. This rewriting is
more complicated than it was for Tiny because: (i) there is the
additional third conjunct in (32), and (ii) the TLA definition
of Q(xi,nini) has the term 2[N (xi,nini)]〈xi,nin i 〉 instead
of 2N (xi,nini) . Let v equal 〈in, out ,nin 〉. Expanding the
definition of P and rearranging the terms, (32) becomes

(I1 ∧ I2) ∧ (2[N 1]v1
∧2[N 2]v2

∧2[Pub1 ≡ Pub2]〈v1,v2 〉)

∧ (L1 ∧ L2)

To transform this to a standard TLA state machine description,
we write the shaded expression as 2[M]〈v1,v2 〉 for a next-
state action M. Using the rule that 2 distributes over ∧ and
remembering that [A]u equals A ∨ (u ′ = u), we see that we
can let M equal

((N 1 ∧N 2) ∨ (N 1 ∧ (v ′2 = v2)) ∨ (N 2 ∧ (v ′1 = v1))
∧ (Pub1 ≡ Pub2)

Expanding the definition of N and using the facts that Pub
implies (¬Sec) ∧ (v ′ 6= v) and Pub1 ≡ Pub2, we can rewrite
this formula as

(Pub1 ∧ Pub2)
∨ (Sec1 ∧ Sec2) ∨ (Sec1 ∧ (v ′2 = v2)) ∨ (Sec2 ∧ (v ′1 = v1))

which is the next-state action of a state machine with variables
x1, nin1, x2, and nin2. Having rewritten (32) as a TLA
description of a state machine, verifying (31) is a standard
problem of verifying that a state machine satisfies a property.
Its verification uses the same refinement mapping used for
Tiny .

Here is a summary of what we have just done. Using (28),
we reduced verifying that Little satisfies GNI to verifying (31).
By rewriting (32) as a TLA description of a state machine, we
reduced verifying (31) to a standard verification problem for
which the TLA+ tools were designed. TLC, the TLA+ model
checker, easily checks the rewritten version of (31) for models
that substitute a small set of values for Val and bound the
value of nin (by substituting a small set {0, . . . ,n} for Nat).
TLAPS, the TLA+ proof checker, can easily check a proof of
(31) without the liveness condition L3 of P3; features needed



to allow TLAPS to check liveness proofs are currently being
implemented. For a complete verification, we should also check
two more things: our rewriting of (32), which we did using
TLAPS, and the two hypotheses we used to obtain (28). The
first hypothesis, that every behavior of Little has infinitely
many Pub steps, was checked by TLC on a small model.
The second, that 〈Pub 〉v equals Pub, is easily checked by
TLAPS. The complete TLA+ specifications, including proofs,
are available on the Web [22].

F. Verifying That Tiny Satisfies GNI in TLA

Section IV-C explains how to verify that the RTLA descrip-
tion of Tiny satisfies the RTLA version of GNI. Essentially the
same verification used there shows that the TLA description of
Tiny satisfies the TLA version of GNI. For the TLA verification,
we do exactly what we did for Little , except using action N
instead of Pub. With the subscripting notation and definition
of v as 〈in, out ,nin 〉 from Section VI-E, formula (32) then
becomes:

Q1 ∧ Q2 ∧ 2[N 1 ≡ N 2]〈v1,v2 〉 (33)

Expanding the definitions of Q and L, temporal logic reasoning
shows that (33) is equivalent to:

(I1 ∧ I2) ∧ 2[N 1 ∧N 2]〈v1,v2 〉
∧ (WFv1

(N 1) ∧ WFv2
(N 2))

(34)

This is the formula one would obtain from (15) by turning an
RTLA description of a state machine into a TLA one. We then
verify (23) using the same refinement mapping and essentially
the same verification as for the RTLA version of Tiny . The
TLA+ formalizations are on the Web [22].

We obtained the TLA proof that Tiny satisfies GNI from
its RTLA proof in Section IV-C by replacing Q(x1) ∧Q(x2)
with (33). This same transformation from an RTLA proof to a
TLA proof works for any RTLA proof that a system satisfies
the RTLA definition of GNI.

VII. PHAROS AND OBSERVATIONAL DETERMINISM

PharOS is a system in which multiple agents communicate by
asynchronous message passing subject to real-time constraints
on message-delivery time and on when actions may be
performed. (It has been commercialized under the name
Asterios®.) A goal of the system is determinacy—that the
behavior of any agent is independent of the scheduling of
agent actions. Azaiez et al. [4] proved that a high-level model
of the system satisfies this goal. Their proof combined state-
based and semantic behavioral reasoning, relating the two by
adding an auxiliary variable to record the system’s complete
execution.

Determinacy in PharOS is an instance of a well-known
security condition, observational determinism (OD). We show
here how applying our approach can avoid the need for semantic
behavioral reasoning, allowing a purely state-based proof.

A. Observational Determinism

Zdancewic and Myers [34] formulated OD as the assertion
that any two system behaviors with the same initial value
of public are “equivalent”. Equivalent would mean public-
stuttering equivalent4 if every behavior took the same number
(possibly ∞) of public steps. That a system P satisfies OD
would then be expressed by:

|= P(x1) ∧ P(x2) ∧ (public(x1) = public(x2))

⇒ ∃∃∃∃∃∃ x̂1, x̂2 : x1 ∼ x̂1 ∧ x2 ∼ x̂2 ∧
2(public(x̂1) = public(x̂2))

(35)

Zdancewic and Myers consider only finite behaviors, for which
they define equivalence to mean that the sequence of public
steps of one of the behaviors is a prefix of the sequence of
public steps of the other. The easiest way to express this
condition in TLA is to posit a state predicate term that is true
iff the system has terminated—that is, iff the system can take
no more state-changing steps. In that case, OD is obtained
from (35) by replacing the shaded formula with

term(x̂1) ∨ term(x̂2) ∨ (public(x̂1) = public(x̂2))

B. The PharOS Proof

If we define public to be the state state[a] of an agent
a , then determinacy for PharOS asserts that OD is satisfied
for every agent a . Azaiez et al. proved this condition for an
arbitrary agent a . They described PharOS in TLA+ and checked
their proof with TLAPS.

For their proof, they added to the TLA+ system description
an auxiliary variable whose value is the sequence of all previous
system states. They proved that if b is the sequence of states
of an arbitrary infinite PharOS behavior, then the values of
state[a] recorded in the auxiliary variable for a system behavior
with the same initial state as b is always state[a]-stuttering
equivalent to their values in some finite prefix of b.

In their proof of OD, b is a constant—a representation of a
complete, infinite behavior. To define b, they wrote a constant
formula (one containing no system variables) that captures the
semantics of the system’s TLA+ specification. Theirs is thus
a “hybrid” proof, combining TLA reasoning with semantic
behavioral reasoning.

The description of PharOS allows terminating behaviors. We
can handle terminating agents using term as described above,
but there’s no need. The sequence of an agent’s steps of a
terminating behavior of PharOS is a prefix of its steps in a
nonterminating behavior, so satisfying OD for nonterminating
behaviors implies that OD is satisfied for terminating behaviors.
We simplify the proof by assuming a fairness condition that
requires agents never to terminate.

With this non-termination assumption, we can verify that
PharOS satisfies OD the same way we verified that Little sat-
isfies GNI. Neither semantic reasoning nor auxiliary variables
are required. We verified that Little satisfies (23) by applying
rule (24) to show that it suffices to verify (31). In the same

4 Recall that public-stuttering equivalent is defined in Section V-A.



way, verifying that PharOS satisfies (35) can, by applying (24),
be reduced to verifying

|= P(x1) ∧ P(x2) ∧ (public(x1) = public(x2))
∧ 2[Pub(x1) ≡ Pub(x2)]〈x1,x2 〉

⇒ 2(public(x1) = public(x2))

(36)

where P is the TLA+ model of PharOS and Pub describes
the steps taken by the given agent. Just as in the verification
that Little satisfies GNI, the left-hand side of (36) can be
rewritten as a TLA description of a state machine. Verification
then becomes the standard problem of verifying that a formula
is an invariant of a state machine. This can be done without
constructing a complete behavior or adding an auxiliary variable
as in [4].

VIII. SOME OTHER HYPERPROPERTIES

GNI and OD are just two of the security conditions discussed
in the literature that are hyperproperties. We now consider how
a few more security conditions and some other hyperproperties
can be expressed in TLA. All other finitary hyperproperties
we have seen can be handled in similar ways. Unlike GNI and
OD, the examples considered here do not use the ∼ operator.

A. Nonin(ter)ference

GNI was preceded by a security policy called noninterference
(NI) proposed by Goguen and Meseguer [17] as a condition on
execution by two classes of users. NI was stated in terms of an
automaton that executes commands, some of which belong to a
set PC of public commands. The value of a state function we
will call public equals the output of the most recently executed
public command. We formulate NI as a state machine with a
fixed initial state and a state function cmd equal to the name
of the most recent command.

NI asserts that executing any sequence of commands
produces the same values of public as executing the subse-
quence consisting of only the commands in PC . Goguen and
Meseguer assumed commands are deterministic, meaning that
any sequence of commands produces a unique execution. This
assumption allows us to state NI as the following two equivalent
conditions, where K is the assertion that behavior b2 executes
the subsequence of the commands executed by behavior b1
consisting only of commands in PC :5

• Every pair of system behaviors b1 and b2 that satisfy K
produce the same values of public.

• For every system behavior b1 there exists a behavior b2
satisfying K that produces the same values of public as
b1.

These two conditions on behaviors yield different TLA formu-
lations of what it means for a system P to satisfy NI:

|= P(x1)∧P(x2)∧K ⇒ 2(public(x1) = public(x2)) (37)

5 K is defined by:
ξ(x)

∆
= 〈x′〉 6= 〈x〉

K
∆
= 2[ ( ξ(x1) ∧ (cmd(x1)′ ∈ PC )⇒ ξ(x2) )

∧ ( (ξ(x2)⇒ ξ(x1) ∧ (cmd(x2)′ = cmd(x1)′)
∧ (cmd(x2)′ ∈ PC ) ) ]〈x1,x2〉

|= P(x1) ⇒
∃∃∃∃∃∃x2 : P(x2) ∧K ∧2(public(x1) = public(x2))

(38)

They are equivalent under the assumption that commands are
deterministic, but differ when commands are nondeterministic.
Condition (37) more closely resembles Goguen and Meseguer’s
original formulation of NI, while (38) generalizes to handle
nondeterministic commands.

Note that the ∼ operator is not needed in (37) because K
asserts that the films x1 and x2 are properly aligned. It is
not needed in (38) because K implies that x1 and x2 can be
aligned by adding frames to x2, which is allowed by the ∃∃∃∃∃∃
operator. The ∼ operator was needed in GNI (23) and OD (35)
to allow replacing the “films” x1 and x2 with films x̂1 and
x̂2 of the same executions, but properly aligned.

Noninference (NF) is a security condition that generalizes NI
to allow nondeterministic commands. Mantel stated a version
of NF in terms of event sequences [25]. His version can be
represented in terms of states the way we represented GNI,
where an event is represented by a state change. We add a
state function secret whose values are changed by executing
commands not in PC . All commands in a behavior being
commands in PC is then equivalent to secret having the same
value throughout the behavior. Mantel’s version of NF is then
described by (38) when K is the assertion that secret(x2)
never changes, expressed in TLA as:

2[secret(x2)
′ = secret(x2)]〈x2 〉

This version of (38) is satisfied by Little , but not by Tiny .
McClean [27] proposed a version of NF in terms of state

sequences that can also be expressed in terms of the state
function secret . It is obtained from (38) by replacing K with
the assertion that secret(x2) always equals a fixed constant
λ—an assertion expressed in TLA as 2(secret(x2) = λ).

B. Possibilistic Noninterference

Zdancewic and Myers [34] formulate a generalization of
noninterference to handle non-deterministic commands; we
call it possibilistic noninterference (PN). They expressed PN
in a state-based model with a “public state” described by a
state function public. PN is satisfied by a system iff, for every
possible system behaviors b1 and b2 such that public has the
same value in the initial states of b1 and b2, there is a system
behavior b3 having the same initial state as b2 and the same
values of public as b1 in all states.

Zdancewic and Myers’s definition of PN is based on a model
in which a state sequence represents an execution rather than
a film of an execution. For a clock in which public is the
value of the hour and minute, in this model observing only
public reveals that the clock is also counting seconds because
that same value of public appears in multiple successive states.
Even though this definition is based on a model that is not
SI, we can write a (SI) TLA formula asserting that a system
satisfies it by restricting how the system is described.

The restriction is that for a system step to be considered
observable, it must change the value of some state function.
For PN, this means that the sequences of values for public can



differ in two behaviors because of changes only to a variable
that doesn’t affect the value of public. We can then represent
the definition of PN with behaviors b1, b2, and b3 that represent
films by adding the requirement that b1 and b3 are aligned so
that their states change at the same time. (There is no need
to align b2 with b1 and b3 because only the initial state of
b2 is mentioned in the definition, so no further alignment is
required and the ∼ operator is not needed.) The assertion that
the system P satisfies PN is then:

|= P(x1) ∧ P(x2) ∧ (public(x1) = public(x2))
⇒ ∃∃∃∃∃∃x3 : P(x3) ∧ K ∧ (〈x2 〉 = 〈x3 〉)

∧ 2(public(x1) = public(x3))

(39)

where the alignment condition K is defined by

K
∆
= 2[(〈x1 〉′ 6= 〈x1 〉) ≡ (〈x3 〉′ 6= 〈x3 〉)]〈x1,x3 〉

It is not hard to see that Tiny and Little both satisfy (39).
Given behaviors b1 and b2 of either system, the behavior b3
obtained by simply replacing the first state of b1 with the first
state of b2 is also a behavior of that system. To verify (39) for
these two systems, we expand the definitions of P and verify:

|= Q(x1,nin1) ∧ Q(x2,nin2)
∧ (public(x1) = public(x2))

⇒ ∃∃∃∃∃∃x3 : P(x3) ∧ K ∧ (〈x2 〉 = 〈x3 〉)
∧ 2(public(x1) = public(x3))

(40)

We verify this by adding an auxiliary variable h to
Q(x1,nin1) to obtain Qh such that Q(x1,nin1) is equivalent
to ∃∃∃∃∃∃ h :Qh(x1,nin1, h) and then verifying:

|= Qh(x1,nin1, h) ∧ Q(x2,nin2)
∧ (public(x1) = public(x2))

⇒ ∃∃∃∃∃∃x3 : P(x3) ∧ K ∧ (〈x2 〉 = 〈x3 〉)
∧ 2(public(x1) = public(x3))

We can let h equal 1 in the initial state and be set to 0 by
the next-state action of Qh . The refinement mapping is defined
so that the values of variables x3 equal the values of x2 if
h = 1 and the values of x1 if h = 0.

Tiny satisfies (39), but that doesn’t mean it satisfies PN.
Formula (39) represents PN only under the assumption that
every observable step changes the system’s state, and Tiny
allows steps we consider observable that change only nin—
steps that represent input or output of the same value twice in
a row—and nin is a hidden variable, not part of the system
state. What satisfying (39) means in this case does not concern
us.

C. Input/Output Hyperproperties

Besides describing security conditions, hyperproperties have
been used to express relations between the input and output
of a system that starts with an input, produces an output, and
halts. For example, monotonicity is a hyperproperty asserting
that if the input of behavior b1 is less than the input of b2,
then the output of b1 is less than that of b2.

In state-based representations of systems, such input/output
relations can be expressed in terms of state functions inp and

outp, where the input is the value of inp in the initial state and
the output is the value of outp in the final state. Letting term
be a state predicate that is true iff the system has terminated,
monotonicity for a system P is expressed as:

|= P(x1) ∧ P(x2) ∧ (inp(x1) < inp(x2)) ⇒
2(term(x1) ∧ term(x2)⇒ (outp(x1) < outp(x2)))

TLA provides a good way for verifying such a condition,
especially if the system P involves concurrency. The ∼ operator
does not appear because this condition involves only initial
and terminal states, so no alignment of the films is required.

D. Some Problematic Security Conditions

Most of the examples of hyperproperties we have examined
concern security. We know of only one class of security
conditions for which the TLA formulation is significantly more
complicated than the ones described here. The conditions in
that class stipulate that adding one or more events to the middle
of a system execution produces a possible system execution.
One example is the perfect security property (PSP) defined
by Zakinthinos and Lee [33]. Expressing such a condition
by replacing events with command executions, as in NI, is
not hard. A TLA statement of PSP asserts the existence of a
variable whose value indicates when the extra commands are
being added. However, it might be easier to state and verify
the condition by using auxiliary variables, as was done in the
original PharOS verification.

IX. PRESERVATION UNDER REFINEMENT

If we verify that a system P satisfies a hyperproperty and
P is refined by another system S , then we would like S also
to satisfy that hyperproperty. When that is the case for all
S and P , we say that the hyperproperty is preserved under
refinement.

Thus far, the systems and the properties they satisfy have
been expressed in terms of the same (free) variables. This
makes refinement the same as implementation: A system S
refines a system P iff S implies P , which means the set of
behaviors allowed by S is a subset of the set allowed by P .
Whether a hyperproperty is preserved under refinement can be
seen from its definition. A hyperproperty described in the form
of (1) is preserved under refinement if every ∀∃ is ∀ . When
described as in (7), that means k = j , so P does not appear to
the right of the ⇒. This is the case handled by previous work
using self-composition. The special case k = j = 1 implies
that ordinary properties are preserved under refinement, since
P satisfying property L means |= P(x)⇒ L(x) . When k > j ,
the most we can say is that P satisfying (7) implies that S
also satisfies (7) if S and P are equivalent.

In practice, we often want to show that a system P is refined
by a system S described at a lower level of abstraction, so
P and S can have different free variables. For example, P
might describe characters displayed on a screen, and S might
describe the screen as an array of pixels. It makes no sense
to say that a statement about pixels refines a statement about
characters. What does make sense is to say that S refines P



under a given correspondence between pixels and characters.
A more complex example is if P describes a system in which
processes communicate by sending messages over point-to-
point channels, while S splits those messages into packets that
are sent over a packet-switching network.

The idea that a system S refines a system P described at
a higher level of abstraction is expressed formally using an
interface refinement, which is a property relating the (free)
variables of S and those of P . We define S refines P under
the interface refinement I to mean

|= S (w) ∧ I (w,x) ⇒ P(x) (41)

where I must satisfy:

|= S (w) ⇒ ∃∃∃∃∃∃x : I (w,x) (42)

Condition (42) asserts that every behavior of S corresponds
under I to some behavior, and (41) asserts that it is a behavior
of P .6

In general, I may be written as a state machine. As we have
seen, the conjunction of two state machines can be written as
a state machine, so verifying (41) reduces to the problem of
one state machine implying another. A simple instance is when
I (w,x) is 2(x = g(w)), in which case (41) is equivalent to

|= S (w)⇒ P(g(w)) (43)

and we say S refines P under interface refinement mapping g.
Mathematically, (43) is the same condition that arises if

the variables of P are regarded as hidden and we are given
the refinement mapping g under which S (w) must imply
∃∃∃∃∃∃x :P(x) . This form of I handles the example of refining
a screen that displays characters with one displaying pixels,
where g(w) specifies the screen of characters that corresponds
to the screen of pixels described by w. However, I would
probably have to be a state machine for the example of refining
messages by packets.

It would be nice if all hyperproperties were preserved under
interface refinement. If P satisfies (7), we would like (41) and
(42) to imply that S does too. However, since S and P may
have different free variables, we can’t use the same formulas
K and L in (7) for S as for P . We have to specify the formulas
KS and LS for which S should satisfy (7).

For refinement under an interface refinement mapping g,
there are natural candidates for KS and LS :

KS(w1, . . . ,wj)
∆
= K (g(w1), . . . ,g(wj))

LS (w1, . . . ,wk)
∆
= L(g(w1), . . . ,g(wk))

When k = j , if P satisfies (7) then (43) implies that S
satisfies (7) with these definitions of KS and LS . However,
these natural definitions of KS and LS might not be useful
definitions. For example, P satisfying GNI says something
useful about a system’s security only if the values of secret
and public together specify the values of all the free variables
of P . However, the values of secret(x) and public(x) can

6Broy [8] proposed an equivalent formalization of interface refinement in
terms of event streams.

specify the values of the free variables x of P(x) without
secret(g(w)) and public(g(w))), which appear in KS and
LS , specifying the values of the free variables w of S (w).

For arbitrary KS and LS , the assumptions needed to
conclude from P , K , L satisfying (7) that S , KS , and LS

satisfy it are (42) and:

|= I (w,x) ⇒ (S (w) ≡ P(x))

|= P(x) ⇒ ∃∃∃∃∃∃w : I (w,x)

|= S (w1), . . . ,S (wj) ∧ K S (w1, . . . ,wj)
∧ I (w,x1) ∧ . . . ∧ I (w,xj) ⇒ K (x1, . . . ,xj)

|= P(x1) ∧ . . . ∧ P(xk) ∧ K (x1, . . . ,xj) ∧ L(x1, . . . ,xk)
∧ I (w1,x1) ∧ . . . ∧ I (wj,xk) ⇒ LS (w1, . . . ,wk)

For the special case of (7) with j = k , we can replace the
shaded conditions with (41).

X. DISCUSSION

A. Prior Work

Prior work has used temporal logic to verify that systems
satisfy security conditions without expressing the conditions as
hyperproperties. Huisman et al. [18] formulated observational
determinism in both CTL∗ and the polyadic modal µ-calculus.
They experimented with model checkers for both logics. Alur
et al. [3] defined a class of trees that are suitable for capturing
observational indistinguishability. Information flow properties
can be described using temporal logics, including CTL and the
µ-calculus, interpreted on these trees. Algorithms for model
checking formulas in these logics were also given. Finkbeiner
et al. [12] defined new logics by adding a modal operator
to characterize certain information flows. They explored the
complexity of model checking these logics and developed
a fragment of one logic that is both expressive enough to
describe non-interference and observational determinism and
for which model checking is efficient. Balliu [5] used a linear
time temporal epistemic logic with a past operator to express
information flow properties, including GNI. TLA has also been
used to verify that a system satisfies a particular hyperproperty.
PharOS (Section VII) was one example; Wayne [32] also
independently used TLA in this way.

Clarkson et al. [9] were the first to introduce a temporal
logic for describing a general class of hyperproperties. Their
linear-time logic, HyperLTL, expresses finitary hyperproperties,
as described by (1). They built a prototype model checker based
on nondeterministic Büchi automata for a subset of HyperLTL
formulas that includes ∀∃ -hyperproperties. It was improved
using alternating Büchi automata by Finkbeiner et al. [14]
with the MCHyper model checker. These model checkers
for HyperLTL are completely automatic, but the inherent
complexity of handling temporal existential quantification
means that they are not practical for hyperproperties described
by instances of (7) actually containing an ∃∃∃∃∃∃ (i.e., when
k > j ). Coenen et al. [11] enhanced MCHyper to handle
∀∃ -hyperproperties more efficiently, based on a game-theoretic
metaphor. In effect, they partially automated construction of the



refinement mappings used by TLA; complete automation was
also possible in some cases. More efficient model checkers can
also be built to handle specialized classes of hyperproperties
efficiently. For example, Finkbeiner et al. [13] built one for a
particular class called quantitative hyperproperties.

B. Contributions

Prior work on verifying hyperproperties using self-
composition handled hyperproperties of the form (3). One of
our contributions is using self-composition to handle arbitrary
finitary hyperproperties. This is feasible because TLA can easily
describe a system as a formula. Given a refinement mapping
for each ∃∃∃∃∃∃ , we can verify the TLA formula expressing that a
system satisfies an arbitrary finitary hyperproperty. Moreover,
we know that refinement mappings can be found for instances
of (7) that seem to arise in industry. We have no experience
with the TLA formulas that arise for other classes of finitary
hyperproperties, and we haven’t seen any realistic examples
of such hyperproperties.

Another contribution is the observation that stuttering in-
sensitivity (SI) facilitates the treatment of security conditions
in a state-based formalism. It has long been known that SI
simplifies verifying implementation, so an hour-minute-second
clock naturally implements an hour-minute clock. For that
purpose, SI could have been avoided by requiring systems
to allow explicitly described stuttering steps and considering
those additional behaviors to be additional executions. But
formulating event-based definitions of GNI and some other
security conditions in terms of states led us to define the
temporal operator ∼, and we could write a simple rule for
reasoning about ∼ only because TLA satisfies SI. This provides
further evidence for the value of SI in formalisms for describing
systems.

Perhaps our most important contribution is showing how
tools that have been developed through two decades of
industrial experience can be used to verify that systems satisfy
a large class of hyperproperties. TLA+ and its tools have
been used in the design and verification (mainly by model
checking) of systems ranging from multi-core processor chip
caches [7] to real-time operating systems [31] to large-scale
cloud infrastructure [28]. This provides reason to hope that the
approach we have described can work for real systems.
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H. C. Sputh, and Vitaliy Mezhuyev. Formal Development of a Network-
Centric RTOS. Springer, New York, 2011.

[32] Hillel Wayne. Hypermodeling hyperproperties. Web page: https://www.
hillelwayne.com/post/hyperproperties/.

[33] Aris Zakinthinos and E. S. Lee. A general theory of security properties.
In Proceedings 1997 IEEE Symposium on Security and Privacy, pages
94–102.

[34] Steve Zdancewic and Andrew C. Myers. Observational determinism for
concurrent program security. In Proceedings of the 16th IEEE Computer
Security Foundations Workshop (CSFW-16), pages 29–43, 2003.

https://www.hillelwayne.com/post/hyperproperties/
https://www.hillelwayne.com/post/hyperproperties/

