
Part VI

Run-time Expectations

under Attack

For a piece of software to operate as expected, the hardware and lower-level soft-
ware that define its run-time environment must operate expected. Assumptions
are potential vulnerabilities, and expectations about a system’s run-time envi-
ronment are no exception. This part discusses some of those expectations, along
with attacks to invalidate them. Where viable defenses are know, we discuss
those too. As always, whether a given vulnerability should be concerning will
depend on the threat. Not all threats have the motivation, equipment, access,
and/or expertise needed for a specific attack.
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Chapter 12

Hardware Integrity

Physical access to a computer’s internals permits attacks that can circumvent
authorization checks implemented by software or by hardware. The obvious
defense is to prevent attackers from having that physical access. Some defenses,
in addition, generate indications of attempted attacks. Such indications are
useful, because confidentiality compromises are not always detectable.

12.1 Leveraging Location

Walls and locked doors are one way to ensure that a computer is inaccessible to
attackers. You might place the computer in a locked machine room, in a (locked
when unoccupied) o�ce, or at somebody’s home. For portable devices, carrying
the device in your pocket or keeping it in your briefcase impedes access by
depending on social norms about personal distance and who can access personal
property.

When physical access to a computer cannot be blocked, we can deter attack-
ers if they know that evidence is being created to attribute accesses they make.
Surveillance could be implemented by video cameras, or surveillance could be
performed in person by employees or law enforcement. Surveillance is partic-
ularly e↵ective for deterring insiders, where walls and locked doors would not
otherwise impede an attacker’s actions.

Walls together with video surveillance have been used to create a private
cloud within a cloud data center. The private cloud comprises computer racks
enclosed by a cage, where the cage door remains locked both while the enclosed
computers are running as well as for an additional period after those computers
have been powered-o↵. Video surveillance of the metal cage deters people from
unlocking and entering a cage while the processors or memories it encloses might
be storing (unencrypted) confidential data. After power-o↵, the delay period
prior to allowing entry ensures that remnants of confidential data in volatile
memory will decay before that memory can be read by somebody who has
entered the cage.
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Large-scale clouds also can hinder attackers from getting physical access
to the computers serving a given customer by keeping secret which computers
(from the large number in a data center) are running that customer’s compu-
tations at any time. Here, secrecy is replacing the walls and locked doors as
the impediment to access. By periodically migrating a customer’s computation
from one set of hardware processors to another, a moving-target defense would
also be created.

12.2 Enclosure and Construction

The location of a device is not always under our control, and surveillance is
not always feasible. A set-top cable box, e-book reader, gaming console, or
other consumer electronics for providing access to proprietary digital content
usually will be physically accessible to its users, and some of those users could
be attackers. Credit-card sized artifacts carried in wallets and used to control
access to funds or locks on doors are other examples of devices that could come
into the possession of attackers. For these situations, a device’s construction is
the first line of defense against attacks involving physical access.

Packaging. Packaging can protect a device by making it di�cult for an at-
tacker to study the internals or to operate the system while monitoring and/or
injecting signals. The starting point for implementing such tamper resistance
often will be a physical enclosure that is di�cult to breach without a physi-
cal key or special tool. Since theft of information is not visible, an enclosure
might also be designed to make evident that an attack has been attempted.
One way to create hardware that is tamper evident is by using a frangible or
highly finished (e.g., polished or crazed) material for the outer shell of the en-
closure, so that attempting a penetration causes irreversible and visible changes
to the enclosure’s appearance. Unforgeable seals, made with multi-layer paints
or tapes, are another way to create evidence that an attack has been attempted.
Finally, a packaging might be tamper responding and activate circuits that erase
memory (deleting cryptographic keys or other secrets) or that disable the device
(perhaps even detonating a small explosive charge). But if physical access to
internals could be needed for maintenance, then some means of access must be
available for trusted individuals. The device, however, now becomes vulnerable
to abuse by an untrustworthy insider who exploits that access.

Sensors. Sensors are the obvious starting point for making a packaging be
tamper-responding. Penetration of an enclosure can be detected by having pho-
tocells inside to sense the increased level of light from the outside. Another way
to detect penetrations of an enclosure is to line the enclosure with a membrane
that has been printed with a pattern of conductive ink, so the electrical prop-
erties of the membrane change when the membrane is punctured. Radiation
sensors and temperature sensors will detect attacks aimed at increasing mem-
ory remanence (see §12.4.1) in order to facilitate theft of secrets after a system
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is powered down. Voltage sensors are useful for detecting attacks that could
corrupt operation of the electronic circuitry. And attempts to transport the
device elsewhere can be detected by having motion sensors. Sensors do bring
challenges, however. First, they require a source of power. Second, there is a
risk of false-triggering, so a system must be designed to recover from that.

Potting. An attacker will have a harder time finding and physically access-
ing specific electronic components and interconnecting wires if that circuitry
has been embedded in a block of opaque epoxy potting. Moreover, an attacker
seeking to operate a system after modifying its components or connections will
be hampered if physical access to those components or wires requires first de-
stroying other components that (by design) were positioned to be in the way.

A net of fine wires or other conductive material that surrounds the electronic
circuitry before the epoxy potting is added can serve as a further barrier to
attackers, if breaking, shorting, or altering any of those paths triggers circuits
to erase secrets or otherwise disable the device. In addition, attackers who
attempt access to interior components by using chemicals or a laser to dissolve
portions of the epoxy potting will be detected if the chemical composition of the
epoxy potting is more resistant to solvents and if it expands faster when heated
than the material used for the embedded wires.

Means of Physical Attack. Whether a device’s construction will succeed as
a defense depends on the attacker’s access, capabilities, and goals. Unsupervised
access enables attackers to operate, disassemble, and/or alter a device. This is
not necessarily changed by requiring that access be supervised by guards—
guards are unlikely to intercede when an attacker is dressed to resemble a bona
fide maintenance technician. When access is supervised, though, the length of
time available for performing an attack could constrain an attacker.

If an attacker can move a device to a remote site then specialized tools can
be employed.1

• Machining. Access to a device’s internals is enabled by cutting through
a shell or by removing potting material that permeates the insides. The
cutting might be performed with (fixed or moving) blades, abrasives, high-
velocity streams of water, lasers, sandblasting, or shaped (low power)
explosive charges. Chemicals also can be used to dissolve potting material.

• Probing. Probes provide a means to inject and/or monitor signals being
carried by the wires in a device. A probe might be implemented by a
narrow gauge tungsten wire, an ion beam, an electron beam, or a laser.
Ion beams, in addition, can reconnect fuse links or make other modifica-
tions to a chip’s circuitry. Electron beams from a conventional scanning

1These tools are developed for the semiconductor industry to use in analyzing chips. The
tools typically are expensive to purchase, but they often can be rented on an hourly basis
with no questions asked. In addition, the improved tool capabilities required for each new
generation of chips results in decreased demand for older tools, which then become a↵ordable
by attackers.
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electron microscope can read/write bits in EPROM, EEPROM and RAM
memory chips if the chip’s surface has been exposed (say, by chemical
etching). Because silicon is transparent at infrared frequencies (IR), it is
not necessary to expose the chip’s surface for an IR laser to read/write
that storage.

The goal of a physical attack is an important factor when developing de-
fenses. Some physical attacks are undertaken to extract secrets that a device
is storing. A defense here could be to incorporate sensors and logic that causes
stored secrets to be erased when the start of an attack is detected. The goal of
other physical attacks is reverse-engineering—for cloning a system or for discov-
ering its vulnerabilities. Packaging plays the critical role in defending against
such attacks.

For some devices, an attack would be deemed a failure if it leaves a system
inoperable. An attack that that renders a nuclear weapon inoperable will have
failed if the attacker’s goal was to cause detonation but will have succeeded
if the goal was to prevent detonation. For devices used to control access by
consumers to proprietary content, an attack is often considered successful if it
extracts secrets being stored—even if the device is destroyed by the attack—
because the stolen secrets then can be used to provide unlimited access by using
some other device.

12.3 *Physical Unclonable Functions

Tamper-resistant packaging would not be needed to protect a circuit that unpre-
dictably altered its state and/or operation in response to any physical accesses
by attackers. Providing such functionality for circuitry that stores and/or com-
putes functions of secret values is driving research into the development of phys-
ical unclonable functions (PUFs). They are not yet ready for general use—and
some experts believe that simpler alternatives will always be a more sensible
choice. Nevertheless PUFs are an intriguing idea to contemplate.

A PUF is a circuit instance C for implementing a function FC(⋅) that de-
pends on some fixed, unmeasurable, and unclonable features of its realization
on a specific chip and that satisfies the following properties.

• Evaluation of FC(⋅) is repeatable—the same value is produced every timeFC(x) is evaluated with a given input x from its domain.

• The value produced by evaluating FC(x) cannot be predicted from inva-
sive or non-invasive measurements of the chip that contains C.

• The value produced by evaluating FC(x) changes unpredictably if the chip
that contains C is modified or probes are attached.

Thus, FC(⋅) is individual, inherent, and unclonable.
The domain of function FC(⋅) depends on the PUF design. Some designs

implement a function that takes no inputs and has a fixed (but unpredictable)
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Figure 12.1: Arbiter-based PUF

output, causing the PUF to behave like a small read-only memory. Other PUF
designs implement functions that do take inputs. With a weak PUF, the number
of possible input values is linearly related to the number of components in the
circuit used to realize the PUF; with a strong PUF, the number of possible
input values is exponential in the number of circuit components. Because it is
infeasible to collect the values FC(x) for the exponential number of possible
inputs x to a strong PUF, a strong PUF can be used to implement challenge-
response protocols, where each challenge is used at most once.

Examples of PUF Designs. Most PUF designs are circuits whose output
is determined by di↵erences in signal propagation delays, where the di↵erences
in delays arise from uncontrollable aspects of chip fabrication. The output of a
PUF thus depends, in part, on where the circuitry is located on some specific
chip.

SRAM PUF. A 1-bit SRAM PUF implements a function having as its
output the unpredictable, but (apparently) repeatable, value at power-up for a
specific (uninitialized) SRAM volatile memory cell. With m of these, we obtain
an SRAM PUF that produces an unpredictable but repeatable, instance-specific
m-bit output. To obtain a PUF that maps an n-bit input to an m-bit output,
it su�ces to have (i) a set containing 2n of these m-bit SRAM PUFs and (ii)
a decoder circuit that uses the value of an n-bit input to select an associated
PUF from the set.

Arbiter-based PUF. A 1-bit arbiter-based PUF outputs a 0 or 1 according
to the faster of a selected pair of signal paths, where an n-bit input defines the
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Figure 12.2: Ring-Oscillator PUF

segments used to form the two signal paths of the pair. Figure 12.1 gives a
design. The output of that PUF is the output of the flip-flop labeled arbiter.
That output is determined by the relative arrival times of the signal reaching
that flip-flop’s clock input (labeled >) versus its D input. These arrival times
depend on the sequence of muxes and interconnects that are traversed. That
sequence is determined by the input bit to each mux—input bit i determines
for the muxes in the ith column whether the input port labeled 1 or the input
port labeled 0 is the input that the mux outputs. So an n-bit input defines one
pair of the 2n possible n-segment signal paths.

Because each of the segments has an unpredictable but fixed delay, each of
the n-segment signal paths will have an unpredictable but fixed delay. An n-bit
input selects a specific pair and, thus, always outputs the same unpredictable
value. To build a PUF that produces an m-bit output, we use m of these 1-
bit arbiter-based PUFs; the ith 1-bit arbiter-based PUF produces bit i of the
output.

Ring-Oscillator PUF. The frequency of a ring oscillator is determined by
signal propagation delays in a feedback loop, so di↵erent instances of a ring-
oscillator circuit are likely to have di↵erent frequencies. A 1-bit ring-oscillator
PUF is built using a set of ring oscillators and some control circuitry. Fig-
ure 12.2 illustrates. Each ring oscillator involves a loop that comprises an
nand-gate followed by an even number of inverters. An n-bit input controls
a pair of muxes, causing a pair of ring oscillators to be selected and connected
to counters. The frequency of each ring oscillator determines the speed that
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counter is incremented, so a 0 or 1 will be output by the PUF according to
which ring oscillator in the pair has higher frequency. To build a PUF that
produces an m-bit output, it su�ces to combine m of these 1-bit ring-oscillator
PUFs.

PUF Repeatability and Unpredictability. Signal propagation delays in
integrated circuits can be a↵ected by operating temperature, power supply volt-
age, electrical noise, and other aspects of the environment. So a straightforward
realization of the above PUF designs might, for a given input x, produce dif-
ferent values for FC(x) depending on the current conditions. One way that a
PUF circuit can compensate for environmental variation is to have its output
depend on delay ratios (which tend to be more stable) rather than absolute
delays. Repeatability also can be improved by incorporating error correcting
codes into the output of a PUF. Finally, clients that submit an input and then
check for a specific ouput can be designed to accept values that di↵er from the
expected response by a small number of bits.

A second key requirement for a PUF realization is to have unpredictability
of function FC(⋅):

PUF Unpredictability.
– An attacker who learns some set of input-output pairs �x,FC(x)�

must not be able to predict the outputs for other inputs.

– Given a value y that has not yet been output by the PUF, an attacker
must not be able to construct an input x satisfying y = FC(x).

The SRAM PUF above satisfies these properties provided the value of each 1-bit
SRAM PUF does. This is because each 1-bit SRAM PUF is used in producing
the output associated with only one input, so outputs that an attacker has
already observed give no information about unseen outputs that the SRAM
PUF will produce.

But unpredictability is harder to achieve when a small set of signal propa-
gation delays are being combined in multiple (di↵erent) ways, as in the above
arbiter-based PUF and ring-oscillator PUF. With an arbiter-based PUF, for ex-
ample, submitting two inputs that only di↵er in their ith bit enables an attacker
to learn which alternative for the ith segment is faster; 2n inputs thus su�ce to
reveal the faster signal path for all inputs. Under modest assumptions about
possible di↵erences in signal-path segment delays, output FC(x) now can be
used to predict output FC(x′) for other inputs x′ that di↵er from x at a small
number of bit positions.2 However, unpredictability still can be obtained with
this kind of PUF. One solution is to incorporate a cryptographic hash function
at the input and/or output of the PUF. Another solution is to restrict the input
domain DC for FC(⋅) to be the subset of inputs x for which FC(x) cannot be
predicted from FC(x′) for other inputs x′ in DC ; that PUF implementation also
would incorporate circuitry that rejects inputs not in set DC .

2A similar attack is possible for a ring-oscillator PUF. That attack would reduce the number
of possibilities by leveraging the transitivity of < used in comparisons of oscillator frequency.
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PUF Applications. An unpredictable bit string of any desired length can be
formed by concatenating the outputs of one or more inputs to a single PUF or
to di↵erent PUFs. Such a longer bit string could be used as

• the unique identifier for a chip instance,

• to generate a chip-specific symmetric key,

• to generate a chip-specific public/private key pair, or

• to generate a chip-specific seed for a random number generator.

However, some conditioning of the PUF outputs might be necessary to obtain
distributions of values suitable for those applications. The necessary condition-
ing can be implemented by incorporating a hash function into the final stage of
a PUF.

A PUF-generated chip-specific symmetric key KP for a chip P enables secret
values to be stored o↵-chip in a secure way. KP would be generated whenever
it is needed by P to encrypt secrets3 for storage o↵-chip or to decrypt content
being retrieved. By storing KP in P ’s volatile memory only while KP is needed
for performing an encryption or decryption operation, KP is vulnerable to theft
for only short periods. Moreover, an attacker who removes P and probes the
PUF used to generate KP would (i) not be able to learn KP and (ii) could well
cause unpredictable changes to the value being generated for KP .

Another use for PUF-generated cryptographic keys is to enable authentica-
tion of a chip P by its clients. One approach is to provision each client A with a
separate symmetric key KA generated by a weak PUF on P . KA is then used in
a standard shared key authentication protocol: chip P proves to A knowledge
of KA by performing encryption and/or decryption with that key. Notice, if
the value of KA was obtained by A directly from the chip’s manufacturer, then
this chip authentication protocol even defends against supply-chain attacks that
alter P or substitute a di↵erent chip for P .

An alternative to using cryptographic functions for authenticating a chip is
to leverage the unpredictability of a PUF C located on the chip. Each client
A is provisioned with a disjoint set CRA of challenge/response pairs �c,FC(c)�.
To authenticate the chip, a client A removes from CRA some pair �c, r�, submits
challenge c to the chip, and deems the chip authenticated if the response resp
that A receives from the chip satisfies resp = r. Replay attacks are prevented
if the client never repeats a challenge. So the CRA sets periodically must be
refreshed with fresh challenge/response pairs generated using FC(⋅).

One option for refreshing the CRA sets, which defends against chip substi-
tution in the supply chain, is for the chip fabricator or system builder to have
generated and saved a large set of such pairs produced with the PUF before the
chip is put into operation. Another option, which does not defend against chip
substitution in the supply chain, is to use the PUF in situ for producing these

3A sequence number should be included in the encrypted information to defend against a
rollback attack that replaces the current version of o↵-chip storage by an older copy.
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sets of pairs and then securely transfer the new set to a client. This second
option requires the capability to transfer CRA sets o↵-chip in manner that is
confidential and can be authenticated.

12.4 Expectations about Memory and Storage

Programmers have expectations about the behavior of random-access main
memory (RAM) and disks. Those expectations and attacks to falsify them
are the subject of this section. One class of attacks exploits data remanence—
evidence that reveals information about previously stored values. If stored val-
ues are not encrypted, then confidentiality can be compromised by an attacker
with access to data remanence.4 A second class of attacks involves writes to
one address in memory that also alters information being stored at a di↵erent
address, thereby compromising integrity.

Expectations about RAM and Disk. Interfaces to RAM and disks typi-
cally provide operations for reading and writing addressable, disjoint, fixed-size
objects. Di↵erent technologies then lead to storage implementations that di↵er
in cost, performance, as well as other attributes. Programmers, however, will
expect read and write operations to satisfy certain axioms, independent of the
technology.

A1: Execution of read(x) reveals the value currently stored by x—not a past
value or the value stored by some other object.

A2: Execution of write(x, val) changes only the value stored by x. The value
of no other object changes.

A3: Values stored in volatile memory are erased when power is removed; values
stored in stable storage persist, even after power is removed.

To erase the value stored by x, these axioms imply that a programmer can
(i) write a new value to x and depend on axiom A2, or (ii) if x is in volatile
memory, then remove power and depend on axiom A3. Note that axioms A1
and A2 together imply that the value read(x) returns cannot be changed by
executing write(y, val) where x and y identify di↵erent objects.

12.4.1 Attacks on RAM

Semiconductor RAM is typically structured as an array of cells, where each
cell stores 1 bit. A DRAM (Dynamic Random Access Memory) cell represents
that bit by the amount of electrical charge a capacitor stores; an SRAM (Static
Random Access Memory) cell represents the bit by carrying current in one of
two electrical feedback loops. DRAM cells require less chip area, have higher
power consumption, tend to be slower, but are cheaper per bit than SRAM cells.

4For this reason, newer processors encrypt values written to memory or to other storage.
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DRAM is typically used for main memory; SRAM is used for CPU registers and
cache.

RAM Imprinting. Semiconductor RAM stores information by harnessing
certain physical phenomena. Other physical phenomena exist, however, that
can be exploited by attackers to cause RAM imprinting, whereby information
being stored in semiconductor RAM persists long after it should have decayed:

• Low temperatures impede the flow of charge in semiconductors. So by
cooling chips that are implementing a volatile memory, an attacker can
imprint the contents of that memory for inspection after power has been
removed.

• X-ray band irradiation of CMOS RAM transforms the semiconductor in
ways that reflect the distribution of charge, are permanent, and are mea-
surable. A memory implemented with these chips may no longer function
as expected, but the chips will have recorded—for later inspection—a
snapshot of memory.

The obvious defense against attacks that manipulate a memory’s physical
environment is to thwart physical access by attackers. A tamperproof enclosure
is one such defense.5 Alternatively, a computer could be situated someplace
that is inaccessible to attackers. Also, we frustrate an attacker’s e↵orts to re-
move and read imprinted RAM chips if the chips are permanently glued to the
motherboard, so removal destroys them. An operating system can help defend
against RAM imprinting caused by low temperatures if the system startup and
shutdown code always overwrites all regions of memory that could have been
storing secrets. This overwriting forces an attacker (i) to avoid a normal shut-
down and (ii) to boot custom code for accessing the RAM chips.

Cold Boot Attacks. Cryptographic keys are often stored in a computer’s
main memory. Programmers expect this memory to be volatile and, therefore,
they assume cryptographic keys stored there will no longer be available after
the computer has been powered down. This is not an unreasonable assumption.
Main memory invariably is implemented by DRAM, and at standard operating
temperatures (25�–50�), a powered-o↵ DRAM chip will retain its values for at
most a few seconds before those values decay into random noise. However, when
cooled6 to −50�, values in a DRAM chip will remain uncorrupted for a minute
or more, and when that DRAM chip is submerged in liquid nitrogen (−196�),
data corruption is extremely low, even after an hour. These observations are
the basis for so-called cold boot attacks, which were developed to learn disk
encryption keys from a computer’s DRAM main memory after a shutdown or
hibernation operation that did not overwrite that DRAM main memory.

5X-ray radiation shielding can be unwieldy. Fortunately, X-ray band irradiation attacks
can be launched only by well-resourced threats, so X-ray shielding is rarely needed.

6Cooling to −50� can be achieved through evaporation by spraying a DRAM chip with
one of the commercially available compressed-air duster products sold to clean equipment.
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Cold Boot Attacks. Secrets stored in DRAM chips on a running com-
puter can be recovered if an attacker cools those chips and then

– restarts the computer, booting a kernel that requires only a small
memory footprint and that gives the attacker access to the rest of
memory, or

– removes those DRAM chips and inserts them on a computer that
gives the attacker access to this memory.

Other RAM Remanence. If a value V is stored for an extended period
at some location in a semiconductor RAM, then electromigration, hot carriers,
ionic contamination, and other physical phenomena can change the cell in ways
correlated with V . Moreover, these changes remain detectable—even after that
location has been overwritten and after the computer is powered-o↵. So data re-
manence has been created. To measure some of the changes requires specialized
equipment and requires removing the a↵ected RAM chip from the motherboard;
only some threats will have those capabilities. Other changes to RAM, though,
are directly visible to a running program. For example, a program might be
able to deduce what value a given location had stored for a long time simply by
reading that location’s uninitialized value at power-on.

RAM remanence caused by storing a value for an extended period is more
than a theoretical curiosity. It is potentially a significant vulnerability for secure
coprocessors, which have separate key memories and are likely to store long-
term cryptographic keys and other secrets in the same locations for extended
periods. It also is potentially a vulnerability for ordinary operating systems,
which typically occupy the same (low) memory region on a given computer
and, therefore, use the same fixed memory locations for storing their long-term
cryptographic keys and other secrets.

For those of us who do not control the design and fabrication of a system’s
semiconductor RAM chips, the obvious way to avoid remanence arising from
long periods of storing the same value at a given location is to arrange that no
memory location holds one of these values for very long. A few minutes is a safe
upper bound for storing a value. Two implementations of this defense are:

• Every few minutes, copy the value to a di↵erent memory location and then
write random values into the memory locations from which the value was
just copied.

• Every few minutes, complement the memory locations that are storing the
value and update a corresponding representation indication that records
whether the value or its complement is currently being stored. Modify read
operations to check the representation indication and, when appropriate,
return a complement of the value retrieved from memory.

Row-Hammer Attacks. Increases to the density of DRAM lead to an in-
crease in disturbance errors, which are changes to the value being stored in one
cell that are caused by accesses to another cell. Disturbance errors violate the
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axiom (A2, page 387) that writing to a given memory location is the only way
to change the value that location is storing. Disturbance errors become vulnera-
bilities if attackers can use them to change values being stored by targeted cells.
The vulnerability has been present in many of the DRAM chips produced since
2010. With these DRAM chips, cells are internally organized as an array, and
making a series of accesses to cells in one row can alter the values being stored
by cells in adjacent rows. Such a series of accesses is known as a row-hammer
attack.

DRAM Internals. To undestand how row-hammer attacks work requires
an understanding of DRAM circuitry. As depicted in Figure 12.3, a DRAM
consists of an array of cells (depicted by small rectangles) connected to a row-
bu↵er that, for each column in the array, contains a cell and a sense amplifier.
DRAM read and write operations access cells in the row-bu↵er; refresh for a
row is done by reloading the entire row from the row-bu↵er. So the row-bu↵er
at any time will store the same values as the cells in some selected row.

All DRAM cells in a given row of the array are connected to a wordline for
that row, and all DRAM cells in a given column of the array are connected to a
bitline for that column. Wordlines are driven by an address decoder; it selects
a single row for transfer to/from the row-bu↵er by elevating the voltage on the
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corresponding wordline and having low voltage on all other wordlines. Each
bitline is terminated by a separate sense amplifier in the row-bu↵er.

Figure 12.4 shows a circuit that implements a single DRAM cell. The word-
line voltage causes the transistor to control current flow between A○ and B○
and, thus, controls current flow between the capacitor and the bitline. During
periods when the wordline voltage is low, current flow between A○ and B○ is
blocked, so the capacitor is electrically isolated and retains its charge (except
for leakage). An elevated wordline voltage allows current flow between A○ and
B○, enabling the capacitor’s charge to be measured and/or changed by the sense
amplifier that terminates the bitline.

In order to service a read, write, or refresh operation for the contents of
some row r (say), the voltage is elevated on the wordline for r and then the
sense amplifier terminating each bitline b performs a sequence of 2 steps.

(i) The sense amplifier measures the voltage on bitline b and compares that
value to a threshold. The outcome of that comparison indicates the value of
the bit being stored by the capacitor Cr,b of the row r cell that is connected
to bitline b. A DRAM true-cell is storing 1 if the measured voltage was
found to be above a threshold and it is storing 0 if the measured voltage
was below; in a DRAM anti-cell, this representation is inverted.7

(ii) After making that voltage measurement, the sense amplifier sets the volt-
age on bitline b to a value that will cause the charge in Cr,b to be set
according to whether the corresponding cell in the row-bu↵er has been
storing a 0 or 1.

• For a read operation or a refresh operation, the charge in Cr,b is
restored, thereby compensating for past charge leakage and for charge
loss from performing the measurement in step (i).

• For a write operation, the charge in Cr,b is set according to the value
of the new bit to be stored.

7A DRAM chip might include a mixture of true-cells and anti-cells.
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Figure 12.5: Row-hammer Attack

Physics of Row-hammer Attacks. The laws of physics imply that a change
to the current flow on a wordline induces a current flow in all physically parallel
wordlines. The induced current is higher in wordlines that are physically closer,
so a change to the current flow in the wordline for a row r induces the largest
flow current in the wordlines for rows r + 1 and r − 1. That induced current can
cause transistors in row r + 1 and r − 1 cells (but possibly cells of other rows
too) to allow a short period of modest current flow between the capacitors they
control and bitlines. Those current flows leak charge from the capacitors.

If enough charge gets leaked from a capacitor Cr,b before the next refresh
operation is performed for row r, then Cr,b would transition from storing an
above-threshold charge to storing a below-threshold charge—a disturbance er-
ror. For a true-cell, a 1 changes into a 0; for an anti-cell, a 0 changes into a 1.
DRAM designers have an incentive to have a large interval between refresh oper-
ations, because performing a refresh, read, or write operation requires exclusive
use of the row-bu↵er and, therefore, read and write cannot be overlapped with
refresh. So the interval between refresh operations for a given row on a modern
DRAM typically is chosen to be just small enough to remediate ordinary charge
leakage. That interval does not forestall disturbance errors caused by charge
leaks resulting from repeated access to adjacent rows.

Executing a Row-hammer Attack. Disturbance errors that corrupt
the values stored by cells in victim rows r−1 and r+1 of a DRAM can be
caused when a program repeatedly performs memory accesses that elevate
and drop the voltage on the wordline for aggressor row r.

Code that performs a row-hammer attack is given in Figure 12.5. Variable
x should be stored in a DRAM row that is adjacent to the victim row; variable
y should be stored in any other row.8 The flush operations evict x and y from
the cache to ensure that the load instructions in each loop iteration elevate the
intended wordline voltages by fetching the values from the DRAM. Execution
of mfence at the end of each iteration drains the pipeline, thereby preventing
pipeline logic from suppressing9 the load operations for r1 and r2. By accessing

8If x and y are each stored in di↵erent rows that are adjacent to the victim row, then the
attack is known as double-sided hammering. With many-sided hammering, there are more
than two aggressor rows; it is e↵ective when the geometry of a specific DRAM realization
causes additional inductive couplings between wordlines.

9Pipeline logic often will skip performing an update to memory or registers if that update
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x in alternation with y, the loop repeatedly applies the voltage for selecting
the wordline for the row storing x, even with a DRAM implementation where
consecutive read accesses to the same row are serviced by the row-bu↵er without
repeatedly selecting and copying that row to the row-bu↵er.

Defending Against Row-hammer Attacks. Incorporating an error-correcting
code (ECC) into each DRAM row might seem the obvious defense against row-
hammer attacks. The number of ECC bits required per row, however, is pro-
portional to the maximum number of cells in a row that could need to be
corrected. Since a row-hammer attack can corrupt many cells in a victim row,
and any DRAM row could be a victim row, we would require many ECC bits.
That storage overhead makes using ECC an impractical defense.

Frequent refresh operations is the other obvious defense. But additional
refresh operations consume power and reduce DRAM bandwidth by leaving less
time for read and write requests. Moreover, to defend against a row-hammer
attack, frequent refresh for all rows is not necessary. Additional refresh is needed
only for potential victim rows—any row r adjacent to one or more rows that,
in aggregate, were frequently accessed since r was last refreshed.

Various schemes have been suggested for deployment in a DRAM chip or
memory controller in order to identify potential victim rows and initiate re-
fresh just for those. Two of the more influential schemes are TRR (Target
Row Refresh) and PARA (Probabilistic Adjacent Row Activation). TRR re-
quires additional state; PARA does not require additional state but only gives
a probabilistic guarantee.10

TRR: A row r′ is deemed a potential victim row and refreshed if the number
of accesses to any adjacent row has reached a chip-specific threshold MAC
within a chip-specific period of length tMAW . Variations include:

• Use the aggregate number of accesses to a set of adjacent rows as the
basis for deciding whether a row should be refreshed.

• Use sampling on the stream of DRAM accesses to approximate the
number of accesses to each row.

• By using a fixed-depth stack, maintain access counts for only some
fixed, small number of rows that have received the largest number of
accesses within the last tMAW period.

PARA: Whenever a row is activated then, with probability p, refresh one of its
two adjacent rows. Thus, the probability that an access to a neighboring
row does not cause r to be refreshed is 1−p�2, and the probability that row
r is not refreshed during a row-hammer attack involving N total accesses

will be overwritten before being read. In the loop of Figure 12.5, registers r1 and r2 are not
read before being loaded again.

10Both schemes have been implemented in some DRAM chips and in memory controllers.
TRR support, going by the name refresh management (RFM), appears in recent generations
of JDEC (Joint Electron Device Engineering Council) DRAM memory standards.
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to rows neighboring r is (1 − p�2)N . The table below uses this formula
to give the probability that a row-hammer attack involving N accesses
would succeed when refresh is expected to be performed only once for
every 1000 accesses (p = .001). Probability of success for a row-hammer
attack is given both for a single refresh period (64 ms) and for a year.

Duration N = 50K N = 100K N = 200K
64 ms 1.4 × 10−11 1.9 × 10−22 3.6 × 10−44
1 year 6.8 × 10−3 9.4 × 10−14 1.8 × 10−35

12.4.2 Attacks on Magnetic Storage

Hysteresis is what makes magnetization well suited for implementing non-volatile
storage. We create a magnetic storage medium by applying a thin film of fer-
romagnetic material to a disk platter or a tape. The ferromagnetic film en-
ables physically disjoint regions—called domains—on the surface of that stor-
age medium to assume either of two magnetic polarities. A bit string is then
represented by the sequence of magnetic polarity changes encountered by a
read/write head while traveling above the series of domains that constitute a
track on the storage medium. On magnetic tapes, tracks run parallel to the
length; on magnetic disks, tracks are concentric circles.

A storage device is realized by using (i) some magnetic storage medium,
(ii) read/write heads to sense and to set the magnetic polarity for domains in
a track segment11 passing underneath, (iii) mechanisms to select which track
segments pass underneath the read/write heads, and (iv) electronics for trans-
lating a sequence of magnetic polarity changes to/from the string of bits being
represented.12 On a tape drive, one read/write head typically will cover all of
the tracks; a motor spools the tape forward or backward, so some selected track
segment passes underneath this read/write head. A disk drive typically has a
read/write head for each platter surface; all of the platters are rotating in tan-
dem, and there is a mechanism for positioning read/write heads over a selected
track on all platters.

A write operation is performed by activating the read/write head to set the
magnetic polarities for the sequence of domains that are passing underneath.
Subsequent read operations recover that bit string by measuring the average
magnetization in each domain as it passes underneath the read/write head; a
sequence of polarity transitions is constructed from those averages. Because
the average magnetization that a read measures for a domain will indicate the
polarity of the last magnetization from a write to that domain, axioms A1 and
A2 (page 387) that we expect to hold for a storage device should indeed hold.

The averaging performed in a read operation when a domain passes under-
neath provides a way to compensate for two e↵ects:

11Depending on the device, a track segment might be known as a record, a sector, or a block.
12Modern magnetic storage devices use run-length limited translation to ensure that fre-

quent changes in the direction of magnetization occur for all bit strings—even bit strings
containing long sequences of the same bit.
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• Positioning Errors. Positioning a read/write head over a moving track is a
mechanical operation. So a slightly di↵erent region of the storage medium
passes underneath the read/write head each time a given domain is read
or written.

• Partial Magnetizations. For performing write operations, an electromag-
net in the read/write head is used to set the magnetic polarity of domains
passing underneath. An electromagnet that is too strong would set the
magnetic polarity for a large surrounding region (perhaps including other
domains). So a weaker electromagnet is used. But due to natural varia-
tions in magnetic susceptibility of materials, using the weaker electromag-
net means that portions of a domain passing underneath the read/write
head might not get magnetized with a new polarity.

To overcome these e↵ects, and have read and write work as expected, (i) the
threshold used in deciding a region’s magnetic polarity is lowered, and (ii)
read/write head positioning is engineered to be accurate enough to ensure sig-
nificant (if not complete) overlap in the area that passes underneath each time
a given domain is being accessed. These implementation tolerances, however,
can cause remanence.

Remanence in Magnetic Storage. When attackers can move a magnetic
storage medium into a laboratory, analysis with magnetic force microscopy
(MFM) becomes possible. MFM creates an image of the medium’s surface.
Each point in that image depicts the magnetization (strength and polarity) for
a small area of that medium’s surface—an area far smaller than a domain. Not
surprisingly, such an image can be used to learn the values being stored. We
average the polarities of points in the image that are located within each domain
forming a track, detect transitions from those averages, and use that sequence
of transitions to reconstruct the values being stored on the medium.

An image produced by MFM also will contain two kinds of points that are
forms of remanence.

• Magnetized points located outside of any domain. These points are most
likely to be near a track edge or at the boundary between domains within
a track. They are caused either by positioning errors or by regions of
the storage medium that have high magnetic susceptibility and are near
a domain.

• Disparate points within a domain. Points arise that are within a domain
and have a di↵erent magnetic polarity than the average for that domain.
This occurs whenever the last write to that domain did not change some
small region’s magnetic polarity, because that region has low magnetic
susceptibility.

What can this remanence reveal? A region containing many disparate points
probably is indicating the value being stored prior to the last write.
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Magnetic Disk Sanitization. Servers, desktop computers, and personal de-
vices will be decommissioned and replaced from time to time, then repurposed,
donated, or discarded. Part of the decommissioning should be to erase informa-
tion that the computer’s disk was storing, since erasure protects the confiden-
tiality of information without requiring assumptions about access controls that
computer will enforce in the future.

The procedure to erase the contents of a magnetic disk is called disk saniti-
zation. Three approaches13 are: overwriting, degaussing, and shredding. Which
approach is the most appropriate for a given setting will depend on the capabil-
ities of the threat and on whether the disk must still be usable after sanitization
has been performed.

Overwriting. With a correctly operating magnetic disk, writing a new value
prevents a later read operation from recovering the overwritten value. But a
write does not necessarily prevent MFM from recovering the overwritten value
and perhaps earlier values, depending on the encoding that was used to represent
bit strings.

• With the data encodings used for disks in mid 1990’s and earlier, over-
writing multiple times with di↵erent and unpredictable values is likely to
erase a value and any associated remanence.

• With the encodings that achieve high density in modern magnetic disks,
recovering old values from remanence is virtually impossible, so overwrit-
ing a value once su�ces to prevent recovering that value by using MFM.

However, if a given domain has the same polarity for long periods of time and/or
the magnetic media is stored at elevated temperatures, then a bias for that
polarity is created because the threshold for setting the magnetization to that
polarity will be permanently lowered. Later writes will not alter this bias. So,
in a laboratory, the original value stored using that domain would thereafter be
detectable.

Although remanence is not a problem with modern magnetic disks, they
do have features that complicate the use of overwriting for performing disk
sanitization.

• Some disk controllers bu↵er values rather than immediately updating the
magnetic storage medium. With such a controller, overwriting (to erase
a value) is not guaranteed to perform write operations on the magnetic
storage medium, and a sequence of overwrites made to the controller might
not translate into the same sequence of writes to the magnetic storage
medium.

13These approaches also work for sanitizing magnetic tape or other magnetic storage media.
They do not work for SSD’s (solid-state drives), because the command to delete or update the
contents of a block on an SSD leaves the contents of that block intact and, instead, re-maps
that block’s address. Specialized sanitization commands are therefore typically provided by
SSD hardware.
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• Some disks forestall data loss by detecting when a sector or track is becom-
ing marginal and, in response, copy its contents to an alternate region of
the magnetic storage medium. Thereafter, accesses to the marginal region
are redirected to the new region by the disk controller. So the contents of
the sector or track at the time it was deemed marginal cannot be erased
by overwriting.

Degaussing. A degauser employs an electromagnet to create a strong mag-
netic field. When the degauser is brought into close proximity to a disk, this
strong magnetic field changes the magnetic polarities for all regions of the mag-
netic storage media. Values represented by magnetic polarities in domains and
in remanence are thus destroyed. Use of a degauser, however, also can leave a
disk inoperable by (i) corrupting formatting information that had been magnet-
ically encoded on the storage media, and (ii) altering the magnets used in the
motors that rotate the disk and that position the read/write heads.

Shredding. The magnetic storage medium is cut into small pieces that can-
not be reassembled. To be completely e↵ective, none of these pieces should be
large enough for MFM to recover useful information—with modern high-density
drives, the pieces must be made quite small. Needless to say, shredding leaves a
disk unusable, though some drives do have replaceable magnetic storage media
and, therefore, some of the mechanism might be reused with new media.

12.4.3 Remanence Software Generates

Developers favor interfaces that hide implementation details. Security engineers,
however, must have knowledge of those implementation details when seeking to
avoid remanence. A trivial cause of remanence is operations that we expect
would provide sanitization but don’t. File systems o↵er good examples. Invok-
ing a file system’s delete or write operations would seem an obvious way to
obliterate a file’s contents.

• In some file systems, invoking delete on a file in some directory has no
e↵ect on the file contents being stored on disk—it merely removes the file’s
name from that directory after copying that file name to another trash
directory. So delete does not implement sanitization, because it does
not prevent subsequent access to the file’s contents through the trash
directory.

• In other file systems, a log records the old and new values for each write,
thereby allowing earlier versions of a file to be recreated. So overwrit-
ing a file does not implement sanitization, because it does not prevent
subsequent disclosure of file contents that had been overwritten.

You might expect that every file system interface would provide an operation
to perform sanitization, even if delete or write do not have that e↵ect. The
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prevailing view, however, is to favor user convenience over security. So con-
temporary file systems make it easy for a user to reverse a delete or write
operation and make it di�cult to obliterate information irreversibly. Therefore,
sanitization operations are not provided.

A second way that a program might generate remanence is by (i) being
assigned access to some stateful resource14 R, (ii) writing and reading R, and
finally (iii) relinquishing access to R. If R is not sanitized before being assigned
to some other program P (say), then R will contain remanence that P can
read. Note, sanitization of R not only requires overwriting its state; state also
would have to be flushed from caches and bu↵er pools (which might be hidden
in lower levels). The operating system would seem a natural place to perform
this sanitization, since an operating system allocates resources and has access
to memory, bu↵er pools, and caches. Operating system designers, however, cite
performance degradation as the reason for not doing sanitization by default—
overwriting state consumes processing time, and flushing caches and bu↵er pools
cause degraded performance when execution restarts. Remanence should thus
be expected in a stateful resource R unless each individual program to which R
is allocated sanitizes R before relinquishing that access.

A third cause of remanence can arise when an implementation maintains
copies of state in order to satisfy performance goals.

• A large virtual memory fits into a small real memory because only some
pages are present in real memory at any time. But all pages reside in a
paging file on disk, so state is duplicated.

• A file system is able to deliver faster access by bu↵ering copies of a file’s
disk blocks in main memory. So state is duplicated.

Clients have no direct way to delete or overwrite these state copies. Moreover,
because the state copies are invisible to clients, an implementation would not
necessarily be sanitizing the state copies when an associated abstraction is san-
itized. So the state copies are a form of remanence. Whether that remanence
can be accessed by an attacker will depend on whether access to those state
copies is being controlled. Often a state copy will be protected by di↵erent
access control mechanism than used to protect the original, as illustrated in the
virtual memory and file system examples above.

Finally, remanence—whether created by software or exhibited by RAM or
magnetic storage—is harmless if it derives from encrypted state. Moreover, en-
crypted state can easily be sanitized by deleting or overwriting the key. The
costs for encrypting and decrypting state, however, can be significant if done by
software. To lower those costs, newer I/O devices and CPUs provide hardware
support. A disk controller might, for example, include hardware to generate a
symmetric key, thereafter using that key to encrypt blocks as they are written

14The resource might be a register, region of real or virtual memory, disk block, or a software
abstraction that directly or indirectly uses these hardware storage mechanisms to maintain
state.
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to the disk and to decrypt blocks as they are read. Modern CPU designs in-
creasingly will generate, store, and use per-principal (sometimes called enclave)
keys to encrypt, decrypt, and/or digitally sign information to/from the CPU
chip, whether that information is en route to a cache, to a page frame in the
main memory, to a page file on a disk, or to a network adapter.15

Notes and Reading

Tamperproof Processors. Programmers assume that computer hardware
will function as expected. But even mainframe computers in locked machine
rooms are vulnerable to tampering during regularly-scheduled maintenance pe-
riods. Molho [17] discusses how a maintenance technician, by changing just a
few wires in an IBM 360/50 mainframe, could disable that processor’s circuits
for restricting execution of privileged instructions and for protecting parts of
memory.

With the advent of small and low cost microprocessors, computers no longer
had to be housed in machine rooms. Cash machines, smartcards, and personal
computers were now feasible. Because legitimate users required physical access
in order to operate this equipment, attackers had physical access, too. Price [20]
introduced many of the now standard approaches for building tamperproof pack-
agings: potting to obstruct access to components and connections, fine wires in
that potting to detect penetration attempts, and di↵erent positioning for those
wires in each chip instance so that attackers who deconstruct one instance of a
chip do not learn information that helps in compromising another instance.

IBM researchers were among the first to build and write about a system
that used these methods. They argued that sales of personal computers would
benefit from a rich market for application software, but developers would be
reluctant to invest in building such software absent barriers to prevent illicit
copying. Software alone could not solve that piracy problem, since its execution
could be subverted by tampering with the hardware. Tamperproof hardware was
required. So a group at the Yorktown research laboratory developed the tam-
perproof µABYSS coprocessor [24] to support their ABYSS (A Basic Yorktown
Security System) architecture [26] for preventing illicit distribution of personal
computer software. Although µABYSS never became a product, it was a pre-
cursor to a series of tamperproof crypto-coprocessor products from IBM that
enjoyed considerable success in the market.

Tamperproof packaging interferes with only certain ways of getting physi-
cal access in order to monitor or change the operation of a circuit. Physical
access to a circuit is less concerning, however, if a circuit’s realization is itself
tamperproof. Physically unclonable functions (PUFs) are a class of intrinsically
tamperproof circuit realizations. Gassend et al. [6] introduced the term PUF
and proposed incorporating a PUF into an integrated circuit. Those authors,

15Arithmetic calculations and determining transfers of control require plaintext. So the
CPU internally uses plaintext, which forces its registers and other on-chip memory to store
plaintext.
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originally seeking a way to authenticate silicon chips, also discuss in [5] how to
use a PUF in solving other security problems. For more details about PUFS,
see the primer by Bauer and Hamlet [3] or the tutorial by Herder et al. [11].
Figures 12.1 and 12.2 are based on Suh and Devadas [23].

The idea of capturing unique physical properties of an inanimate object in
a digital signature had been brought to the cryptography community a decade
earlier by Simmons [21], who described two schemes developed in the 1980’s at
Sandia by a colleague Don Bauder. One scheme facilitated detection of counter-
feit paper money [2]; the other—a reflective particle tag (RPT)—enabled inven-
torying nuclear weapons in support of the Intermediate-range Nuclear Forces
(INF) treaty. Oliver and Fritz Kömmerling documented the next step with a
December 2000 patent filing [14] that showed how properties in the packaging
or substate for an integrated circuit could be used for a tamperproof approach
to generating a cryptographic key—in e↵ect, describing a special-purpose PUF.

Attacks on Memory. The e↵ects of cooling on RAM remanence was re-
ported by Link and May in 1979 [15], and those e↵ects were reconfirmed for
circa 1988 commercially available DRAM in Wyns et al. [28, 27] and for circa
2002 commercially available SRAM in Skorobogatov [22]. Weingart [24] in 1987
suggests that by freezing the RAM chips implementing a volatile memory, an at-
tacker could recover information stored there before the computer was powered
down. Actual attacks to recover encryption keys from DRAM after a computer
had been powered down were demonstrated by a group at Princeton [10]; the
term “cold boot attack” was introduced in that paper.

Cooling is not the only physical e↵ect that attackers can use to prolong
remanence for RAM chips. Weingart [25] notes that X-ray band irradiation
of a RAM chip will imprint the chip’s contents for later inspection. He also
suggests that short duration high-voltage spikes might have the same e↵ect.
See Gutmann [9] for explanations of how various physical phenomena cause
data remanence in semiconductor memory devices.

Kim et al. [12], describes why row-hammer attacks ought to be possible,
gave code (the basis for Figure 12.5) to cause these targeted disturbance errors,
and analyzed possible defenses. Probabilistic Adjacent Row Activation (PARA)
was introduced in that paper as a lower-cost alternative to row-hammer defenses
that use row-access counts (or approximations) for instigating additional refresh
operations of likely victims. DRAM disturbance errors, however, had been ob-
served starting with the first commercially available DRAM, the Intel 1103
introduced in October 1970. By 1999, Van de Goor and de Neef [19] were con-
sidering a “hammer test” in experiments to assess ways to evaluate DRAM chip
reliability; the hammer test would write each cell 1000 times and then verify
that nearby cells were not disturbed.16 The goal of avoiding disturbance er-
rors for all workloads—especially given expectations of the higher-density chips

16The term “hammer test” had further evolved by August 2013, where we see a slide
deck [16] for a MemCon talk that is using the term “row hammer” for this source of DRAM
disturbance errors.
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to come—resulted in Intel engineers developing schemes that used row-access
counts to instigate additional row refreshes. These schemes are described in
patent applications [1, 7] that were filed in 2012 (becoming public only some
months after Kim et al. [12] had been submitted for publication). The Intel
work doubtless is the basis for Target Row Refresh (TRR) found in the various
DRAM standards from JDEC (Joint Electron Device Engineering Council).

Since virtually all systems included DRAM, the revelations in Kim et al. [12]
prompted the security community to engage. A 2020 retrospective by Mutlu and
Kim [18] surveys that work, including how attacks to flip a bit can be leveraged
for taking control of a system, how software might be modified to resist row-
hammer attacks, and various proposals for hardware defenses. Various TRR
versions are being implemented today by DRAM manufacturers—probably be-
cause TRR is part of JDEC DRAM standards and involves no changes to other
hardware or to software. Frigo et al. [18] measure the e↵ectiveness of these
TRR implementations in defending against row-hammer attacks, finding that
the defenses being deployed in 2020 were not completely e↵ective.

Attacks on Magnetic Storage. Guttmann [8] discusses the relevant physics
foundations and engineering challenges for implementing magnetic storage (circa
1996), how remanance is being produced, recovery of values using magnetic force
microscopy and other laboratory instrumentation, and protocols for erasing val-
ues. Although some of that material does not apply to newer storage tech-
nologies, that paper remains an important resource, and Guttmann has been
providing updates on his web site. Generally accepted guidance for sanitization
of magnetic media is given by NIST [13]. This guidance is not followed often
enough, though, as a study by Garfinkel and Shelat [4] showed. In that study,
the authors collected a large number of decommissioned computers and, because
disk sanitization had been performed poorly or not at all, were able to recover
confidential personal from the disks.
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