
Chapter 12

Program Rewriting

With program rewriting, we ensure that an untrusted program S complies with
a given security policy by modifying S before execution. The modifications
might cause execution to halt when a security policy violation seems imminent,
or they might involve other changes that prevent security policy violations. To
avoid adding unnecessary checks, analyzers and optimizers can be used during
program rewriting.

Program rewriting can be used to enforce security policies that prohibit cer-
tain program states, program actions, or sequences of states or actions. More-
over, with the entire program available for analysis and modification, these secu-
rity policies can be formulated in terms of that program’s abstractions. Analysis
of the entire program also allows enforcement of policies where an execution is
allowed only if certain other executions are possible.

Untrusted program S can be in a high-level language, assembly language,
or machine language. We require only that the program rewriter be able to
extract from S the information required for generating the necessary modifica-
tions. Program rewriting for machine language binaries is attractive because
software is usually distributed in this form. However, information that a pro-
gram rewriter needs for performing modifications can be difficult to extract from
a machine language binary. With machine language binaries, abstractions—such
as procedures, objects, and application-specific data structures—may hard to
identify, and constants that are addresses (and might need to change when code
is added) must be distinguished from constants that are integers (and should not
be changed). So most program rewriting is formulated for assembly language
or high-level language programs.

351

November 2023 Copyright Fred B. Schneider All rights reserved

352 Chapter 12. Program Rewriting

12.1 Expectations of Program Rewriters

A program rewriter for enforcing a security policy P implements a function TP (⋅)

that transforms programs S into programs TP (S) satisfying two requirements:

Soundness. TP (S) satisfies security policy P .

Transparency. If S satisfies security policy P then the runtime environ-
ment would not distinguish executions of TP (S) from executions of S.

The Soundness requirement should not be a surprise, but the Transparency
requirement might be. The Transparency requirement is what enables TP (S)
to be used as a replacement for S. Typically, the Transparency requirement
restricts the modifications that program rewriting can make to S. Limitations on
modifications, however, can translate into limitations on what security policies
can be enforced by program rewriting.

12.1.1 *Formalization of Soundness and Transparency

Formalizations of the Soundness and Transparency requirements depend on hav-
ing formalizations of program execution and security policies. Figure 12.1 gives
notation we use in those formalizations.

Program Execution. The possible executions of a program S define a set ΣS
of execution traces. Each execution trace σ ∈ ΣS is a finite or infinite sequence
s0 s1 s2 . . . of states, where the sequence corresponds to a possible execution of
S.

We require some form of program counter to be among the variables mapped
by each state. The program counter value in a state si of an execution trace
s0 s1 s2 . . . si si+1 . . . defines the instruction or statement that was executed in
si to produce si+1 in the execution trace.

• For machine language programs, variables mapped by each state give also
values for registers and memory locations. An execution trace gives the
state before and after each atomic action that executed.

• For high-level language programs, variables mapped by each state also give
values for the high-level program’s variables. An execution trace gives the
state before and after each statement that executed.

In addition, a state might map variables that expose information managed by
the runtime environment. For example, the state might map a variable that
evaluates to the values being stored on an I/O device.

Security Policies. Security policies are formalized as predicates P (⋅) on sets
of execution traces. Therefore, P (ΣS) holds if and only if S satisfies the security
policy that P (⋅) specifies. The use of such predicates to specify security policies
gives considerable expressive power about what a security policy can proscribe.

November 2023 Copyright Fred B. Schneider All rights reserved

12.1. Expectations of Program Rewriters 353

For s a state:

s.x: the value that state s gives variable x.

s.Expr : the value that state s gives expression Expr .

s∣V : the state that (i) gives the same values to the variables
named in set V of variables as state s gives to them,
and (ii) gives no values to other variables.

s=V s
′: abbreviates s∣V = s′∣V

For s0 s1 s2 . . . an execution trace σ:

σ[i]: si

σ[..i]: s0 s1 s2 . . . si

σ[i..]: si si+1 . . .

σ∣V : is the execution trace derived from execution trace σ
by replacing each state s in σ with state s∣V and then
eliminating consecutive, identical states in that result-
ing execution trace.

σ=V σ
′: abbreviates σ∣V = σ′∣V

Figure 12.1: Notation for States and Execution Traces

A predicate on sets of execution traces can stipulate that only certain states are
allowed in an execution trace, that only certain orderings of states are allowed
in an execution trace, and/or that a relation involving two or more execution
traces be satisfied for any one of those execution traces to be allowed.

Formalization of Program Rewriter Requirements. The Soundness require-
ment for a program rewriter TP (⋅) asserts that some intended security policy will
be enforced because the set of execution traces for TP (S) satisfies the predicate
P (⋅) specifying that intended security policy:

Soundness: P (ΣTP (S)) = true for all programs S. (12.1)

For formalizing the Transparency requirement, we posit that an execution
trace τ ∈ ΣTP (S) of TP (S) will resemble an execution trace σ ∈ ΣS of S when both
τ and σ give the same sequences of values to parts of the state that are visible to
the runtime environment. Letting Ext be the set of variables containing those
parts of the state that are visible to the runtime environment, we would have
that τ resembles σ if and only if τ=Ext σ holds. The Transparency requirement
for program rewriter TP (⋅) is then formalized as follows.

Transparency: P (ΣS) ⇒ (∀τ ∈ ΣTP (S)∶ (∃σ ∈ ΣS ∶ σ=Extτ)) (12.2)

Notice, if P (ΣS) does not hold for a program S then (12.2) imposes no re-
strictions on set ΣTP (S) of possible executions by the modified program. So if

November 2023 Copyright Fred B. Schneider All rights reserved

354 Chapter 12. Program Rewriting

P (ΣS) does not hold, then the Transparency requirement allows TP (S) to halt
or undertake other enforcement actions—even though such executions of TP (S)
do not resemble executions of S.

Notice, too, that execution traces σ could not be found to make σ=Extτ in
(12.2) hold if (i) the program rewriter produces TP (S) by adding code to S and
Ext includes the program counter or (ii) the program rewriter produces TP (S)
by adding variables to S and Ext includes those variables. The Transparency
requirement thus implies that the behavior of the runtime environment may not
be affected by the changes to the program counter or changes to the variables
that the program rewriter has added.

12.1.2 Example: Confidentiality of Values in a Set

Elements that finite set info stores are assumed to be pairs ⟨v, t⟩, where v is
some data, t is a tag, and tags have value C (confidential) or U (unrestricted).
Tag values are ordered according to U ⊏ C, with U ⊑ C an abbreviation for
U ⊏ C ∨ U = C. The programs of concern are deterministic. They operate by
reading from variable info and generating output by writing to a variable out .
They also read variable priv to learn a tag giving the privileges of the user who
is executing the program.

The security policy to be enforced is a form of confidentiality: information
about whether a pair ⟨v, t⟩ is in info must not be allowed to affect updates to
out unless t ⊑ priv holds. For example, info might be implementing a directory
of files, where each element ⟨v, t⟩ of info is a directory entry and where tag t
indicates whether that file is unrestricted or confidential. The security policy
would then prevent a directory-listing program from revealing anything about
the confidential files, including whether they are present in the directory.

To be concrete, the program

if ⟨v,C⟩ ∈ info then out ∶=1 else out ∶=2 (12.3)

violates the security policy if executed when priv = U holds, because the update
to out reveals whether info is storing a pair having tag C but C ⊑ priv does not
hold. The program

oldSize ∶= ∣info∣; info ∶= info ∪ {⟨v,C⟩};
if oldSize ≠ ∣info∣ then out ∶=1 else out ∶=2

(12.4)

also violates the security policy. A set does not change its size as a result of
adding an element if that element is already present in the set. Therefore,
executing (12.4) in a state satisfying priv = U updates out in a way that reveals
whether info is storing the pair ⟨v,C⟩.

The predicate Conf (⋅) formalizing the security policy to be enforced implies
that execution traces have the same updates to out if their initial states (i) agree
on the value of priv and (ii) agree on all pairs ⟨v, t⟩ ∈ info satisfying t ⊑ priv :

Conf (ΣS) ∶ (∀σ,σ′ ∈ ΣS ∶ init(σ[0], σ′[0]) ⇒ σ={out}σ
′
) (12.5)

November 2023 Copyright Fred B. Schneider All rights reserved

12.1. Expectations of Program Rewriters 355

where

init(s, s′) ∶ s.priv = s′.priv ∧ s.F (info,priv) = s′.F (info,priv)

formalizes (i) and (ii) if function F (set , lvl) evaluates to the subset of set con-
taining pairs ⟨v, t⟩ satisfying t ⊑ lvl :

F (set , lvl) ∶ {⟨v, t⟩ ∣ ⟨v, t⟩ ∈ set ∧ t ⊑ lvl}

As a sanity test for formalization (12.5), we check whether Conf (ΣS) holds
for programs (12.3) and (12.4). And we find that Conf (ΣS) is false for each.
This is because ΣS for (12.3) and (12.4) contains execution traces σ,σ′ ∈ ΣS
with initial states that agree on priv = U, agree on subset F (info,priv) of info,
but disagree on other pairs in info. So different values would be written to out
in σ and σ′, which means that

init(σ[0], σ′[0]) ⇒ σ≠{out}σ
′

holds. Conf (ΣS) is false, as it should be for these non-compliant programs.

Enforcement by Program Rewriting. Violations of Conf (⋅) can occur
only if executions can start in a state satisfying F (info,priv) ≠ info. We thus
explore program rewriters to produce output programs TConf (S) that start ex-
ecuting S in states where F (info,priv) = info holds.

The obvious approach would be for a program rewriter to embed S in an if
statement that checks whether F (info) = info holds.

TConf (S) ∶ if F (info,priv) = info then S else halt (12.6)

This approach is flawed, though. The Soundness requirement is not satisfied by
(12.6), because Conf (ΣTConf (S)) does not necessarily hold if (as we show below)
there is an initial state satisfying F (info,priv) = info where execution of input
program S updates out in any way.

Let S be the program given in (12.3). An execution of (12.6) in an initial
state satisfying priv = U ∧ F (info,priv) ≠ info will halt without performing
any updates to out , but an execution of (12.6) in an initial state satisfying
priv = U ∧ F (info,priv) = info will store 2 in out . The two execution traces
have different updates to out . So the final value of out reveals that ⟨v,C⟩ /∈ info
holds even though C /⊑ priv holds. Thus, executing the rewriter’s output when
S is (12.3) violates the requirement that a pair ⟨v, t⟩ stored by info not affect
updates to out unless t ⊑ priv holds—the program produced by the rewriter did
not enforce the security policy. Formally, we have shown there exist execution
traces σ,σ′ ∈ ΣTConf (S) where

init(σ[0], σ′[0]) ⇒ σ≠{out}σ
′

holds, falsifying the universal quantification in Conf (ΣTConf (S)), which means
the program rewriter does not satisfy formal defintion (12.1) of the Soundness
requirement.

November 2023 Copyright Fred B. Schneider All rights reserved

356 Chapter 12. Program Rewriting

A different approach for ensuring that S is executed only in states that
satisfy F (info,priv) = info is to first remove from info all pairs having a tag t
satisfying t /⊑ priv .

TConf (S) ∶ info ∶=F (info,priv); S (12.7)

To establish that program rewriter (12.7) satisfies the Soundness requirement,
we must prove that Conf (ΣTConf (S)) holds for every program S. Definition (12.5)
of Conf (⋅) implies that to prove Conf (ΣTConf (S)), we must prove σ={out}σ′ for
any execution traces σ,σ′ ∈ ΣTConf (S) satisfying init(σ[0], σ′[0]). From TConf (S)
definition (12.7), we have that σ is sτ and σ′ is s′τ ′ for τ, τ ′ ∈ ΣS . So to prove
σ={out}σ′, it suffices to prove τ={out}τ ′, because the first statement in TConf (S)
is an assignment that does not update out and, therefore, sτ={out}s′τ ′ follows
from τ={out}τ ′.

From init(s, s′), we conclude that (i) all variables except info agree on their
values in s and s′, and (ii) s.F (info,priv) = s′.F (info,priv). The assignment
statement at the beginning of TConf (S) thus causes τ[0].info = τ ′[0].info to
hold. That means τ[0] and τ ′[0] agree on all variables (including info). The
assumption that S is deterministic then implies that the execution of S starting
from states τ[0] and τ ′[0] will be identical, so τ = τ ′ holds and τ={out}τ ′ does
too.

We show that program rewriter (12.7) satisfies the Transparency requirement
by proving that (12.2) holds. Assume antecedent Conf (ΣS) holds and let τ be
any execution trace in ΣTConf (S). We must show there exists some execution trace
σ satisfying σ ∈ ΣS and σ={out}τ . By construction, τ has the form sτστ where
sτ is a state and στ ∈ ΣS holds. The assignment statement at the beginning
of TConf (S) does not update out and, therefore, στ={out}sτστ holds. Since
τ = sτστ we conclude στ={out}τ holds. So στ is the witness needed for showing
the existence of an execution trace σ satisfying σ ∈ ΣS and τ={out}σ.

12.2 Software-Based Fault Isolation (SFI)

Sandboxing is a form of isolation. It prevents an untrusted program from cor-
rupting memory outside of a specified data region. Addresses within the data
region are legal for store instructions; addresses outside that region are illegal.
Here is an example sandboxing policy.

64K Region Sandboxing Policy. Do not execute store instructions
that would update memory outside of the 64K data region that starts
at address 0xα00001 and ends at address 0xαFFFF, where α is fixed and
satisfies 0x0000 ≤ α ≤ 0xFFFF.

Such a policy would be useful, for example, when untrusted software is ex-
tending some system but, to keep overheads low, the extension is not run in

1The prefix “0x” indicates a hexadecimal value. A hexadecimal digit 0, 1, ..., 9, A, B, ..., F
conveys the value of a 4-bit binary number.

November 2023 Copyright Fred B. Schneider All rights reserved

12.2. Software-Based Fault Isolation (SFI) 357

a different hardware memory segment. Software-based fault isolation (SFI) en-
forces instances of the above sandboxing policy by using a program rewriter to
modify assembly language programs. The program rewriting adds code that
substitutes for the checking that would have been done if a separate hardware
segment was used for the extension.

Static analysis of an assembly language program S can enforce the above
sandboxing policy for a store instruction that uses a symbolic label to identify
the memory location that will be updated. A program rewriter can scan S to
locate such store instructions. For each store instruction found, the program
rewriter (i) locates the assembly language program’s declaration for the symbolic
label identifying the memory that the store instruction will update and (ii)
checks that this memory location is being allocated within the data region.

But not all store instructions will use symbolic labels to identify the memory
to be updated. A store instruction could, instead, use a register that contains
the address of the memory location to update. The store instruction2

store r1, [r2] ; [r2] ∶=r1 (12.8)

writes the value contained in register r1 to the memory location at the address
contained in register r2. To enforce a sandboxing policy for store instruction
(12.8), we must ensure that the address in register r2 is within the data region.
Static analysis cannot be used for this, since determining the value r2 (or any
variable) is undecidable in general.

However, runtime checks inserted by a program rewriter can be used to
ensure that the value of r2 is a legal address. For the above 64K Region Sand-
boxing Policy, the straightforward approach is to insert checking code before
the store:

cmp r2, 0xα0000 ; compare r2 with data region lower bound
jl error ; if r2 < 0xα0000 then goto error

cmp r2, 0xαFFFF ; compare r2 with data region upper bound
jg error ; if 0xαFFFF < r2 then goto error

store r1, [r2] ; [r2] ∶=r1

The modified program transfers control to error instead of violating the sand-
boxing policy.3

This program rewriting, however, depends on an assumption about control
flow—that the store instruction is executed immediately after the inserted in-
structions have been executed. That assumption is not sound if an attacker can
transfer control directly to the store instruction or into the middle of the in-
serted instructions. And an attacker could orchestrate such a control transfer by

2Assembly language instructions use the syntax “[r]” to indicate an operand stored at the
address in register r.

3We are ignoring that processor status registers might be read after executing the store,
having been set by the store or by some previous instruction. A program rewriter can use
static analysis to detect such uses of processor status registers. So we assume that, when
necessary, the program rewriter also generates the necessary code to save and restore those
values.

November 2023 Copyright Fred B. Schneider All rights reserved

358 Chapter 12. Program Rewriting

using a jmp or call instruction where the destination is given in a register that
the attacker can load; a return instruction also could be used if the attacker can
overwrite the top of the runtime stack (where the return address is presumably
stored). Although only jmp, call, and return instructions are mentioned here,
the defense given below will be effective against attacks involving other control
transfer instructions, too.

One way to defend against control-flow attacks for bypassing code that a
program rewriter adds, is to ensure that a program’s flow of control cannot
diverge from predefined paths; a program rewriter for enforcing that security
policy is the subject of §12.3. Here, we discuss an alternative. It replaces a
store instruction (12.8) with code that satisfies:

SFI1: If r2 contains a legal address addr and if a normal control flow is followed
to reach store instruction (12.8) then the memory at addr will be
updated.

SFI2: If r2 does not contain a legal address or if a normal control flow is
not followed to reach store instruction (12.8) then the memory loca-
tion that is updated nevertheless will be located somewhere in the data
region.

SFI2 defends against updates to illegal addresses by store instructions in the
original program. SFI2 also defends against an attacker setting the value of
r2 and then transferring control directly to a store instruction or into the
middle of the inserted code that precedes a store instruction. Also, rather than
halt execution, SFI2 redirects attempts to update illegal addresses, resulting in
updates to unexpected locations in the data region. Because a program might
continue executing from that corrupted state, SFI2 can make program debugging
quite difficult.

SFI1 and SFI2 each stipulate that an update be performed to some memory
location that is legal and, thus, the update is to an address with α for its high-
order bits. The following instruction sequence executes its store ι4 only after
constructing such addresses, using the low order bits of the address originally
in register r2. The constructed address appears in a register a0, which (as
discussed below) we assume is (i) available for use by code that the program
rewriter inserts and (ii) is never updated by the original program code.4

ι1: load a0, r2 ; a0 ∶= r2

ι2: and a0, 0x0000FFFF ; extract low-order address bits
ι3: or a0, 0xα0000 ; use α for high-order address bits
ι4: store r1, [a0] ; [a0] ∶=r1

Instruction ι2 zeros the high-order bits in register a0, leaving the low-order bits
unchanged. Instruction ι3 then sets the high-order bits in register a0 to α,

4Instructions provided by some processors can be used to write shorter instruction se-
quences that have the same effect as the code we give. For example, x86 and MIPS provide
a load instruction that changes only the high-order bits of a register. If a0 contains a legal
address, then such a load can replace ι2 and ι3.

November 2023 Copyright Fred B. Schneider All rights reserved

12.2. Software-Based Fault Isolation (SFI) 359

without changing the low-order bits in that register. Therefore, if execution
starts at ι1 and register r2 contains a legal address addr then register a0 will
contain addr when store instructions ι4 is executed. So requirement SFI1 is
satisfied.

To establish that SFI2 holds for instruction sequence ι2 through ι4, we must
show (among other things) that the store instruction at ι4 updates a legal
address even when control transfers directly to instruction ι2, ι3, or ι4. That
possibility leads us to posit (returning to its enforcement, below):

Register a0 Restriction. Register a0 is initialized with a legal address,
and a0 is never updated by the original program.

We can use a case analysis to establish that SFI2 holds under this restriction.

Case 1: Executions that start at ι1 where r2 contains an address that is
not legal. The subsequent execution of ι3 changes the contents of register
a0 to have high-order bits α, which means that the store instruction at
ι4 performs a legal update, as required for SFI2.

Case 2: Executions that start at instruction ι2, ι3, or ι4. Due to Register
a0 Restriction, execution that starts at instruction ι4 is a legal update
because a0 contains a legal address. If, instead, execution starts at in-
struction ι3 then the address ι3 stores into a0 remains legal (because only
the low-order bits were changed by executing ι3), and instruction ι4 will
be a legal update. Finally, executions that start at ι2 cause a0 to contain
a legal address because ι3 then produces a legal address by setting the
high-order bits.

Register a0 Restriction can be enforced by a compiler or by a program rewriter.
Use of a program rewriter seems preferable.5

We have assumed that an instruction will be executed only if it appears in
code that was output by the program rewriter. That assumption is not valid if
control transfers are possible to addresses in the data region, since bit strings
in the data region can be interpreted as instructions. However, the assumption
we are making cannot be violated if certain restrictions are enforced:

R1: The program rewriter’s output is stored as a separate code region.

R2: No writes to the code region are allowed during program execution.

R3: Only instructions in the code region are ever allowed to execute.

R1 can be subtle to enforce. Operating systems typically support allocation
of memory regions having only certain sizes (usually, powers of 2), and values
stored in uninitialized memory locations can be interpreted as instructions. To

5A compiler would enforce Register a0 Restriction by generating code that does not use
register a0. However, enforcement of the restriction with a complier precludes executing code
that has not been generated by a compliant compiler, which is problematic because software
is typically not distributed in source code form.

November 2023 Copyright Fred B. Schneider All rights reserved

360 Chapter 12. Program Rewriting

satisfy R1, a program rewriter’s output must fill all of the memory serving as the
code region. A program rewriter can fill any unoccupied memory by copying
into each byte a bit pattern that causes the processor to halt. An attacker
cannot benefit by performing a branch to one of those locations.

For enforcing R2, writes to the code region would be prevented if the data
region and the code region have disjoint addresses, because then store instruc-
tions cannot update memory locations in the code region.

To enforce restriction R3 when (as we have been assuming) the only control
transfer instructions are jmp, call, and return, we engage in further program
rewriting. First, we use a program rewriter to replace each call and return

instruction with code that uses a jmp instruction for implementing control trans-
fers.

• For a call instruction, the replacement code would (i) push a return
address onto the runtime stack, (ii) load a register with the address of the
procedure being invoked, and then (iii) execute a jmp instruction to effect
the transfer of control.

• For a return instruction, the replacement code would (i) pop the return
address from the runtime stack into a register and then (ii) execute a jmp

instruction that transfers control to that return address.

That leaves jmp as the only remaining control transfer instruction. So we next
turn attention to R3 for those control transfers.

Static analysis can be used to enforce restriction R3 for jmp instructions that
use a symbolic label to name the destination—the program rewriter checks that
the symbolic label is associated with an address in the code region. However,
static analysis cannot enforce restriction R3 for a jmp instruction like

jmp [r2] (12.9)

that transfers control to the instruction at the address contained in register r2.
Ensuring that the contents of r2 in jmp instruction (12.9) is the address of

an instruction in the code region is just like ensuring that the memory updated
by store instruction (12.8) is a location in the data region. So we investi-
gate inserting code before jmp instructions to ensure that restriction R3 holds.
Analogous to SFI1 and SFI2 would be:

SFI3: If r2 contains address dest of an instruction in the code region and
if normal control flow is followed to reach jmp (12.9) then control is
transferred to execute the instruction at dest .

SFI4: If r2 does not contain the address of an instruction in the code region
or if normal control flow is not followed to reach jmp (12.9) then control
is transferred to execute some instruction in the code region.

To be concrete, we give replacement code for jmp instruction (12.9) in con-
junction with a 64K byte code region starting at address 0xβ0000 and ending

November 2023 Copyright Fred B. Schneider All rights reserved

12.2. Software-Based Fault Isolation (SFI) 361

at address 0xβFFFF for fixed β, with 0x0000 ≤ β ≤ 0xFFFF and α ≠ β.6 To start,
assume that all instructions are 4 bytes long and that each instruction starts at
an address evenly divisible by 4. So a legal instruction address will have β for
its high-order bits and 00 for its two lowest-order bits. We relax the assumption
about fixed instruction lengths below.

The replacement code for jmp instruction (12.9) resembles the replacement
code for store instruction (12.8), except that a differnt fresh register a1 is used
instead of register a0. The mask in ιJ2 for extracting the low-order address bits
ensures that a legal instruction address will be constructed (because the address
will be divisible by 4), and the mask in ιJ3 uses β for adding high-order address
bits to locate the constructed address in the code region.

ιJ1 : load a1, r2 ; a1 ∶= r2

ιJ2 : and a1, 0x0000FFFC ; low-order address bits divisible by 4
ιJ3 : or a1, 0xβ0000 ; use β for high-order address bits
ιJ4 : jmp [a1] ; load a1 into program counter

To guarantee that SFI4 holds, it suffices that register a1 contain the address
of some instruction in the code region whenever replacement code for a jmp

instruction is not executing.

Register a1 Restriction. Register a1 is initialized with the address
of some instruction in the code region, and a1 is never updated by the
original program.

This restriction can be satisfied by using a compiler or a program rewriter in
the same way that the analogous restriction is enforced for values in register a0.

Different Length Instructions. The assumption that all instructions are
the same length does not hold for the x86 architecture or for most other CISC
computers. On these computers, an instruction might start at any byte in the
code region, but not every byte in the code region is the start of an instruction.
In addition, since a byte in the middle of one instruction can be interpreted
as starting a different instruction, a sequence of bytes in memory might be
parsed as different sequences of instructions, depending on where you start. An
attacker who can transfer control to an arbitrary byte in memory would be able
to execute those “hidden” sequences of instructions. So to relax the assumption
made earlier that all instructions are 4 bytes long, we must ensure that not
only is the destination of a jmp instruction located in the code region but that
destination is located at the start—and not in the middle—of an instruction
that the program rewriter output.

If legal jmp destinations are not all divisible by 4 (as was assumed), then
mask 0x0000FFFC used above in ιJ2 no longer works for constructing legal des-
tinations for control transfers. Note, however, that mask would work even on
computers with varying length instructions if (i) the intended destinations for all
control transfers happen to be divisible by 4, and (ii) every code region address

6By choosing a value for β that satisfies α ≠ β, we satisfy R2.

November 2023 Copyright Fred B. Schneider All rights reserved

362 Chapter 12. Program Rewriting

divisible by 4 happens to be the location for an instruction that was output by
the program rewriter.

Generalizing, legal destinations for control transfers can be constructed if ιJ2
above uses a mask that ensures divisibility by 2m provided that the following
conditions hold for programs in the code region.

VLI1: All intended destinations for control transfers are divisible by 2m.

VLI2: Any code region address that is divisible by 2m is the start of an
instruction that was output by the program rewriter.

Mask 0x0000FFFC generates addresses divisible by 22 because the 2 low-order
bits are set to 00, mask 0x0000FFF8 generates addresses divisible by 23 because
the 3 low-order bits are set to 000, and so on.

There is no reason that VLI1 and VLI2 would hold for programs written in
an assembly language where instructions have different lengths. But by inserting
1-byte nop instructions into such a program, a program rewriter can relocate
instructions in that program to make VLI1 and VLI2 hold, with no change to the
sequence of values that the modified program reads and writes to registers and
memory. Thus, executions of the modified program are not materially different
from executions of the original program.

In what follows, we use the term chunk to refer to a 2m − 1 byte sequence
that begins at an address divisible by 2m. VLI1 is satisfied if each instruction
that is the destination for a control transfer gets relocated to the start of some
chunk. We assume that the list of destinations for control transfers is given in
an assembly language program and, thus, the list is available to the program
rewriter. This assumption does not preclude an assembly language program
from performing calculations to generate the address of a destination—it merely
requires the programmer to have anticipated and declared all possible outcomes
of those calculations.7 Note, also, that the assumption of having such a list of
destinations is compatible with information that compilers typically output for
use by debuggers.

Relocation to satisfy VLI1 would then proceed as follows.

• Many assemblers include m-alignment directives for small integer values
of m. Placed before an instruction ι, the m-alignment directive causes
nop instructions to be inserted before ι so that ι will be located at a 2m-
byte boundary. To satisfy VLI1, a program rewriter can simply insert
instances of this assembler directive just before any instruction that is the
destination for a control transfer.

• Execution of a return instruction (or its simulation in terms of jmp) tran-
fers control to the location following a call instruction (or its simulation
in terms of jmp). For the destination of a return instruction to be at the
start of a chunk, the corresponding call instruction (or its simulation in

7An attempt to transfer control to a location not on that list is considered a branch to an
illegal instruction address and will branch to the start of some chunk.

November 2023 Copyright Fred B. Schneider All rights reserved

12.3. Control-Flow Integrity (CFI) 363

terms of jmp) must be located at the end of the preceding chunk. A pro-
gram rewriter can perform that relocation by inserting nop instructions
to move each call (or its simulation) to the end of a chunk.

To satisfy VLI2, the program rewriter can check for instructions that span
two chunks. By inserting the assembler’s alignment directive just before each
instruction ι that is found, the program rewriter causes the assembler to do the
necessary relocation of ι for VLI2 to be satisfied.

12.3 Control-Flow Integrity (CFI)

Virtually all attacks change the control flow for the program that is being sub-
verted. The changes enable the attack to execute new code that the attack
injects, execute existing code in an unexpected context, avoid checks in existing
code, or circumvent code that a program rewriter had added.8 Enforcement of
control-flow integrity (CFI) defends against such attacks by restricting trans-
fers of control to specified locations. Code to enforce CFI can be added by a
program rewriter.

Most modern processors offer a way to prevent attacks from altering the
code that is being executed. Code is stored in a code region, data is stored
in a disjoint data region, and memory is configured to enforce the following
restrictions.

Non-writable Code. The code region cannot be updated at runtime.

Non-executable Data. The data region cannot be executed at runtime.

However, if—as is prudent—we cannot rule out the presence of vulnerabilities
in software, then we cannot rule out writes to the data region that change the
destination for a control transfer instruction ι by changing a value used by ι as
an operand. CFI can be violated if that new destination is not among those
specified as being legal.

12.3.1 CFI Enforcement by Program Rewriting

For illustration, we (again) consider a machine language in which jmp, call, and
return are the only control transfer instructions. A control transfer instruction
is defined to be vulnerable if its destination can be changed by altering a value
stored in a register or in the data region. In our hypothetical (but realistic)
machine language, jmp or call instructions are vulnerable if the the branch
destination is given in a register9 and every return instruction is vulnerable

8SFI restrictions R2 and R3 (page 359) are not sufficient for defending against attacks that
only execute existing code already present in the code region. So SFI does not defend against
attacks that execute existing code in an unexpected context, avoid checks in that existing
code, or circumvent code that a program rewriter had added.

9On modern processors, the branch destination for a jmp or call instruction is given either
in a register or as a field in the instruction representation. We reason as follows to establish

November 2023 Copyright Fred B. Schneider All rights reserved

364 Chapter 12. Program Rewriting

because (we assume that) the stack holding return addresses is stored in the
data region.

CFI enforcement for machine language programs requires having (i) the list
of legal destinations for each of the vulnerable control transfer instructions, and
(ii) a means for blocking other control transfers. To implement (ii), we essen-
tially assign “colors” to the legal destinations as well as to the vulnerable control
transfer instructions. And we halt execution of any control transfer instruction
if its assigned color does not match the assigned color of the destination.

Such a scheme can be implemented if new instructions CFIlab and CFIjmp

are the only instructions used to cause transfers of control. Each CFIlab and
CFIjmp instruction has an immediate operand, which is a value that is incor-
porated into the instruction’s representation and corresponds to the “color”
discussed above. An immediate operand cannot be altered by an attack, due to
the Non-writable Code restriction.

CFIlab destid a form of nop instruction that is a destination for
control transfers from CFIjmp instructions. Imme-
diate operand destid is called the destination iden-
tifier for this destination.

CFIjmp jmpid , [r] if a CFIlab instruction ι is stored at the memory
address in register r, ι has destination identifier
destid , and destid = jmpid holds for immediate
operand jmpid then execution transfers control to
ι; otherwise, execution halts.

The destination identifiers specify the legal destinations for control transfers,
and the operation of CFIjmp and CFIlab instructions prevent branches to des-
tinations that are not legal. So both elements necessary for CFI enforcement—
a list of legal destinations and a means to block control transfers to other
destinations—are present when machine language programs use CFIjmp and
CFIlab instructions in place of vulnerable control transfer instructions.

A program rewriter can be configured to translate a machine language pro-
gram that uses vulnerable control transfer instructions into a machine language
program that instead uses CFIjmp and CFIlab instructions. As an example, con-

that a jmp or call instruction ι is not vulnerable if the branch destination is given as a
field in the instruction representation. To define or modify a field in an instruction ι, an
attack must write the memory containing ι. For that write to succeed, the Non-writable Code
restriction requires that ι be stored in the data region, but the Non-executable Data restriction
then would prevent ι from being executed. Because ι cannot be executed, it cannot transfer
control to the modified branch destination, which is why ι is not a vulnerable control transfer
instruction.

November 2023 Copyright Fred B. Schneider All rights reserved

12.3. Control-Flow Integrity (CFI) 365

⋮

lea r3, L1 ; r3 ∶= address(L1)
push r3 ; return address onto runtime stack
lea r3, subr ; r3 ∶= address(subr)
CFIjmp 0x12345678, [r3] ; implement call [r3]

L1 ∶ CFIlab 0x87654321 ; destination for return

⋮

subr: CFIlab 0x12345678 ; destination for call

⋮

pop r3 ; pop return address into r3

CFIjmp 0x87654321, [r3] ; implement return

Figure 12.2: Translation of call and return

sider the following code excerpt, showing an invocation of a subroutine subr.

⋮

lea r3,subr ;r3 ∶= address(subr)
call [r3] ; invoke subr

⋮

subr ∶ ; destination for call
⋮

return

(12.10)

The call instruction in this excerpt is a vulnerable control transfer instruc-
tion because register r3 holds the destination, and the return instruction is a
vulnerable control transfer instruction because its destination comes from the
runtime stack.

Figure 12.2 gives a translation for code excerpt (12.10) in terms of CFIjmp
and CFIlab instructions. In this translation, executing the caller’s CFIjmp in-
struction transfers control to the CFIlab instruction at the start of subr, because
both instructions have the same destination identifier (0x12345678). And exe-
cuting the CFIjmp instruction at the end of subr transfers control back to the
caller by branching to the CFIlab instruction at L1, because the address of L1
was saved on the runtime stack before subr started executing and because these
CFIjmp and the CFIlab instructions both have the same destination identifier
(0x87654321).

Notice, the CFIjmp instruction at the end of subr in Figure 12.2 forces the
same destination identifier (0x87654321) to be used as the destination identifier
in the CFIlab instruction that is part of the translation for every call subr

instruction. There might be many. Control nevertheless does transfer back to
the correct CFIlab instruction in the caller—the runtime stack is storing the
return address for the invocation, and the pop instruction retrieves that address.

The translations for call and return given in Figure 12.2, however, can be
subverted if an attack alters the return address on the runtime stack by writing

November 2023 Copyright Fred B. Schneider All rights reserved

366 Chapter 12. Program Rewriting

to the data region. The CFIjmp implementing return will not halt execution
if the altered return address on the runtime stack is for a CFIlab instruction
ι having destination identifier 0x87654321 but ι is part of a different call site.
The CFIjmp then causes a control transfer to the end of the wrong call site. The
problem arises because we are specifying legal control flows by using statically
defined destination identifiers. Statically defined destination identifiers cannot
specify that a control transfer is legal only when certain execution has preceded
that control transfer. So the use of statically defined destination identifiers
forces us to give an overly permissive specification of legal control flows, which
attackers can exploit to cause control transfers that were not intended by a
programmer.

Approaches do exist to avoid overly permissive specifications of legal control
flows or to add checks that prevent their exploitation.

• Have a separate copy of the subroutine for each call. The copies allow
unique destination identifiers to be used in each of the two control trans-
fers that are implementing a call and the associated return. So each
subroutine copy returns to one call site. This defense is equivalent to in-
lining the subroutine body, so it doesn’t work for recursive subroutines
and it expands the length of the code.

• Implement the call stack in a memory region that attacks cannot update.
Either a separate SFI-protected memory region or a hardware-protected
memory segment might be employed to store such a call stack. A program
rewriter would insert code to ensure that updates to the call stack are
performed only by the push and pop instructions that the program rewriter
inserts for implementing call and return.

12.3.2 Translating CFIlab and CFIjmp Instructions

Modern processors do not offer CFIlab and CFIjmp instructions. But the effects
of CFIlab and CFIjmp instructions can be achieved by using a progam rewriter
to translate CFIlab and CFIjmp instructions into equivalent sequences of the
available instructions.

The translations discussed below assume that the following assumption holds
for the machine language program being translated.

Uniqueness of Destination Identifiers. No destination identifier in
a CFIlab or CFIjmp instruction appears as a bit string elsewhere in the
machine language program being translated.

When a machine language program does not satisfy this assumption, then a
program rewriter can be used to substitute new destination identifiers into the
CFIlab and CFIjmp instructions, preserving equalities. Such a replacement is
always possible if destination identifiers are B-bit strings (typically B = 32) and
the code region contains fewer than 2B words, since all B-bit strings cannot be
present in a code region that is smaller than 2B words.

November 2023 Copyright Fred B. Schneider All rights reserved

12.3. Control-Flow Integrity (CFI) 367

⋮

lea r3, L ; r3 ∶= address(L)
CFIjmp 0x12345678, [r3] ; transfer control to L;

⋮

halt

L: CFIlab 0x12345678 ; branch destination
inst x, y ; some instruction

⋮

Figure 12.3: Code using CFIlab and CFIjmp

Translations for CFIlab and CFIjmp instructions must ensure that attacks
cannot alter destination identifiers. The Non-writable Code restriction helps,
if destination identifiers are stored in the code region. Therefore, in the trans-
lation, destination identifiers are stored either as data in the code region or as
immediate operands in instructions.

For example, the machine language program excerpt in Figure 12.3 might
be translated to the code in Figure 12.4. There, a CFIlab instruction having
destination identifier destid is translated into a data value destid stored in the
code region. That means jmp instruction ι3 in the translation of the CFIjmp

instruction must transfer control to the instruction positioned in memory after L
(instead of at L), as if the memory location at address L stores a nop instruction.
The semantics of CFIjmp imply that jmp instruction ι3 should be reached—
causing the transfer of control to occur—only if the data value stored at L

matches immediate operand 0x12345678 in cmp instruction ι1. The immediate
operand in cmp instruction ι1 is copied from the immediate operand in the
CFIjmp instruction that ι1 through ι3 replace.

The translation in Figure 12.4 has a vulnerability, though. Destination iden-

⋮

lea r3, L ; r3 ∶= address(L)

; translate CFIjmp 0x12345678, [r3]
ι1: cmp [r3], 0x12345678 ; compare CFIlab and CFIjmp dest idents
ι2: jne error ; wrong CFIlab dest ident found
ι3: jmp [r3 + 4] ; transfer control to correct destination

⋮

halt

; translate L: CFIlab 0x12345678

L: data 0x12345678 ; dest ident for CFIlab

inst x, y ; some instruction
⋮

Figure 12.4: Translation of CFIlab and CFIjmp

November 2023 Copyright Fred B. Schneider All rights reserved

368 Chapter 12. Program Rewriting

⋮

lea r3, L ; r3 ∶= address(L)

; translate CFIjmp 0x12345678, [r3]
ι′1: load r0, 0x12345677 ; used to compute dest ident for CFIjmp

ι′2: add r0, 0x00000001 ; dest ident for CFIjmp

ι′3: cmp r0, [r3] ; compare CFIlab and CFIjmp dest idents
ι′4: jne error ; wrong CFIlab dest ident found
ι′5: jmp [r3 + 4] ; transfer control to correct destination

⋮

halt

; translate L: CFIlab 0x12345678

L: data 0x12345678 ; dest ident for CFIlab

inst x, y ; some instruction
⋮

Figure 12.5: Alternative Translation of CFIlab and CFIjmp

tifiers for CFIlab instructions are stored in a way that is indistinguishable from
values that are stored for the translations of CFIjmp instructions, yet only the
former mark legal branch destinations. An attack might load r3 with the mem-
ory address of the immediate operand in the representation of ι1 and then
transfer control to ι1. Execution of cmp instruction ι1 then would be comparing
its immediate operand with its immediate operand. Those are the same values,
so jmp instruction ι3 will be reached and will transfer control to the instruction
located in memory 4 bytes after the address contained in r3. Consequently,
jne instruction ι2 would be executed and, since the previous execution of a cmp

instruction found equal values, the jne instruction will not transfer control to
error. Therefore, ι3 will be reached, and execution of ι3 will transfer control to
jne instruction ι2 because ι2 is the instruction in memory at address [r3 + 4].
Based on the status flags set by the last execution of cmp instruction ι1, instruc-
tion ι2 will not not transfer control to error, so ι3 is again executed and again
transfers control to ι2. The result is a loop that never terminates, involving an
illegal branch destination.

We prevent such attacks if the translation of CFIlab and CFIjmp distin-
guishes destination identifiers used in CFIjmp instructions from destination iden-
tifiers used in CFIlab instructions. One approach is for translations of CFIjmp
instructions to calculate at runtime the destination identifier rather than storing
that value in the code region. Figure 12.5 illustrates the improved translation
for CFIjmp, assuming register r0 is can be used by instructions ι′1 through ι′3.
The attack to subvert the translation in Figure 12.4 no longer works. It fails
because loading register r3 with the address of the instruction ι′1 immediate
operand and then branching to cmp instruction ι′3 always detects unequal des-
tination identifiers, since immediate operand value 0x12345677 is not equal to
the destination identifier stored at the address in register r3. So executing jne

instruction ι′4 transfers control to error, as desired.

November 2023 Copyright Fred B. Schneider All rights reserved

12.4. Inlined Reference Monitors (IRM) 369

The translations we have given for CFIjmp and CFIlab instructions often
can be improved by exploiting unique features in a given processor’s instruction
set. The basic approach used for the translation is likely to be the same across
all instruction sets, though, so we summarize it here.

• A CFIjmp instruction is translated into a sequence of instructions that
checks if the correct destination identifier is present in the translation of
a CFIlab instruction at the branch destination.

• The destination identifier for a CFIlab instruction is stored as a constant
in the code region or as an immediate operand in an instruction. Either
way, it is being stored in the code region and, therefore, attacks cannot
update the value.

• The destination identifier for the CFIjmp instruction is stored in a way that
it cannot be altered by attacks and it does not resemble the destination
identifier for a CFIlab instruction.

12.4 Inlined Reference Monitors (IRM)

Modifications that a program rewriter makes to an untrusted program S can
be designed to halt execution just before S is about to violate any security
policy that a reference monitor can enforce.10 The effect is the same as having
a reference monitor present in the runtime environment—we have created an
inlined reference monitor (IRM).

To implement an inlined reference monitor, a program rewriter is provided
with a specification that gives the elements11 of a reference monitor:

• monitor state,

• monitored accesses, and

• the monitor response associated with each monitored access.

Monitored accesses are actions by untrusted program S that pause execution of
S and transfer control to the associated monitor response. A monitored access
might immediately precede a reference by S to a specific operand or it might
immediately precede execution by S of a specific operation. A monitor response
is code that changes the monitor state and/or halts execution of S.

Specifying an Inlined Reference Monitor. A specification for an inlined
reference monitor specification will give a set of declarations that define the
monitor state and a set of clauses that define the monitored accesses along with
associated monitor responses. We might use the syntax

{pattern} code (12.11)

10See §11.3 for a characterization of security policies that reference monitors can enforce.
11See §11.1 for a detailed discussion of these elements.

November 2023 Copyright Fred B. Schneider All rights reserved

370 Chapter 12. Program Rewriting

var inCalls ∶ integer intial 0

{before: call} if inCalls < 6 then inCalls ∶= inCalls + 1
else halt

{before: return} if inCalls > 0 then inCalls ∶= inCalls − 1
else halt

Figure 12.6: Inlined Reference Monitor for call and return

for a clause that asserts monitor response code should be executed when execu-
tion of the untrusted program S reaches a control point matching pattern. So
pattern is defining a set of monitored accesses.

As an illustration, Figure 12.6 uses a hypothetical language to specify an
inlined reference monitor that ensures (i) the call stack does not overflow because
more than 6 procedure calls are in progress, and (ii) each return is executed in
one-to-one correspondence with a previously executed call.12 The specification
begins with a declaration defining the monitor state to be an integer variable
inCalls, initially 0. In the clauses that follow, pattern “before: T” creates
monitored accesses for execution that reaches a control point appearing at the
start of an instance of T . So the reference monitor being specified receives
control immediately before execution of a call or a return. The program
rewriter would (i) before each call, add code that checks inCalls < 6 and either
increments inCalls or halts execution, and (ii) before each return, add code
that checks inCalls > 0 and either decrements inCalls or halts execution.

The patterns available for defining monitored accesses will depend on the lan-
guage of programs that the program rewriter is intended to modify. A program
rewriter for incorporating reference monitors into assembly language programs
would support patterns to match opcodes and operands, since those are the con-
stituents of assembly language statements. For high-level language programs,
a program rewriter would support patterns for matching facets of the various
statements and expressions of that high-level language.

Any programming language can be used for writing the monitor responses.
However, if code in (12.11) is not in the same programming language as the
untrusted program S being modified then code must be translated to that pro-
gramming language. Also, access to variables and control points defined in S
is facilitated from within code when both are written in the same programming
language.

12This reference monitor can be used to defend against certain control-flow hijacking attacks.
For example, with return-oriented programming (ROP) attacks, a branch to some desired
address is implemented by pushing that address onto the call stack and then executing a
return instruction. To cause execution of a sequence of code segments that each end with a
return, an attack pushes a corresponding sequence of code addresses onto the call stack and
executes a single return; the return that ends each code segment will transfer control to the
next code segment in the sequence.

November 2023 Copyright Fred B. Schneider All rights reserved

12.4. Inlined Reference Monitors (IRM) 371

Protecting IRM Integrity. Different approaches are required for protecting
the integrity of an inlined reference monitor that has been incorporated into an
assembly language program than one that has been incorporated into a high-
level language program. So we consider these cases separately.

For programs written in assembly language, there are two ways to subvert
an inlined reference monitor. The untrusted program might (i) corrupt the
monitor state or (ii) branch into or around the code segments that were added
to detect monitored accesses or implement monitor responses. Both forms of
subversion are prevented if the program rewriter used to install the inlined
reference monitor also makes additional modifications.

• Use SFI to protect the integrity of the monitor state. The state of the
original untrusted program would be stored in one data region and the
monitor state would be stored in a disjoint data region.

• Use CFI to protect the integrity of the control flow.

For protecting the integrity of inlined reference monitors that have been
incorporated into a high-level language program, it suffices for the programming
language to have a suitable type system. The type system would be used to
prevent subversion of the inlined reference monitor by preventing variables and
code that a program rewriter adds from being accessed with statements of the
original untrusted program S. To provide such a guarantee, the type system
must reject a program T if (i) T can access objects or memory that has not
been declared within T or (ii) T can transfer control to statements that do not
have labels declared within T .

Comparison with Classical Reference Monitors. The code for monitor
responses would be substantially the same for a reference monitor implemented
as described in §11.2 versus one implemented by using a program rewriter.
The assurance argument for the two implementation approaches would be quite
different, though.

• With a classical implementation of a reference monitor, the trusted com-
puting base includes hardware and runtime software that detects moni-
tored accesses and invokes monitor responses.

• With an inlined reference monitor, the trusted computing base includes
the inliner as well as the compilers, assemblers, and other tools involved
in generating an executable from the inliner’s output.

In both cases, parts of the operating system would be in the trusted computing
base. Compilers, assemblers, and other tools used to generate executables for
the operating system are also part of the trusted computing base in both cases.
Thus, if untrusted systems are written in the same language as the operating
system—allowing the same software to be used in generating the executables
for both—then the program rewriter is the only significant difference in what
must be trusted. And the program rewriter can be removed from the trusted
computing base by using proof carrying code, as we discuss shortly, in §12.6.

November 2023 Copyright Fred B. Schneider All rights reserved

372 Chapter 12. Program Rewriting

12.5 Applicability of Program Rewriting

For program rewriting to be effective, all code that potentially could violate
the policy to be enforced must first be processed by a program rewriter. This
requirement implies that program rewriting cannot be used to enforce security
policies in a single executable—such as an operating system or dynamically
linked library—that is being shared by multiple clients having different security
policies. It also precludes the use of program rewriting for adding enforcement
to systems for which the code is not available and, thus, cannot be processed
by a program rewriter.

Where the code is available, then program rewriting is attractive because
enforcement code that has been added to an untrusted program can have lower
overhead than enforcement code that is part of the runtime environment.

• Code added by program rewriting executes in the same address space as
the untrusted program being secured, so a context switch is not required
for control transfers to the enforcement code. In comparison, context
switches are required if that functionality is being performed by code in the
operating system or runtime environment. And context switches reduce
processor performance by causing caches to be purged and pipelines to be
drained.

• The tool chain to perform program rewriting can include optimizers for
eliminating unnecessary checks in the code that a program rewriter adds.
Those optimizations are not possible for mechanisms implemented in a
common runtime environment, because the single body of code must serve
all clients and, therefore, cannot be optimized for use by any one client.

However, it is hard to have assurance about a specification for code modifi-
cations if that specification is long and complicated. Such specifications would
be required for defining the sequences of machine language instructions that
constitute operations on high-level abstractions. So for enforcing application-
specific security policies, program rewriting is better suited for use with high-
level language programs than for use in assembly language or machine language
programs. But program rewriting is well suited for enforcing memory safety and
other lower-level policies in assembly language or machine language programs.

Program rewriting also is unlikely to be a suitable replacement for enforce-
ment mechanisms that are widely used, such as those that a runtime environ-
ment provides for isolation and authorization. First, updates for effecting policy
changes are easier to perform to the single copy of the runtime environment than
to a large number of applications. Second, it is hard to test whether a prescrip-
tion for program rewriting will break some piece of software when there are
many different ones to be processed; it is (comparatively) easy to test changes
made to a single runtime environment.

Finally, some of the security policies that a runtime environment enforces are
expressly intended to protect that system and its clients against untrustworthy
applications. That goal would is undermined if the enforcement of those policies

November 2023 Copyright Fred B. Schneider All rights reserved

12.6. *Use of Proof-Carrying Code (PCC) 373

requires trusting a program rewriter that is external to the runtime environment,
and the trusted computing base is expanded if the program rewriter is made
internal to the runtime environment.

12.6 *Use of Proof-Carrying Code (PCC)

The use of program rewriting to enforce a security policy would seem to require
having the program rewriter be part of the trusted computing base. But the
program rewriter need not be in the trusted computing base, if modified program
TP (S) that the program rewriter produces from S is allowed to execute only
after a program analyzer first establishes that TP (S) complies with security
policy P . The program analyzer would be ensuring that suitable checks were
added for enforcing the security policy and that optimizations performed during
or after program rewriting did not remove checks necessary for enforcing the
security policy.

The undecidability of the halting problem means that a program analyzer
cannot be built to check whether a program written in a general-purpose pro-
gramming language will comply with certain security policies. One approach for
circumventing this limitation is to be conservative. If the program analyzer on
hand cannot certify that TP (S) complies with security policy P then TP (S) is
not permitted to execute (even though TP (S) might actually comply with P).

A second approach is to use a program rewriter to modify TP (S) in ways that
facilitate checking that TP (S) complies with security policy P . These modifica-
tions typically involve adding runtime checks to validate assertions that certain
program behaviors are not possible. As an example, a program analyzer might
not be able to determine whether a subscript in an array reference is guaranteed
to be within bounds. But that determination becomes straightforward if a pro-
gram rewriter moves the array reference into an if statement that is checking
whether the subscript is within bounds. So by modifying the program to have
the array reference in an if statement, a program rewriter enables a program
analyzer to sidestep undecidability.

Program analyzers allow program rewriters to be removed from the trusted
computing base. However, program analyzers can be large and complicated,
so it is better if they too aren’t part of the trusted computing base. With
proof-carrying code (PCC), they needn’t be included in the trusted computing
base.

Trust Relocation by using PCC. To remove a program analyzer13

from the trusted computing base:

(i) modify the program analyzer to output a proof that justifies the
results of its analysis,

(ii) incorporate a checker into the trusted computing base, and

13In the PCC literature, the program analyzer would be considered a code producer and
the checker would be considered a proof validator.

November 2023 Copyright Fred B. Schneider All rights reserved

374 Chapter 12. Program Rewriting

(iii) before executing a modified program, run a program analyzer to out-
put a proof that the modified program complies with the intended
security policy and then use the checker to validate that proof.

If a checker that is in the trusted computing base validates the program an-
alyzer’s proof then conclusions justified by that proof can be trusted—even
though the program analyzer is not in the trusted computing base.

PCC reduces the size of the trusted computing base if the checker is smaller
and simpler than the program analyzer. Such a size reduction will be observed
if the program analyzer is producing a proof in a formal logic. Recall, a formal
logic defines a syntax for formulas and defines a finite set of inference rules.
Each inference rule gives a mechanical way to derive a conclusion, which is a
formula, from a finite set of hypotheses, which also are formulas.14 Various
styles of formal proof are used by logicians. A Hilbert-style formal proof is a
sequence of lines of the form

Li∶ Fi by infi from L1
i , L

2
i , . . . , L

m
i

where Li is a unique label, Fi is a formula of the logic, inf i is the name of an
inference rule of the logic, and L1

i , L
2
i , . . . , L

m
i is a list of labels on earlier lines in

the proof. Such a line is sound if inference rule infi derives Fi as its conclusion
using as hypotheses the formulas at labels L1

i , L
2
i , . . . , L

m
i . The formal proof is

sound if every line is sound.
A checker to validate Hilbert-style formal proofs would have a routine for

each inference rule. This routine would determine whether the associated infer-
ence rule derives a given conclusion from given hypotheses and, therefore, that
use of the inference rule produced a sound line in the proof. The code size for
such a checker would be proportional to the number of inference rules of the
formal logic, and the program’s running time would be linear in the length of the
proof that it is checking. In constrast, a program for generating proofs might
involve routines that implement strategies to explore various possibilities for
choosing sequences of inference rule to apply. Such a proof generator program
might not be simple or small; and it might have exponential running time, or
worse.

Since structural induction on the syntax of programs is easily packaged as the
inference rules of a formal logic, Trust Relocation using PCC becomes applicable
when we have a program analyzer that infers properties of code segments from
properties it infers about the pieces constructing those code segments. The usual
formalization of a type system, for example, gives an inference rule for each kind
of statement and expression. A type checker uses these rules to add any run-
time checking code needed for avoiding undecidability of the halting problem
and then proving a theorem that asserts the modified program is type correct.
Such type systems can be surprisingly powerful, rejecting programs that might
exhibit various forms of misbehavior, including: operations on data of the wrong
type, reading uninitialized memory, using out of bounds subscripts and pointers,

14A formula that is an axiom can be seen as an inference rule that has no hypotheses.

November 2023 Copyright Fred B. Schneider All rights reserved

Notes and Reading 375

races and other unintended non-determinacy due to unsynchronized concurrent
access, corrupting the integrity of a capability, and even making unauthorized
accesses to variables. In short, many common security policies can be enforced
in this way.

Notes and Reading

By the turn of the century, it had become clear that program analysis and
program rewriting could enforce security policies and could reduce the size of a
trusted computing base [14]—even for programs written in untyped languages
or in assembly language. A new language-based security community formed
around that agenda, applying programming language techniques to invent new
defense mechanisms as well as to give rigorous characterizations for the classes
of security policies that different defense mechanisms could be used to enforce.

Schneider [13] had proved that execution monitoring could be used only to
enforce safety properties. Hamlen, a Cornell Ph.D. student, took the next steps
with his advisors. They characterized computability classes for the security poli-
cies that could be enforced by using execution monitoring, program rewriting,
and program analysis [8]. A discussion of those computability classes is out of
scope for this book, but the formalizations for Soundness and Transparency15

given in §12.1.1 are based on the formalizations in [8], and the confidentiality
example given in §12.1.2 is inspired by the Secret File Policy in [8].

The first documented use of program rewriting to enforce a security policy
seems to be the Spy monitoring system [4] in the Berkeley Timesharing System
for the SDS 940. Spy ensured that an untrusted user’s kernel extension was
safe by checking that the extension would not introduce a loop, execute too
long, or perform updates outside of a designated memory region that had been
dedicated to collecting statistics.

Untrusted software extensions also were the reason for Wahbe et al. [16] to
develop software-based fault isolation (SFI). The original design of SFI assumed
that all instructions have the same fixed length. This assumption is satisfied
by RISC architectures but not by CISC architectures. The use of “chunks” to
implement SFI for CISC architectures was developed by McCamant and Mor-
risett [10] in the PittSFIeld16 system for the Intel x86. PittSFIeld, in addition,
showed that inserting a single instruction could suffice for generating safe ad-
dresses if the starting and ending addresses of the safe memory region have
been carefully chosen. PittSFIeld also implemented efficient procedure returns
by exploiting the shadow return stack found on modern processors like x86.

A considerable body of literature now exists about SFI implementations, in-
cluding research prototypes as well as program rewriters (e.g., native client [17])
intended for deployment in production software. Issues that arise with support-

15Terms “soundness” and “transparency” had been introduced earlier by Ligatti et al. [9]
for describing their edit automata extension to security automata.

16The name is almost an acronym: Prototype IA-32 Transformation Tool for Software-based
Fault Isolation Enabling Load-time Determinations (of safety).

November 2023 Copyright Fred B. Schneider All rights reserved

376 Chapter 12. Program Rewriting

ing the MIPS, x86 (32 bit and 64 bit), and ARM instruction sets have been
discussed. And SFI implementations have been developed to facilitate isolation
of kernel extensions, application extensions, and browser extensions. A survey
by Tan [15] gives citations for this work and also discusses the various techniques
used in these SFI implementations.

Control-flow integrity (CFI) [1] uses program rewriting to prevent control-
flow hijacking; SFI does not block this. So CFI defends against stack smashing,
buffer overflows, as well as some jump to libc and return-oriented programming
attacks. CFI also simplifies the task of building a program rewriter by providing
a starting point that prevents attackers from circumventing code that the new
program rewriter inserts or modifies. XFI [5], for example, incorporates CFI to
extend SFI and support richer policies, isolating a broader range of extensions—
all with improved performance. Hardware instructions to support CFI and XFI
are proposed and their performance analyzed in a 2006 paper [3]; ARM and
Intel have since introduced instructions that, like CFILab, mark valid branch
destinations so that branches to other addresses can be blocked.17

Inlined reference monitors (IRM) were introduced in Erlingsson and Schnei-
der [7]. First came SASI18 [6], a program rewriter for incorporating a reference
monitor into x86 or JVML object code. Experience with SASI drove the devel-
opment of a successor, the PoET/PSLang19 toolkit for modifying JVML object
code to enforce security policies in Java programs. Prior work on the use of
program rewriting to enforce security had employed program rewriters having
a single input: the program to be modified. IRMs generalized the approach
by adding a second input: a formulation of the security policy to be enforced.
Besides their use for enforcing security policies, IRMs also are the basis for
runtime verification. With this approach to software testing, an IRM is incor-
porated into the system under test as a way to validate that certain properties
of the internal state are satisfied during executions. Bartocci et al. [2] is a good
reference for learning about runtime verification.

Program rewriting modifies code to obtain a version that is guaranteed to
satisfy given properties. But code that already satisfies those properties does
not require modification—the program rewriting can be skipped, avoiding the
runtime overhead of any added checks. Necula and Lee [12] developed proof-
carrying code (PCC) to capitalize on that use case. The first implementation
of PCC was intended for allowing code to be directly incorporated into a kernel
without requiring that code to have been produced by a program rewriter or
by a compiler for a language with strong typing. In subsequent work [11], PCC
was used to extend ML programs with code written in assembly language.

The crux of PCC is for code to be accompanied by a proof that all executions
satisfy some property. The proof is checked before the code is allowed to run.
Checking proofs (in a formal logic) is straightforward, but creating them is not—

17To mark legal branch destinations, the arm8.5 instruction set in August 2019 added the
BTI instruction, and 12th Generation Intel Core Processors in October 2021 added the endbr32
and endbr64 instructions.

18Security Automata SFI Implementation
19Policy Enforcement Toolkit/Policy Specification Language.

November 2023 Copyright Fred B. Schneider All rights reserved

BIBLIOGRAPHY 377

a limit on the feasibility of the approach. But strong typing was thought to be
adequate for preventing an extension from subverting a system it would extend,
and type-checkers mechanically construct such proofs. So PCC was feasible for
the intended application. With the benefit of hindsight, though, the utility of
PCC goes far beyond the enforcement of those security policies that can be
specified as type systems. Rather, PCC is a general approach for relocating
trust: by trusting a proof checker, we need not trust a proof generator. And
any program rewriter can be regarded as being a proof generator.

Bibliography

[1] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Proceedings of the 12th ACM Conference on Computer
and Communications Security, CCS ’05, pages 340–353, New York, NY,
USA, 2005. Association for Computing Machinery.

[2] Ezio Bartocci and Yliès Falcone, editors. Lectures on Runtime Verification
— Introductory and Advanced Topics, volume 10457 of Lecture Notes in
Computer Science. Springer International Publishing, 2018.

[3] Mihai Budiu, Úlfar Erlingsson, and Mart́ın Abadi. Architectural support
for software-based protection. In Proceedings of the 1st Workshop on Archi-
tectural and System Support for Improving Software Dependability, ASID
’06, pages 42–51, New York, NY, USA, 2006. Association for Computing
Machinery.

[4] Peter Deutsch and Charles A. Grant. A flexible measurement tool for
software systems. In Charles V. Freiman, John E. Griffith, and Jack L.
Rosenfeld, editors, Information Processing, Proceedings of IFIP Congress
1971, Volume 1 - Foundations and Systems, pages 320–326. North-Holland,
August 1971.

[5] Úlfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. XFI: Software guards for system address spaces. In
Brian N. Bershad and Jeffrey C. Mogul, editors, 7th Symposium on Operat-
ing Systems Design and Implementation (OSDI ’06), pages 75–88. USENIX
Association, November 2006.

[6] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security poli-
cies: A retrospective. In Proceedings of the 1999 Workshop on New Security
Paradigms, NSPW ’99, page 87–95, New York, NY, USA, 1999. Association
for Computing Machinery.

[7] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack
inspection. In Proceedings of the 2000 IEEE Symposium on Security and
Privacy, pages 246–255, USA, May 2000. IEEE Computer Society.

November 2023 Copyright Fred B. Schneider All rights reserved

378 BIBLIOGRAPHY

[8] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability
classes for enforcement mechanisms. ACM Transactions on Programming
Languages and Systems, 28(1):175–205, January 2006.

[9] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement
mechanisms for run-time security policies. Internatonal Journal of Infor-
mation Security, 4(1–2):2–16, February 2005.

[10] Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC ar-
chitecture. In Proceedings of the 15th Conference on USENIX Security
Symposium – Volume 15, USENIX–SS’06, USA, 2006. USENIX Associa-
tion.

[11] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’97, pages 106–119, New York, NY, USA, 1997. Association for
Computing Machinery.

[12] George C. Necula and Peter Lee. Safe kernel extensions without run-time
checking. In Proceedings of the Second USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’96, pages 229–243, New York,
NY, USA, 1996. Association for Computing Machinery.

[13] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information System Security, 3(1):30–50, February 2000.

[14] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A language-
based approach to security. In Reinhard Wilhelm, editor, Informatics —
10 Years Back. 10 Years Ahead, volume 2000 of Lecture Notes in Computer
Science, pages 86–101. Springer, 2001.

[15] Gang Tan. Principles and implementation techniques of software-based
fault isolation. Privacy and Security, 1(3):137–198, 2017.

[16] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation. In Proceedings of the Fourteenth
ACM Symposium on Operating Systems Principles, SOSP ’93, pages 203–
216, New York, NY, USA, 1993. Association for Computing Machinery.

[17] Bennet Yee, David Sehr, Gregory Dardyk, Bradley J. Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native
client: A sandbox for portable, untrusted x86 native code. Communications
of the ACM, 53(1):91–99, January 2010.

November 2023 Copyright Fred B. Schneider All rights reserved

