
Chapter 13

Unexpected

Communications Channels

A channel exists whenenver some medium is modulated by a sender and moni-
tored by a receiver. The modulation might or might not be intentional, and it
might or might not be expected by users or by programmers of a system. Our
concern here is with modulation arising from program execution. Electrical
voltage, RF, light, sound, power consumption, state (disk, memory, registers,
or cache), or event timing each can be modulated as execution proceeds.

When the receiver executes a program in order to monitor a channel, there
are two ways modulation could be sensed:

• Storage Channel. The monitor is a↵ected by state that the sender varies.

• Timing Channel. The monitor detects event orderings, occurence times,
or intervals that the sender varies.

Shared memory, shared files, and message-passing implement storage channels;
timeouts to signal a lost message would be a timing channel.

Knowledge of all channels connecting a system with its environment is neces-
sary for analyzing the confidentiality of secrets that system stores. Some of those
channels will be expected. Hardware communicates by using network adapters
(including radios for WIFI), displays, and external storage devices. Software
communicates by invoking operations, including hardware instructions and pro-
cedures exported by lower-level software interfaces. But other, unexpected,
channels are likely to be present, too. To ignore an unexpected channel is
equivalent to assuming that the channel cannot be used to leak secrets.

Whether making this assumption creates a vulnerability will depend on
the unexpected channel’s capacity, what information the channel conveys, and
whether the channel can be monitored by the threats of concern. A high-
capacity channel would be needed for rapidly leaking images, video, sound, or
databases; a low-capacity channel su�ces for transmitting a cryptographic key
or password. To focus only on high-capacity channels can be a flawed strategy,
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because obtaining a key or password can allow an attacker to impersonate a
trusted principal.

We might hope to discover unexpected communications channels by analyz-
ing a system’s source code or other descriptions. However, certain channels are
unlikely to be discovered using this approach.

• Source code and other system descriptions deliberately omit details about
the run-time environment, the computer hardware, the underlying physics
of the hardware, and/or the properties of materials. Yet, as we shall see,
these elements can create channels.

• Some channels are created by combining functionality from multiple layers
of the system. These channels cannot be discovered by consulting separate,
independent descriptions for the various di↵erent system layers.

Therefore, human analysts who have good intuitions and an in-depth knowledge
of the literature are indispensable. These analysts would study documentation
of a system, its run-time environment, and the underlying hardware. The ana-
lysts also would perform experiments to validate what the documentation says
and to learn about aspects of system operation that are not mentioned in the
documentation.

13.1 Covert Channels

A covert channel is created when an attacker repurposes functionality and causes
information disclosures that violate the system’s security policy. A key charac-
teristic is for the operations e↵ecting the information transmission to be outside
the scope of system authorization mechanisms.1 The attacker would monitor
the covert channel, provide the program that modulates the covert channel, and
contrive to have that program be executed. Many covert channels have low ca-
pacities. Some covert channels are noisy, but an attacker can compensate for
noise by using error-correcting codes (with some reduction in channel capacity)
when modulating the covert channel.

Modulation enabled by time multiplexing. If time multiplexing is used
to give each of multiple principals the appearance of exclusive access to some
resource then an operation requested by one principal can be delayed because
operations are being performed to satisfy requests from other principals. The
length of such delays usually can be measured, and this length usually can be
modulated by varying the requests that are made. So time multiplexing can be
abused to create covert timing channels.

1This characteristic is consistent with the meaning “not openly acknowledged or displayed”
that “covert” has in non-technical usage. But in contrast to its non-technical usage, the
definition of a covert channel used in computer security does not require hiding what is being
communicated and does not require hiding whether communication is occurring.
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A classic example involves attacker-controlled principals T (for transmitter)
and R (for receiver) that are sharing a time-multiplexed processor where, to
achieve higher utilization, the system ends the current time slice whenever the
executing principal invokes an operation to await completion of an I/O opera-
tion. T leaks the value of a secret bit b to R, as follows. If b = 1 holds then
T runs a compute intensive task; if b = 0 holds then T runs an input/output
intensive task. And R measures the time that elapses for the execution of a fixed
sequence of instructions that requires multiple time slices. If a longer elapsed
time is measured by R then T has executed for full time slices, which implies T
is not executing the input/output intensive task and, thus, b = 1 holds.

We can bound the capacity of a covert timing channel that is created by time
multiplexing if we limit how well principals can control and/or sense variation
in delays associated with access to resources.

Capacity Bounds on Timing Channels.
(i) Adhere to a schedule that is una↵ected by access requests made by

principals. Example schedules include:

– a schedule that specifies in advance the disjoint intervals when
each principal may access the resource,

– a schedule where the disjoint intervals when each principal may
access the resource start at random times and have unpredictable
durations.

(ii) Prevent a principal from measuring starting and ending times of the
periods when it may access the resource.

Defense (i) prevents modulation; defense (ii) prevents monitoring. One su�ces.
Defense (ii) can be implemented by intercepting operations that can be used

to measure timing. Those interceptions are easily achieved for user-mode code
running on processors where system-mode instructions provide the only access
to clocks and provide the only way to instigate activity (e.g., an input/output
operation) that delivers an interrupt at some fixed, later time.

• System calls that principals can invoke to obtain timing information could
return

– fuzzy time, which is timing information that has degraded resolution
and/or has been randomly perturbed, or

– virtual time, where the value returned to a principal P is determined
only by the number of instructions P has executed.

• Unpredictable delays could be added to the delivery of interrupts and
responses by system services.

The defenses described above in Capacity Bounds on Timing Channels have
limitations, though. First, defense (i) can result in lower resource utilization.
This is because these schedules cause principals requesting operations to be
unnecessarily delayed while the resource is allocated to a principal not needing
it. Second, attackers can defeat the random variations used in defense (ii) by
running multiple experiments and computing an average over those.
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Modulation enabled by state. Any part of the system state could be used
to support a covert channel if this part of the state can be modulated and
monitored by attackers. Often, the modulation and monitoring will be side
e↵ects of operations intended for other purposes. Here are some examples.

• create/delete named instances of objects. Information can be transmit-
ted through the choice of name that an attacker gives to an object in-
stance. Monitoring can be performed if operations are available to indicate
whether an object having a given name exists.

• allocate/deallocate from resource pools. Information can be transmitted
by the quantity being allocated or deallocated to a process the attacker
controls. Monitoring can be performed if operations are available to report
currently allocated or available capacity.

• acquire/release locks. Information can be transmitted by the choice of
which locks are acquired and held by a process the attacker controls. Mon-
itoring can be performed by an attacker-controlled process that attempts
to acquire a given lock, thereby learning whether some other process al-
ready holds that lock.

• append information to a log. Information can be transmitted by using a log
that records indications of actions undertaken by an attacker-controlled
process. Monitoring can be performed if operations are available to re-
trieve the log contents or to initiate execution that is a↵ected by the log
contents.

• accesses to memory. Information can be transmitted by an attacker’s
choice of which memory address to access. With virtual memory, comple-
tion of an access ensures that some page frame will contain the contents of
the page containing that address; with a main-memory cache, completion
of the access ensures that the cache block for that address will be present
in a main-memory cache. In both cases, monitoring can be performed by
measuring access delays for a subsequent memory access to that address.

Some of these covert channels transmit information only between principals
executing on the same computer; other covert channels can be used to reach
more distant principals. For example, an operation to create files in a local
file system can be used to create a covert channel between principals running
on the same computer; with a network file server, file creation would support
communication between principals running on any client of that file server; and
an operation to add a new DNS name to the Internet’s Domain Name Server can
function as a covert channel between any principals on any computer connected
to the Internet.

State and messages that principals use to communicate with each other can
be exploited to serve as covert channels, in addition. Here are some examples:

• State and messages are considered equivalent by a system if they di↵er
only in the values of “unused” fields. Therefore, a covert channel can be
created if an unused field is modulated and read by an attacker.
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• Most systems ignore formatting and spellings in documents they store,
send, or print. So, an attacker can transmit information through the
choice of formatting and/or spelling used in documents.

• Audio files containing samples that di↵er only in their least-significant
bits will sound the same to human listeners. An attacker could change
those low-order bits to represent information for transmission.2 Monitors
would be able to recover this transmitted information by inspecting the
file contents. The same covert channel construction works for image files.

Modulation from Speculative Execution. A processor’s instruction set ar-
chitecture (ISA) is a document that describes (i) the instructions that processor
can execute, (ii) the state—called the processor’s architectural state—that those
instructions read and write, and (iii) the changes to architectural state caused
by executing sequences of instructions. Implementations of an ISA also might
include additional microarchitectural state in order to facilitate improved per-
formance. The program counter, general-purpose registers, and main memory
are architectural state; a main-memory cache, if present, is microarchitectural
state.

An ISA typically will instruct programmers of a processor3 to assume that
instructions are executed sequentially, indivisibly, and at an unknown rate.
However, to avoid idle periods due to high memory-access times, ISA imple-
mentations often employ speculative execution. Speculative execution predicts
what values will be fetched from memory, with the e↵ects of this and subsequent
execution then reversed if the memory fetches provide di↵erent values than what
was predicted. A conditional branch, for example, might be taken because that
branch almost always has been taken, thus avoiding delays to retrieve from mem-
ory values appearing in the branch condition. If predictions are correct often
enough then reversal of execution will be infrequent and speculative execution
leads to higher throughput.

Speculative Execution. Execution of an instruction ◆ is started be-
fore completing execution of all instructions ◆′ that will write the values
needed for executing ◆. Early execution of ◆ is made possible by having
the processor predict the values that each ◆′ will write. If any of the ◆′
subsequently writes a di↵erent value than was predicted, then all writes by
◆ to architectural state are reversed, and execution of ◆ is repeated (using
the correct values). In addition, writes are reordered, as necessary, so that
writes by the ◆′ reach memory before the writes by ◆.

Implementation of speculative execution requires mechanisms for predicting the
e↵ects of instruction execution and requires mechanisms for reversing updates
to architectural state. The mechanisms to predict branch outcomes and targets,
values and addresses to be loaded, and return addresses, use information about

2Such schemes are used in steganography, which is the art and science of concealing secret
information within non secret data.

3Here we use the term “processor” to indicate a single-core uniprocessor.
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past program behavior; that information is kept in microarchitectural state.
The mechanisms for reversing updates by an instruction ◆ use other microarchi-
tectural state to store a copy of the old value for any architectural state that
execution of ◆ updated.

An execution of instruction ◆ is deemed to have been transient if the writes
it performed to architectural state had to be reversed because values used in
the execution of ◆ were based on a misprediction. The goal with speculative
execution of a program P is to produce the same architectural state as a strictly
sequential execution of P would produce. That goal is trivially satisfied if the
insertion of transient instruction executions into a strictly sequential execution
of P does not a↵ect the architectural state that P produces. Such programs are
the expected workload for a processor that employs speculative execution.

Programs that are sensitive to transient instruction executions remain possi-
ble, though. With these programs, variation in microarchitectural state leads to
variation in architectural state. The connection from microarchitectural state to
architectural state allows attackers to create covert channels that compromise
address space isolation.

• To transmit the value stored in location L in some address space A, the
attacker instigates execution of a modulator MA. MA changes the mi-
croarchitectural state according to the value stored by L.

• To receive a value, the attacker executes a detector D that is sensitive to
changes in microarchitectural state caused by executions of MA. D might
be executed within address space A or within some other address space.

To create a modulator within an address space A, the attacker finds a set of bit
strings, where

(i) each bit string has an interpretation as an instruction sequence,

(ii) executing these instruction sequences in the correct order modulates the
microarchitectural state according to the value stored in location L of
address space A, and

(iii) the attacker can cause the instruction sequences to execute in that correct
order.

Speculative execution facilitates the creation of such modulators. First, tran-
sient execution is not limited to code contained in A. The instructions could
be bit strings in any address space4 and that span existing instructions, appear
as parts of existing instructions, or are within the value a variables is storing.
Second, transient execution of an instruction can occur in a state that would
not arise during normal execution of the code contained in A.

To make this concrete, we show how an attacker might create a modulator
using a segment of code written in a programming language (like C) where suc-

4Permissions may not be checked before a speculative execution.
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cessive array elements are stored at successive addresses5 and explicit bounds-
checks on array references must be provided by the programmer. If variable
a1Size stores the number of elements in array a1 then condition x < a1Size in

if x < a1Size then y ∶=a2[a1[x] ∗ 4096]
ensures that the assignment to y is performed only in states where expression
a1[x] refers to an element of a1. However, as we show below, speculative exe-
cution allows an attacker to learn the value of any variable stored in memory
at an address after a1[0].

First, assume speculative execution does not occur. The above assign-
ment to y terminates with x, a1[x], and a2[a1[x] ∗ 4096] residing in the main-
memory cache. Therefore, an attacker can derive possible values that vari-
able a1[x] stores by detecting6 whether a memory location corresponding to
a2[a1[x] ∗ 4096] has become present in the cache. So an attacker who con-
trols the value in x and instigates execution of the above if statement learns
information about possible values stored in a1[x] for 0 ≤ x < a1Size.

In systems that implement speculative execution, an attacker can learn even
more. The attacker would begin by repeatedly instigating evaluation of the
condition x < a1Size in states where that condition holds. This execution trains
the branch predictor to start executing the assignment to y before completing
evaluation of the condition x < a1Size in the if . The assignment to y would
later be reversed if x < a1Size is then found to be false, but changes to the
main-memory cache by the transient execution to evaluate a2[a1[x] ∗ 4096]
would not be reversed and could be detected by the attacker. Therefore, if (as
before) the value in x is attacker controlled then speculative execution of the
assignment to y can now reveal possible values of a1[x] for any value of x—not
just for values that satisfy 0 ≤ x < a1Size. That means speculative execution
has enabled the attacker to learn values of any variable stored in memory at
an address that appears in memory after7 the address of a1[0]. So the covert
channel allows memory isolation to be violated.

Note, the unprogrammed transfers of control that speculative execution can
cause often su�ce as an implementation of monitoring. With return-oriented
programming (ROP), for example, a code segment serving as a gadget transfers
control to the next gadget by using a return instruction to load the program
counter with a value on the run-time stack. Speculative execution gives attackers
an additional vehicle for implementing a transfer of control between gadgets. By
training a predictor for return addresses, transient execution can be leveraged to
invoke the next gadget even if the address of that gadget does not appear on run-
time stack. However, changes to architectural state do not persist when those

5For a single-dimension array a having n elements, if the address of a[i] and the value of
i are known to an attacker then the attacker can calculate the address of a[j] from the value
of j as well as calculating the value of j from the address of a[j].

6The attacker measures execution times for an instruction that loads a2[i ∗ 4096] for 0 ≤
i ≤ 255—those timings su�ce to guess the value of a1[x] that brought a2[i ∗ 4096] into the
cache. See page 417 for a detailed discussion of how to perform such an attack.

7On some processors, add will wrap-around in response to an overflow. Those processors
would allow the attacker to learn any value in memory.
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changes are made by gadgets invoked in this way; changes to microarchitectural
state do persist, though.

Other Abuses of Microarchitectural State. A main-memory cache is not the
only microarchitectural state that can be abused to implement a covert channel.
To use other parts of the microarchitectural state, an attacker finds a way to
cause variations in that state (modulation) and to expose those variations as
variations in the architectural state (monitoring). For example, a processor’s
microarchitectural state often maintains measurements of temperature, power
consumption, and other physical properties that are a↵ected by computing load
and that cause changes to execution speed in order to extend battery life or
avoid running chips in high temperatures. So modulation can be performed by
varying the computation load and monitoring can be performed by measuring
execution speed.

13.2 Side Channels

A side channel is modulated by normal operation of a system, where that modu-
lation discloses unexpected information about the current system state, actions
currently being performed, past systems states, and/or actions previously per-
formed.

• With physical side-channels, receivers monitor physical phenomena that
hardware exhibits while operating.

• With internal side-channels, receivers run programs to monitor changes
to state or timing.

A typical computer’s power consumption, as well as emissions of RF, light, or
sound can create physical side-channels; its main-memory cache, translation
lookaside bu↵er (TLB), branch predictor, instruction cache (I-cache), and con-
tention for other shared resources can create internal side-channels.

A side channel need not transmit a value in order to leak that value. In-
formation about instructions executed or memory accessed can su�ce, if that
information is correlated with the value being leaked. We see this with an en-
cryption or decryption routine that (like many) proceeds in rounds. Round i
inspects bit bi of the secret key b1 b2 . . . bn and, depending on that bit’s value,
accesses a di↵erent cell in some table or executes a di↵erent sequence of instruc-
tions. An attacker, therefore, can reconstruct the value of the key by monitoring
a side channel that conveys the sequence of table cells accessed or that conveys
the sequence of instructions executed over the n rounds. And, as we shall see,
such side channels are not unusual.

Some side channels can be eliminated with constant-time programming, which
is a (misleadingly named) set of restrictions to ensure that variation in secret
values does not cause variation in memory addresses accessed, instructions ex-
ecuted, or execution times.
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Constant-time Programming Restrictions.
(i) Memory addresses read and/or stored during execution may not de-

pend on secret values, so variations in secrets do not cause variations
in cache contents.

(ii) Evaluation of any expression controlling a conditional statement or a
loop may not depend on the values of secrets, so variations in secret
values do not a↵ect what statements are executed.

(iii) Variable-latency instructions (e.g., integer division) may not have
secret values as operands, so execution times of statements are unaf-
fected by variations in secret values.

Program analyzers exist for certifying that all executions by some source code
will comply with the restrictions. Not all functions of secret inputs can be pro-
grammed in a way that complies with the restrictions, although implementations
that comply have been developed for most of the important cryptographic al-
gorithms. These implementations invariably are slower (albeit only moderately
so) than implementations that do not satisfy the restrictions.

Constant-time Programming Restrictions prevents leaks over a given side
channel only if certain properties are satisfied by the underlying processor.
Those properties rule out processors whose operation exhibits variation that
arises from implementation details not typically discussed in an ISA. One ex-
ample of such a property is that memory must not be compressed and must
not use schemes to eliminate duplicate values—otherwise, the size of what is
stored reveals information about what is being stored. A second example of
such a property is that the processor not skip instructions that, because of the
values being manipulated, would have no e↵ect—otherwise, execution time re-
veals information about inputs to certain instructions. Finally, there might be
properties related to the side channels of concern. For example, if power con-
sumption can be monitored by attackers then we might have to require that the
inputs to an instruction have no e↵ect on the power used during execution of
that instruction.

13.2.1 Physical Side-Channels

A change to the voltage levels at the inputs and outputs to components in
a digital circuit will cause detectable and distinctive changes to that circuit’s
power consumption. If the change is made abruptly then a distinctive RF signal
will be produced, too. Since a digital circuit represents binary values 0 and 1 by
di↵erent voltage levels, program execution that changes a value also causes an
abrupt voltage change. So a processor will modulate both its power consumption
and its RF emissions in ways that are correlated with the instructions it executes
and the values it manipulates. Information about program execution is thus
conveyed over these physical side channels. Moreover, even though existing
circuit simulators do model this, it is impractical for designers to anticipate and
eliminate these side channels because it is di�cult to determine when useable
information is being revealed about program execution.
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Di↵erent physical processes are involved, but CRT and flat-panel output de-
vices emit both light and RF that is modulated according to what is being dis-
played on the screen. Such an RF side channel has been monitored at distances
over 1 kilometer by using specialized receivers. And the optical side-channel
for a CRT does not require direct observation of the screen: the sequence of
pixels being illuminated during each raster scan can be recovered by noting the
timings for changes in overall luminosity reflected from walls. Finally, LED
indicators that monitor the operation of data communications equipment will
often indicate the sequence of values being transferred to/from the device. If
those changes in luminosity can be monitored then that optical side channel
allows recovery of transmitted and received data.

Acoustic side channels are created too during system operation—not only
by the mechanical devices used for input and output but also by oscillation of
digital electronic components. Di↵erent keys on a mechanical keyboard each
will make slightly di↵erent sounds when pressed, and inter-keystroke timing for
human typists depends (in part) on where the keys are located on the keyboard.
So keyboard use modulates an acoustic side-channel that conveys what is typed.
Dot matrix printers and impact printers emit di↵ering sounds according to what
character is being printed, creating an acoustic side-channel that reveals what
is being printed. Capacitors and coils in a regulated power supply oscillate
at frequencies that depend on the level of activity in the digital circuit being
powered. With some hardware, this relatively low-capacity acoustic side channel
can be su�cient to allow recovery of an RSA cryptographic key from the acoustic
emanations produced by decrypting some adaptively chosen ciphertexts.

Learning Secrets from Physical Side-Channels. To exploit any physical side-
channel, the attacker must have a way to receive the signal being modulated.
Specialized equipment—e.g., a radio receiver, a power monitor, a microphone,
or a photosensor—often is required. Radiated signals that are stronger are less
likely to be confused with other signals in the environment. So attackers benefit
from closer proximity to the system performing the modulation. Attackers also
benefit when the receiver they use to monitor a side channel exhibits higher
sensitivity and higher selectivity. Finally, by collecting the signals produced by
many runs of a given operation (e.g., many encryptions with a given key), an
attacker can often use averaging to eliminate various forms of noise.

Virtually all physical side-channel signals combine indications that provide
the information an attacker is seeking with other things. An attacker must be
able to extract those indications from the rest of side-channel signal. To per-
form that extraction, an attacker might compare side-channel signals generated
during multiple executions di↵ering in controlled ways, or the attacker might
train a machine learning system to identify events of interest. Both approaches
require side-channel signals for specific inputs. Attackers sometimes can obtain
those needed signals directly from a targeted system that is connected to a pub-
lic network. When such access is not available, then an attacker might build or
procure a similar system and perform experiments using this second system.
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Mitigations for Physical Side-Channels. The monitor that an attacker is
using for a physical side-channel would be controlled by that attacker and likely
inaccessible to those defending the system. So mitigations for physical side-
channels must focus on preventing useful information from reaching a monitor.

Attenuation. One way to prevent information conveyed by a physical side-
channel signal from reaching an attacker is with attenuation, so monitors will
find the signal indistinguishable from noise. RF, sound, and light are forms of
electromagnetic radiation. Therefore, the propagation of these signals follows
the laws of physics, which o↵er two ways to cause attenuation.

• Shielding. A metal enclosure (solid or fine-gauge screen) that is grounded
will attenuate RF, an enclosure made of soft material will absorb sound,
and an opaque enclosure will block light. Complete attenuation is, how-
ever, di�cult to achieve in practice. Enclosures typically leak some signal
due to holes, seams, and construction imperfections.

• Proximity. The strength of a radiated signal follows an inverse-square
law, so a signal with strength S at the modulator has strength S�d2 at
a monitor located distance d away. However, by collecting and averaging
signals produced by many runs of the same operation, attackers often can
recover content from extremely weak signals.

So, for example, to use shielding in order to attenuate an RF side-channel
signal generated by digital electronics, we (i) enclose its circuitry in a grounded
metal case and (ii) wrap a grounded metal foil or wire braid around each cable
connected to the system. And to use proximity, we might locate the system in
the middle of a large campus but force attackers to remain outside that campus
(using gates and guards to prevent campus entry by untrusted individuals).

With some devices—keyboards and displays, for example—direct human ac-
cess is essential. To avoid obstructing that access yet still benefit from shielding,
we might incorporate shielding into the walls, windows, and doors of the room
or building in which the device is located.8 Shielding that encloses a room,
however, will not prevent monitoring by devices that are located within that
room but connected outside using a network. Access controls can be used to
defend against those attacks. Locks (a physical access control) on the doors can
help ensure that only trusted individuals enter the room. In addition, devices in
the room that could perform monitoring (e.g., because like most laptops today
they include a radio, microphone, or video camera) should run access control
software that blocks network connections. Devices inside the room now cannot
be used for monitoring, either by attackers inside the room or by attackers at
remote locations who receive signals relayed over networks.

8In the United States, highly-classified information is suppose to be viewed and discussed
only within a SCIF (sensitive compartmented information facility), which is a windowless room
or building with sound-proofed doors and with walls that include grounded metal shielding
to suppress RF emissions.
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Jamming. Corrupting the signal being carried by physical side-channel of-
fers yet another way to thwart attacks. With some physical side-channels, mon-
itors detect only the strongest signal. A defender here could transmit strong
signals that convey noise. With other physical side-channels, monitors deliver
a single, combined signal that sums all signals having certain characteristics.
Again, transmitting additional jamming signals can defeat attackers, although
some sophistication may be required in order to prevent attackers from using
averaging or more advanced signal-processing techniques in order to identify
and remove the jamming.

13.2.2 Internal Side-Channels

Invoking an operation may change the system’s state, return values, and/or
instigate system actions. If any of these e↵ects has been influenced by a prior
operation invocation then information is flowing from one operation invocation
(and its invoker) to a subsequent operation invocation (and its invoker). That
information flow is revealing parts or properties of an earlier system state.

An implementation of an interface satisfies our definition of a side channel if
operation invocations result in information flows that are unexpected. Since the
specification for an interface describes the e↵ects clients should expect, an un-
expected information flow occurs if there are e↵ects from invoking an operation
that

(i) are not described by the interface specification,

(ii) are detectable to the client performing the invocation, and

(iii) vary in ways that reveal information about past invocations.

Notice, weaker interface specifications—preferred by implementors, because fewer
constraints are imposed on the e↵ects of an operation—o↵er greater opportuni-
ties for e↵ects that satisfy (i) – (iii). Therefore, weaker interface specifications
o↵er greater opportunities for unexpected information flows.

Most interface specifications do not constrain execution times for operations
(condition (i)). That flexibility allows an implementator to reduce execution
times for future operation invocations by storing and reusing results from past
operation invocations. Reuse of prior results, however, can create information
flows since the execution time for an operation invocation is detectable (con-
dition (ii)) and execution time depends on previous invocations of operations
(condition (iii)) because it depends on what prior results are available for reuse.
So the three conditions for an unexpected information flow are satisfied.

As an example, a processor’s ISA is the specification for an interface whose
operations are that processor’s instructions. An ISA typically imposes no con-
straints on execution times for instructions so that hardware designers can hide
memory latency by incorporating various mechanisms into the processor’s mi-
croarchitecture: a main-memory cache, a translation lookaside bu↵er, an in-
struction cache, and branch predictors. Each of these mechanisms stores in-
formation for possible reuse, and reuse of that information reduces the time
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to execute an instruction. But that means the execution time for an instruc-
tion reveals information about previously executed instructions. So an internal
side-channel has been created. Moreover, usual implementations of isolation for
virtual machines, processes, and containers do not virtualize the processor mi-
croarchitecture. With memory-latency hiding mechanisms in the microarchitec-
ture being shared, an internal side-channel conveys information about execution
by each virtual machine to all the others, by each process to all the others, and
by each container to all others.

The absence of constraints on execution times for operation invocations also
allows implementations that use fewer instances of limited-capacity resources.
For an ISA realization, hardware-assisted multithreading and multiprocessing
can be supported with less chip real estate; for the designer of a higher-level
interface, a copy of each resource need not be maintained for each client. How-
ever, with resource sharing comes execution delays whenever an attempt is made
to access a resource while it is in use. The result is an internal side-channel,
since an increased execution time for one thread of execution reveals information
about the execution of another thread.

Main-Memory Caches as Internal Side-Channels. Mitigations to elim-
inate internal side-channels often depend on specifics of an interface or its im-
plementation. Below, we explore one example: main-memory caches. These
internal side-channels are particularly important because they have been suc-
cessfully exploited to leak cryptographic keys. Moreover, defenses that work
here often can be used for internal side-channels that arise with other kinds of
caches—whether the caches are in hardware (e.g., for address translation) or in
software (e.g., storing file blocks to anticipate reads).

Main-Memory Cache Exploitation. A main-memory cache typically com-
prises a set of cache lines. Each cache line stores the contents and starting
address of a cache block. Cache blocks are small and fixed size (e.g., 64 bytes)
main-memory regions, with each b-byte cache block starting at a b-byte bound-
ary. When a main memory address m is sent to the cache, the cache returns the
value at address m in main memory if the cache block containing that address
is currently present in some cache line. This is called a cache hit. If that cache
block is not currently being stored in some cache line—a cache miss—then the
appropriate cache block is fetched from main memory, copied into some cache
line, and the value at address m is returned to the requestor. To make space in
the cache for this block, the current contents of some cache line is evicted.

Di↵erent cache designs impose di↵erent restrictions on which cache lines
may store the cache block with a given starting address. Typically, the size
of a cache will be much smaller than the size of main memory, the memory a
given principal can access is stored in the same cache lines that hold memory
other principals (and attackers) access, and attackers know the algorithm for
assigning cache blocks to cache lines. So by accessing main memory, an attacker
can use execution timings to learn something about other principals’ recent
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Prime+Probe. Memory references that cause cache misses for the at-
tacker in step (iii) identify cache blocks that a principal P accessed while
executing during step (ii).

(i) Attacker accesses a sequence m1, m2, . . . , mN of memory addresses
that fills the entire cache with attacker’s cache blocks.

(ii) Attacker suspends while P executes the routine of interest.

(iii) Attacker again accesses m1, m2, . . . , mN , and notes cache misses.

Evict+Time. If a principal P ’s execution time is not increased in
step (iii) over that measured for step (i) then the attacker learns that
P did not reference specified memory address m.

(i) Attacker measures execution time for some short routine by P after
the cache has filled by P ’s previous execution.

(ii) Attacker accesses cache block(s) that would occupy the same cache
line(s) as the cache block containing P ’s memory m.

(iii) Attacker measures execution time of the routine by P in order to
determine if an additional cache miss has occurred.

Figure 13.1: Cache Exploitation to Spy on Principal P

main-memory accesses. Notice, the attacker is learning about accesses to main-
memory regions that the attacker might not itself be authorized or able to
access.

Figure 13.1 sketches two kinds of attacks for transforming a main-memory
cache into an internal side-channel.9 To perform one of these attacks requires
refining the sketch, and that refinement will depend on system specifics. For
example, some understanding of the scheduling algorithm that dispatches and
suspends execution would be required to implement the synchronization implied
for starting step (ii) of Prime+Probe and for step (ii) of Evict+Time. Those
details depend on whether there is hardware multi-threading versus multiple
cores accessing a single cache in parallel versus a single core where the attacker
and its target execute in alternation. Various mechanisms could be used to
detect the cache misses required for step (iii) of Prime+Probe: a high-resolution
real-time clock, performance counters that count cache misses, and memory that
is being repeatedly incremented by some process. Access to a high-resolution
real-time clock is useful to implement the run-time measurements in steps (i)
and (iii) of Evict+Time.

9The following characterization is sometimes used in connection with information flows
from caches. A trace driven attack learns from individual cache hits/misses; a time driven
attack learns from the e↵ects of cache hits/misses on the aggregate execution time of some
code. So Prime+Probe is an example of a trace driven attack, and Evict+Time is an example
of a time driven attack.



13.2. Side Channels 419

Prevention of Main-Memory Cache Exploitation. One way to prevent a
main-memory cache from leaking secret values is to prevent variation in those
secret values from causing variation in the cache blocks present in the main-
memory cache.

Suppressing Variation in Cache Contents. On processors where
there is a static and fixed mapping from memory addresses to cache blocks,
variation in the values of secrets will not cause variation in the sequence of
cache blocks accessed during execution if a program satisfies the following
restrictions.

(i) Which cache blocks are read and/or stored during execution of each
instruction does not depend on secret values.

(ii) Expressions controlling a conditional statement or a loop do not de-
pend on the values of secrets.

Note the connection to Constant-time Programming Restrictions (page 413) and
the explicit assumption about how the cache is implemented.

Di↵erences in what cache blocks are present in a main-memory cache can-
not leak secret values if one principal’s e↵ects on the cache cannot a↵ect the
execution of other principals. Various schemes could be used to create that
isolation.

Isolation of Cache Contents for Separate Principals. Memory ref-
erences made by one principal will have no e↵ect on the cache lines that
are visible to any other principal provided:

– Cache Reset. All cache lines are reset to a fixed, known value as part
of any context switch that changes which principal is executing.

– Name Mapping. Each principal uses a disjoint subset of the cache
lines. Accesses made by a principal load and use only those cache
lines.

– Time Multiplexing. At each context switch, a copy is made of the
current cache contents; when execution of a principal is restarted,
the cache is restored from that copy.

To implement Cache Reset, most processors provide a flush instruction that
clears all main-memory cache lines. Executing flush, however, leads to a period
of higher latency for main-memory accesses until the cache lines have been
refilled, resulting in degraded system performance. Name Mapping and Time
Multiplexing are likely to have an even higher performance cost, though. With
Name Mapping, only a fraction of the cache is available for the principal that is
executing; with Time Multiplexing, the cost of a context switch becomes high.
Due to these performance costs, hardware support for Name Mapping and Time
Multiplexing is rarely present on modern processors.

A final set of defenses we discuss are designed to prevent monitoring. Two
tasks must be performed by an attacker in order to infer secret values from a
main-memory cache.



420 Chapter 13. Unexpected Communications Channels

• Synchronization. Execute code soon after target principal P has executed.

• Cache Probing. Ascertain whether a specific address that target principal
P can access is currently being stored in a cache line.

Therefore, mechanisms that prevent an attacker from performing one or the
other of these tasks would prevent monitoring.

An attacker’s actions cannot alter which principal will run next if the proces-
sor scheduler chooses nondeterministically from a large set of principals. This
defense does have a cost, though. Running the wrong principal next can degrade
system performance by causing input/output devices to remain idle and/or by
disrupting the temporal locality required for cache e↵ectiveness. System de-
signers are reluctant to sacrifice performance for security, so they tend to favor
other defenses.

Cache Probing works because the following properties are expected to hold
for any main-memory cache.

(i) Longer memory-access latencies are exhibited for addresses not present in
the cache.

(ii) Any address that a principal P can access will be stored in the same cache
line as some set of addresses that the attacker knows and can access.

Property (i), in conjunction with a way to compare elapsed times, allows an
attacker to detect whether an address it accesses resides in some cache line.
That means an attacker can learn about cache contents by making memory
accesses. Due to property (ii), an attacker can access one location in order to
learn whether the cache is storing some other location. Therefore, an attacker
can ascertain whether some target principal P has not accessed an address ↵
by measuring the response time to access an address ↵′ known to be assigned
to the same cache line as the cache block containing ↵.

But if principals do not have sources of timing information then property (i)
cannot be used for determining whether a memory access causes a cache hit
or a cache miss. Moreover, as discussed for defense (ii) of Capacity Bounds
on Timing Channels (page 407), blocking access to timing information on some
processors is easily achieved for user-mode code.

Turning now to property (ii) above, observe that attackers benefit when each
cache block only ever occupies a unique predetermined cache line. Even here,
though, a cache miss by the attacker cannot establish whether a given cache
block has been recently referenced by some target principal P , because more
than one cache block that P might access would each occupy the same cache line.
Use of an n-way set-associative cache would raise yet further doubts, because a
given cache block now might be stored by any of a given set of n di↵erent cache
lines. That suggests attackers have more di�culty with a main-memory cache
that is n-way set-associative.

A second way to interfere with property (ii) is to keep attackers ignorant
of what addresses they should probe for learning about memory accesses made
by some target principal. We can achieve that e↵ect with the system software
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responsible for compiling and loading each principal’s variables and code. It
su�ces if, each time the system is restarted, this system software creates a new,
random, mapping of instruction sequences and variables to the various cache
blocks within a memory region. To ascertain which addresses to access for
cache probing, attackers must now run a set of experiments after each system
restart.

Notes and Reading

Covert Channels. The term “covert channel” was introduced by Lamp-
son [29] for describing the confinement problem—the requirement that client-
provided data not be leaked by a service. Lampson identified and gave names
to three classes of channels that an attacker might use to perform such a leak:
storage channels are written by the service but can be read by others, legiti-
mate channels are intended to convey information from the service, and covert
channels are not intended for transferring information but can be repurposed
to do so. The meanings of these names subsequently evolved, and a decade
later the Orange Book [14] was stating security requirements in terms of capac-
ity limitations for what it called timing channels and storage channels which,
readers are told, constitute the two types of covert channels. That formulation
of confinement is still used, even though Wray [43] subsequently showed that
some covert channels could be portrayed as being both a timing channel and a
storage channel.

Initially, solutions to the confinement problem focused on the mechanisms
that operating systems provided. As part of an e↵ort at UCLA to build a se-
cure operating system, Popek and Kline [36] suggests the use of virtual time
in order to eliminate timing channels. However, as Lipner [31] explains, virtual
time can be defeated in settings where end-users can measure response times.
Fuzzy time avoids that problem; it was first proposed in Hu [19] as a means
to reduce the capacity of covert timing channels in a secure virtual machine
manager kernel being developed for the Digital Equipment Corporation VAX
architecture [21, 30]. For blocking storage channels, Lipner [31] suggests enforc-
ing the authorization policy of Bell and LaPadula [8, 7] on all objects named
in a formal model of the system. This approach, however, can be unnecessarily
restrictive, because it does not account for the semantics of operations.

Analysis methods o↵er system builders the flexibility to eschew restrictive
mechanisms where they are not needed. Perhaps the best known of these is the
shared resource matrix methodology (SRMM) developed by Kemmerer [23]. To
use it, an analyst constructs a table from the (formal or informal) specification
for the system. Each row in the table is associated with some attribute of shared
state, and each column is associated with a system operation. Entries in each
cell indicate whether executing the operation of that column can directly or
indirectly read or modify the attribute associated with that row. Certain table
configurations, if present, indicate the possibility of a covert storage channel;
other configurations indicate the possibility of a covert timing channel.
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Wray [43] gives a di↵erent table-based analysis method for identifying possi-
ble covert timing channels. For this analysis, any generator of detectable events
is considered a clock. Each row in the table is associated with a clock that
a sender could modulate to transmit a value, and each column in the table is
associated with a clock that a receiver uses to detect modulation. Every cell in
the table thus corresponds to a potential timing channel.

Unfortunately, any analysis method that depends on people to provide a sys-
tem description could be inaccurate or incomplete—there is no guarantee that
the input will be accurate and complete account of the system to be analyzed.
These di�culties would seem to be remedied by using system source code as
the input to an analysis method. However, automated methods that use sys-
tem source code as the input must be conservative (making them incomplete),
because program analysis to deduce whether specific information flows occur is
an undecidable question.

Covert channels often surprise developers, because most people think about
intended uses of given functionality rather than thinking about ways that func-
tionality might be repurposed. The chapter described only a few of many possi-
ble covert channels. One of them—abuse of speculative execution, first proposed
in Kocher et al [24]— at first might seem quite complicated and, thus, di�cult
to perform. (The example on page 411 is Spectre Variant 1 from Kocher et
al [24].) Concern about speculative execution attacks is not misplaced, because
little can be done in software to e↵ect a defense, since speculative execution
skips explicit tests that a programmer might add, and instructions used in an
attack need not even appear in the code for a system.

Side Channels. NSA’s declassified history [33] of TEMPEST (Telecom-
munications Electronics Material Protected from Emanating Spurious Trans-
missions) recounts how Bell Labs engineers in 1943 had discovered that plaintext
could be recovered from RF signals being emitted by 131-B2 encryption hard-
ware. The NSA document goes on to say that those side-channel attacks were
forgotten after the war ended, to be rediscovered by the CIA10 in 1951, lead-
ing to classified standards for shielding and distancing of devices being used to
communicate classified information. Elements of U.S. and NATO standards for
what is now called EMSEC (Emissions Security) remain classified, probably to
avoid revealing information about current capabilities for exploiting emissions.

As long as information about EMSEC attacks remained classified, few would
be aware that such attacks were possible or how to perform them. A 1985
(unclassified) paper by Wim van Eck [42], working at the Netherlands PTT,
changed that. It described a low-cost way that RF emissions could be exploited
to reconstruct the text appearing on a CRT display, making EMSEC attacks
available to any adversary. Van Eck’s paper not only suggested the obvious

10At some point, the Soviet Union also became aware that emissions were a vulnerability.
The standards for suppression of radio frequency interference they published in 1954 were
mysteriously more stringent for communications equipment than other equipment. And in the
mid-1960’s, evidence was uncovered that the Soviet Union was monitoring RF and acoustic
emissions from devices inside the U.S. Embassy in Moscow.
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defenses (shielding to attenuate the signal and adding noise to obscure it) but
also suggested a novel defense: instead of rendering the scan lines in the usual
order, use a secret to determine a permutation on the order in which the scan
lines are rendered. Additional defenses were subsequently described in Kuhn’s
2003 Ph.D. dissertation [28] at University of Cambridge: for a CRT display,
RF emissions could be reduced by altering the shapes of the characters being
displayed; for a flat-panel display, adding random, low-order bits to the color
combinations used for displaying text could frustrate attempts to reconstruct
text from RF emissions.

Exploits involving optical emissions are first reported in a paper [32] by
Loughry and Umphress describing how to recover transmitted data by monitor-
ing LED status indicators on modems or other data communications equipment.
Independently, Kuhn [27] explores optical eavesdropping on CRT displays by
attackers who do not have a direct line of sight to the screen. Kuhn’s attacks
recover the contents of a CRT screen by measuring the sequence of changes
to overall (perhaps reflected) luminosity, since that sequence of changes reveals
which pixels are being excited in each scan line.

Within the computer security research community, early studies of acoustic
side channels focused on keyboard emissions. Asonov and Agrawal [4] trained a
neural network to recover keypresses from the sounds generated by an IBM PC
keyboard.11 Once trained, this neural network worked for all typists and for all
instances of a given keyboard make and model, but retraining was required for
di↵erent keyboard models. Follow-on work by others focused on improvements
to training. For example, having training data be labeled (which is required
in [4]) is shown to be unnecessary in Zhuang, Zhou and Tygar [44], and the use
of short sequences of keypresses (instead of individual keypresses) for training
is investigated in Berger, Wool, and Yaedor [9]. Much work followed; space
limitations preclude giving a survey here.

Keyboards are not the only source of acoustic emissions in a computing sys-
tem. Briol [12] is the first to observe that the printing of di↵erent characters on
a dot matrix printer produces acoustic emissions having di↵erent waveforms.12

But that paper does not give attacks to recover what is being printed from those
“compromising sonsorous [sic] vibrations” [12]. Subsequently, Backes et al. [5]
formulated attacks by leveraging the intervening two decades of developments
in machine learning, feature extraction in music and speech, and speech recog-
nition. However, mechanical devices are not the only source of problematic
acoustic emissions in a computing system. Genken, Shamir and Tromer [17]
shows how a 4096-bit RSA key can be recovered by recording and analyzing
hum caused by capacitors and coils in the regulated power supply for a CPU.

11An attack previously published in Song, Wagner and Tian [40] had exploited di↵erences
in times between key presses (which varied according to the placement of those keys on a
keyboard) to reduce the search space for recovering a password typed over an SSH connection.
When using an SSH connection, each character typed would be encrypted and transmitted in
a separate packet, and the time between transmission of those packets was a good estimate
for the time between the key presses that generated those packets.

12Briol [12] also showed that printing di↵erent characters produced di↵erent wave-forms for
power consumption and for RF emissions.
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Physical side-channels begin to have commercial significance with the de-
ployment of smartcards that controlled access to value by using secret keys
and cryptographic operations.13 To assess the risk of incurring losses required
understanding what side-channel attacks would be feasible for threats having
physical access to the smartcard. With that goal in mind, Kocher [25] shows
how to perform timing attacks on implementations of Di�e-Hellman, RSA, DSS,
and other cryptosystems. That paper also suggests some defenses: making all
cryptographic operations take the same amount of time, depriving attackers ac-
cess to an accurate time source, or performing cryptographic operations on data
that has been blinded. Constant-time cryptography seemed the most promising
of those defenses, so researchers undertook developing constant-time implemen-
tations of various cryptographic operations (e.g., Bernstien et al. [11]) as well
as methods for analyzing a program to determine if its executions are constant
time (e.g., Barth et al. [6]).

Attacks that exploit other side-channels were also explored. Kocher et
al. [26] leads the way with DES attacks based on monitoring power-consumption.
Quisquater and Samyde [37, 38] subsequently discusses how those attacks could
be transformed into attacks that use electromagnetic emissions instead of power
consumption; actual attacks to retrieve key material being employed by smart-
card implementations of DES and RSA are described by Gandolfi, Mourtel, and
Francis [15]. Agrawal et al. [3] gives a systematic account of side-channel attacks
based on electromagnetic emissions from semiconductor devices.

Attacks that exploit the specifics of a cryptosystem’s implementation are
not limited to smartcards or to exploiting physical side-channels. Kelsey et
al. [22], which generalizes Kocher’s timing attacks to implementations of prod-
uct ciphers, suggests that the information needed by an attacker could come
from measuring a cache-hit ratio during an execution. (Hu [20] had already
shown how a shared main-memory cache could become a covert channel on a
mainframe computer.) Side-channel attacks that used main-memory caches be-
gin with attacks on DES by Page [35] and Tsunoo et al. [41]. The formulation
of such cache-based timing attacks in terms of Evict+Time and Prime+Probe
is introduced in Osvik, Shamir and Tromer [34] in connection with attacks on
AES implementations that they give.

Internal side-channels also can be created using parts of a processor’s mi-
croarchitecture that are shared with a program executing cryptographic op-
erations. A 2007 attack in Aciiçmez, Koç, and Seifert [2] learns keys from
executions of RSA by using the branch predictor as a side channel; an attack
in Acıiçmez [1] uses the instruction cache (I-cache) as a side channel to attack
OpenSSL. Gras et al. [18] uses a translation lookaside bu↵er (TLB) to leak keys
RSA and EdDSA secret keys. The survey by Ge et al. [16] discusses these, many
other attacks, and the various defenses that have been proposed.

Attacks on cryptosystem implementations by using internal side-channels
typically infer details about an execution of some cryptographic operation from

13Télécarte, launched in 1983 for payment in French pay phones, was the first large-scale
use of smartcards cards.
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measurements of execution timings. Brumley and Boneh [13] is the first to
demonstrate that the timing measurement can be done remotely—an attacker
learns the private key of an SSL server by remotely measuring the time that
server takes to respond to decryption queries. Subsequently, Bernstein [10] de-
vises a cache-timing attack, where an attacker located elsewhere in the network
detects the timing variations needed to recover an AES key that is being used.

Some attacks involving internal side-channels require the attacker to exe-
cute a program on the processor executing some cryptographic operation being
attacked. Clouds, which typically do not give users control over processor as-
signments, would therefore seem to o↵er a safe hosting environment. Ristenpart
et al. [39] shows that they don’t—with high probability, an attacker can cause
a program being run in such a cloud to get assigned to the processor executing
some target of attack. Stronger isolation of virtual machines, processes, or com-
partments could eliminate internal side-channels that depend on the sender and
receiver being co-resident. There have been numerous proposals for supporting
stronger isolation, but thus far they have not been embraced by hardware and
system software producers.
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