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Abstract

A thread of research has emerged to investigate the interactions of replication with
threshold cryptography for use in environments satisfying weak assumptions. The
result is a new paradigm known as distributed trust, and this article attempts to
survey that landscape.



1 Introduction

The use of replicated state machines for implementing a Byzantine fault-tolerant
service [19, 29] is well known:

1. Start with a server, structured as a deterministic state machine, that reads
and processes client submitted requests. Requests are the sole means to
change the server’s state and/or cause the server to produce an output.

2. Run replicas of that server on distinct hosts. These hosts communicate
through narrow-bandwidth channels and thus form a distributed system.

3. Employ a replica-coordination protocol to ensure that all non-faulty server
replicas process identical sequences of requests.

Correct server replicas will all produce identical outputs for each given client re-
quest. Moreover, the majority of the outputs produced for each request will come
from correct replicas provided (i) at most t server replicas are faulty, and (ii) the
service comprises at least 2t + 1 server replicas. So we succeed in implementing
availability and integrity for a service that tolerates at most t faulty replicas by
defining an output of the service to be any response produced by a majority of the
server replicas.

Implicit in the approach are two assumptions. The first is to assume that a
replica-coordination protocol exists. The second is to assume that the individ-
ual state machine replicas are independent if executed on separate hosts in a dis-
tributed system. That is, the probability pr m of m replicas exhibiting Byzantine
behavior is approximately (pr 1)

m where pr1 is the probability of a single replica
exhibiting Byzantine behavior.

A trustworthy service must tolerate attacks as well as failures. Availability, in-
tegrity, and confidentiality are typically of concern. The approach outlined above
is thus seriously deficient:

• Confidentiality is not just ignored, but n-fold replication actually increases
the number of sites that must resist attack because they store (copies of) con-
fidential information. Even services that do not operate on confidential data
per se are likely to store cryptographic keys (so responses can be authenti-
cated). Since these keys must be kept secret, support for confidentiality is
needed even for implementing integrity.

1



• Any vulnerability in one replica is likely present in all, enabling attacks that
succeed at one replica to succeed at all replicas. The independence assump-
tion, manifestly plausible for hardware failures and many kinds of software
failures (i.e., Heisenbugs), is thus unlikely to be satisfied once vulnerabili-
ties and attacks are taken into account. So the probability that more than t
servers are compromised is now approximately pr 1 rather than (pr 1)

m, and
trustworthiness of the service is not improved by the replication.

• Replica coordination protocols are typically designed assuming the syn-
chronous model of distributed computation. This is problematic because
denial of service attacks can invalidate such timing assumptions. Once an
assumption on which the system depends has been invalidated, correct sys-
tem operation is no longer guaranteed.

A few of these deficiencies can be remedied by using cryptography or by using
algorithms for different kinds of coordination; other of the deficiencies are driving
current research. The goal of this article is to provide a principled account of that
landscape, not dwelling on individual features but instead making clear how each
contributes to implementing trustworthy services with replicated state machines.
Each of the landscape’s individual features is well understood in one or another
research community, and some of the connections are too. But what is involved
in putting them together is not widely documented nor broadly understood. Space
limitations, however, allow only a superficial survey of the related literature, so
view this paper as a starting point and consult the articles we do cite (and their
reference lists) for more in-depth study.

Finally, it is worth emphasizing that the replication-based approaches dis-
cussed in this paper only address how to implement a more-trustworthy version
of some service whose semantics are defined by a single state machine. We thus
do not address vulnerabilities intrinsic in what that single state machine does. To
solve the real trustworthiness problem requires determining that a state machine’s
semantics cannot be abused, which, unfortunately, is today an open research prob-
lem.

2 Compromise and Proactive Recovery

Two general types of components are involved in building trustworthy services:
processors and channels. Processors serve as hosts; channels enable hosts to com-
municate.
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A correct component only exhibits intended behavior; a compromised com-
ponent can exhibit other behaviors. Component compromise is caused by failures
and/or attacks. We make no assumption about the behavior of compromised com-
ponents (the so-called Byzantine failure model), but we do conservatively assume
that a component C compromised by a successful attack is then controlled by the
adversary, with any secrets stored by C becoming then known to the adversary.

Secrets the adversary learns by compromising one component might facilitate
the subsequent compromise of other components. For example, a correct channel
protects the confidentiality, integrity, and authenticity of messages it carries. This
channel functionality is typically implemented cryptographically, with keys stored
at those hosts serving as the channel’s endpoints. An attack that compromises a
host thus yields secrets that then allow the adversary to compromise all channels
attached to the host.

Because channel compromise is caused by host compromise, trustworthiness
for a service is often specified solely in terms of which or how many host compro-
mises can be tolerated; the possibility of channel compromise distinct from host
compromise is ignored. This simplification, adopted in this paper too, is most
defensible when the network topology provides several physically independent
paths to each host, because then the channel connecting a host is unlikely to fail
independent of that host.

Proactive Recovery

The system builder has little control over how and when a component transi-
tions from being correct to being compromised. A recovery protocol provides
the means to reverse such transitions. For a faulty component, the recovery proto-
col might involve replacing or repairing hardware. For a component that has been
attacked, the recovery protocol must:

• evict the adversary, perhaps by restoring code from clean media (ideally
with the recently exploited vulnerabilities patched),

• reconstitute state, perhaps from other servers, and

• replace any secret keys the adversary might have learned.

The reason to execute a recovery protocol after detecting a failure or attack
is obvious. Less obvious are benefits that accrue from executing a recovery pro-
tocol periodically, even though no compromise has been detected [15]. To wit,
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such proactive recovery defends against undetected attacks and failures by trans-
forming a service that tolerates t compromised hosts over its entire lifetime into a
system that tolerates up to t compromised hosts during each window of vulnera-
bility delimited by successive executions of the recovery protocol. The adversary
that cannot compromise t+1 hosts within a window of vulnerability is foiled and
forced to begin anew on a system with all defenses restored to full strength.

Denial-of-service attacks slow execution, thereby lengthening the window of
vulnerability and increasing the interval available to perpetrate an attack. Whether
such a lengthened window of vulnerability is significant will depend on whether
it affords the adversary an opportunity to compromise more than t servers during
the window. But whatever the adversary, systems with proactive recovery can, in
principle, be more resilient than those without it, simply because proactive recov-
ery (if implemented correctly) affords an opportunity for servers to recover from
past compromises—including some compromises that have not been detected.

3 Service Key Refresh and Scalability

With the state machine approach, a client, after making a request, awaits responses
from servers. When the compromise of up to t servers must be tolerated, the
same response received from fewer than t servers cannot be considered correct.
But if the response is received from t + 1 or more servers then that response was
necessarily produced by a correct server. So sets of t+1 servers together speak for
the service, and clients require some means to identify when equivalent responses
have come from t + 1 distinct server replicas.

One way to ascertain the origin of responses from (correct) servers is to em-
ploy digital signatures. Each server’s response is digitally signed using a private
key known only to that server; the receiver validates the origin of a response by
checking the signature using that server’s public key. A server’s private key thus
speaks for that server. Less expensive schemes, involving message authentica-
tion codes (MAC) and shared secrets, have also been developed; such schemes
contribute to the performance reported for toolkits (e.g., BFT) that have recently
become available to system builders.

The use of secrets—be it private keys or shared secret keys—for authenticating
server replicas to clients impacts the scalability of a service that employs proactive
recovery. This is because new secrets must be selected at the start of each window
of vulnerability, and clients must then be notified of the changes. If the number
of clients is large then performing the notifications will be expensive, and the
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resulting service ceases to be scalable.
To build a service that is scalable, we seek a scheme whereby clients need not

be informed of periodic changes to server keys. Since sets of t+1 or more servers
speak for the service, a client could identify a correct response from the service
if the service has some means to digitally sign responses exactly when a set of
servers that speak for the service agree on that response:

TC1: Any set of t + 1 or more server replicas can cooperate and digitally
sign a message on behalf of the service.

TC2: No set of t or fewer server replicas can contrive to digitally sign a
message on behalf of the service.

TC1 implies that information held by t + 1 or more servers enables them to to-
gether construct a digital signature for a message (namely, for the service’s re-
sponse to a request), whereas TC2 implies that no coalition of t or fewer servers
has enough information to construct such a digital signature. In effect, TC1 and
TC2 characterize a new form of private key for digital signatures—a key that is
associated with the service rather than with the individual servers. This private
key speaks for the service but is never entirely materialized at individual servers
comprising the service.

A private key satisfying TC1 and TC2 can be implemented using secret shar-
ing [30, 2]. An (n, t + 1) secret sharing for a secret s is a set of n random shares
such that (i) s can be recovered with knowledge of t + 1 shares, and (ii) no in-
formation about s can be derived from t or fewer shares. Not only do protocols
exist to construct (n, t + 1) secret sharings but threshold digital signature proto-
cols [3, 10] exist that allow a digital signature to be constructed for a message
from t + 1 partial signatures, where each partial signature is computed using as
inputs the message along with only a single share of the private key. Thus, TC1
and TC2 can be implemented by using (n, t + 1) secret sharing and dividing the
service private key among the server replicas—one share per replica—and then
having servers use threshold digital signatures to collaborate in signing responses.

If the shares are fixed then, over time, an attacker might compromise t + 1
servers, obtain t + 1 shares, and thus be able to speak for the service, generating
correctly signed bogus service responses. Such an attacker is known as a mobile
adversary [25], since it attacks and controls one server for a limited time before
moving to the next. The defense against mobile adversary attacks is, as part of
proactive recovery, for servers periodically to (i) create a new and independent
secret sharing for the service private key, and then (ii) delete the old shares, re-
placing them with the new shares. Because the new and old secret sharings are
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independent, the mobile adversary cannot combine new shares and old shares in
order to obtain the service’s signing key. And because old shares are deleted when
replaced by new shares, a mobile adversary must compromise more than t servers
within a single window of vulnerability in order to succeed.

Protocols to create new, independent sharings of a secret are called proactive
secret sharing protocols and have been developed for the synchronous model [15]
as well as for the asynchronous model, which makes no assumptions about process
execution speeds and message delivery delays [4, 36]. Proactive secret sharing
protocols are tricky to design because:

• The new sharing must be computed without ever materializing the shared
secret at any server. (A server that materialized the shared secret, if com-
promised, could reveal the service’s signing key to the adversary.)

• The protocol must work correctly in the presence of as many as t compro-
mised servers, which might provide bogus shares to the protocol.

4 Server Key Refresh

Secure communication channels between servers are required for proactive secret
sharing and for various other protocols that servers execute. Since keys used to
implement a secure channel are stored by hosts at the endpoints of that channel,
we conclude that, not withstanding the use of secret sharing and threshold cryp-
tography for service private keys, there will be other cryptographic keys stored at
servers. If these other keys can be compromised then they too must be refreshed
during proactive recovery. Three classes of solutions for server key refresh have
been proposed; they are the subject of this section.

4.1 Trusted Hardware

Although not in widespread use today, special-purpose cryptographic hardware
that stores keys and performs cryptographic operations (e.g., encryption and de-
cryption) does exist. This hardware is designed so that, if correctly installed, it will
not divulge keys or other secret parameters, even if the software on the attached
host has been compromised. When keys stored by a server cannot be revealed,
there is no reason to refresh them. So, storing server keys in special-purpose
cryptographic hardware attached to a server eliminates the need to refresh server
keys as part of proactive recovery for as long as that hardware can be trusted.
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However, use of special-purpose cryptographic hardware for all cryptographic
operations does not prevent a compromised server from performing cryptographic
operations for the adversary. The adversary might, for example, cause the server
to generate signed or encrypted messages for later use in attacks. A defense here
is to maintain an integer counter in stable memory (so the counter’s value will
persist across failures and restarts) that is part of the special-purpose cryptographic
hardware. This counter is incremented every time a new window of vulnerability
starts; and the current counter value is included in every message that is encrypted
or signed using the tamper-proof hardware. A server can now ignore any message
it receives that has a counter value too low for the current window of vulnerability.

The need for special-purpose hardware would seem to limit adoption of this
approach. But recent announcements from industry groups like the Trusted Com-
puting Group (see https://www.trustedcomputinggroup.org/home) and hardware
manufacturers like IBM and Intel imply that standard PC computing systems soon
will support reasonable approximations to this hardware functionality, at least for
threats common on the Internet today.

4.2 Off-line Keys

In this approach to server key refresh, new keys are distributed using a separate se-
cure communications channel that the adversary cannot compromise. This chan-
nel typically is implemented cryptographically by using secrets that are stored
and used in an off-line stand-alone computer, thereby ensuring inaccessibility to a
network-borne adversary. For example, an administrative public/private key pair
could be associated with each server H . The administrative public key K̂H is
stored in ROM on all servers; the associated private key k̂H is stored off-line and
is known only to the administrator of H . Each new server private key kA for
a host A would be generated off-line. The corresponding public key KA would
then be distributed to all servers by including KA in a certificate signed using the
administrative private key k̂A of server A.

4.3 Attack Awareness

Instead of relying on a full-fledged tamper-proof co-processor, a scheme sug-
gested in Canetti and Herzberg [7] uses non-modifiable storage (e.g., ROM) to
store a special service-wide public key, whose corresponding private key is shared
among servers using an (n, t + 1) secret sharing. To refresh its server key pair, a
server H generates its new private/public key pair, signs the new public key using
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the old private key, and then requests that the service endorse the new public key.
Such an endorsement is represented by a certificate that associates the new public
key with server H and that is signed using the special service private key.

The service private key is refreshed periodically using proactive secret sharing,
thereby guaranteeing that an attacker cannot learn the service private key provided
the attacker cannot compromise more than t servers in a window of vulnerability.
Therefore, an attacker cannot fabricate a valid endorsement because bogus certifi-
cates are detected by servers using the service public key stored in their ROM. A
server becomes aware of an attack if it does not receive a valid certificate for its
new public key within a reasonable amount of time or if it receives two conflict-
ing requests signed by the same server’s private key during the same window of
vulnerability. In either case, actions should be initiated to re-introduce the server
into the system and remove the possible imposter.

5 Processor Independence

The processor independence assumption is approximated to the extent that a sin-
gle attack or host failure cannot cause multiple hosts to become compromised.
Independence is reduced, for example, when

• hosts employ common software (and thus replicas have the same vulnera-
bilities),

• hosts are operated by the same organization (because a single maleficent
operator could then access and compromise more than a singled host), or

• hosts rely on a common infrastructure, such as name servers or routers used
to support communications, since the compromise of that infrastructure vi-
olates an assumption needed for the hosts to function.

One general way to characterize the trustworthiness of a service is by describ-
ing which sets of components could together be compromised without disrupting
correct operation of the service. Each vulnerability V partitions server replicas
into groups, where replicas in a given group share that vulnerability. For instance,
there exist attacks that compromise server replicas running Linux but not those
running Windows (and vice versa), which leads to a partitioning according to op-
erating system; and the effects of a maleficent operator are likely localized to
server replicas under that operator’s control, which leads to a partitioning accord-
ing to system operator.
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Sets of a system’s servers whose compromise must be tolerated can be speci-
fied using an adversary structure [16, 22]. This is a set A = {S1, . . . , Sr} whose
elements are sets of system servers the adversary is assumed able to compromise
during the same window of vulnerability. A trustworthy service is then expected
to continue operating as long as the set of compromised servers is an element of
A. Thus, the adversary structure A for a system intended to tolerate attacks on the
operating system would contain sets Si whose elements are servers all running the
same operating system.

When there are n server replicas and A contains all sets of servers of size at
most t, the result is known as an (n, t) threshold adversary structure [30]. The
basic state machine approach involves a threshold adversary structure, as does
much of the discussion throughout this article. Threshold adversary structures
correspond to systems in which server replicas are assumed to be independent
and equally vulnerable. They are, at best, approximations of reality. The price of
embracing such approximations is that single events might actually compromise
all of the servers in some set that is not an element of the adversary structure—the
service would then be compromised.

Protocols designed for threshold adversary structures frequently have straight-
forward generalizations to arbitrary adversary structures. What is less well under-
stood is how to identify an appropriate adversary structure for a system, since
doing so requires identifying the common vulnerabilities. Today’s systems of-
ten employ commercial off-the-shelf (COTS) components, and therefore access
to internal details is restricted. Yet those internal details are what is needed in
identifying common vulnerabilities.

Independence by Avoiding Common Vulnerabilities

Eliminating software bugs eliminates vulnerabilities that would impinge on replica
independence. The construction of bug-free software is quite difficult, however.
So instead we turn to another means of increasing replica independence: diversity.
In particular, the state machine approach does not require that server replicas be
identical in either their design or their implementation—only that different repli-
cas produce equivalent responses for each given request. Such diversity can be
obtained in three ways:

• Develop multiple server implementations. This, unfortunately, can be ex-
pensive. The cost of all facets of system development are multiplied because
each replica now has its own design, implementation, and testing costs. In
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addition, interoperation of diverse components is typically more difficult
to orchestrate, not withstanding the adoption of standards. Finally, experi-
ments have shown that distinct development groups working from a com-
mon specification will produce software having the same bugs [18].

• Employ pre-existing diverse components that have similar functionality and
then write software wrappers so that all implement the same interface and
the same state machine behavior [29, 28]. One difficulty here is procuring
diverse components that do have the requisite similar functionality. Some
operating systems have multiple, diverse implementations (e.g., BSD UNIX
vs. Linux) but other operating systems do not; and application components
we use in building a service are unlikely to have multiple diverse realiza-
tions. A second difficulty arises when components do not provide access
to internal non-deterministic choices they make during execution (e.g., for
creating a “handle” that will be returned to a client), since now writing the
wrapper can be quite difficult [28]. And, finally, there still remains a chance
that the diverse components will share vulnerabilities because they are writ-
ten to the same specification (exhibiting a phenomenon like that reported
in [18]) or because they are built using some of the same components or
tools.

• Introduce diversity automatically during compilation, loading, or in the run-
time environment [12, 34]. Code can typically be generated and storage
allocated in any number of ways for a given high-level language program;
making choices in producing different executables introduces a measure of
diversity. Different executables for the same high-level language program
are still implementations of the same algorithms, though, so executables
obtained in this manner will continue to share any flaws in those algorithms.

6 Replica Coordination

In the state machine approach, not only must state machine replicas exhibit in-
dependence but all correct replicas must reach consensus about the contents and
ordering of client requests. Therefore, the replica-coordination protocol must in-
clude some sort of consensus protocol [26] to ensure that

• all correct state machine replicas agree on each client’s request, and
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• if the client sends the same request R to all replicas then R is the consensus
they reach for that request.

This specification involves both a safety property and a liveness property. The
safety property prohibits different replicas from agreeing on different values or
orderings for any given request; the liveness property stipulates that an agreement
is always reached.

Consensus protocols exist only for systems satisfying certain assumptions [11].
In particular, deterministic consensus protocols do not exist for systems having
unboundedly slow message delivery or process execution speeds—systems satis-
fying the asynchronous model. This limitation arises because, to reach consensus
in such a system, participating state machine replicas must distinguish between (i)
those replicas that have halted (due to failures) and thus should be ignored and (ii)
those replicas that, though correct, are executing very slowly and thus cannot be
ignored.

The impossibility of implementing a deterministic consensus protocol in the
asynchronous model leaves three options.

Option I: Abandon Consensus. Instead of arranging that every state machine
replica receive every request, we might instead employ servers that are not as
tightly coordinated. One well known example is the use of a quorum system
to implement a storage service from individual storage servers, each of which
supports local read and write operations. And various robust storage systems
[21, 23, 33] have been structured in this way, as have richer services such as
the COCA [37] certification authority, which implements operations involve both
reading and writing service state.

To constitute a quorum system, servers are associated with groups; each oper-
ation is executed on all servers in some group. Moreover, these groups are defined
so that pairs of groups intersect in one or more servers—the effect of one opera-
tion can thus be seen by any subsequent operation. Various quorum schemes differ
in the size of the intersection of two quorums. For example, if faulty processors
simply halt then as many as t faulty processors can be tolerated by having 2t + 1
processors in each group and t + 1 in the intersection. If faulty processors can
exhibit arbitrary behavior then a Byzantine quorum system [22], involving larger
groups and a larger intersection, is required.

A second example of abandoning consensus replication can be seen in the
APSS asynchronous proactive secret sharing protocol[36]. Here, each partici-
pating server computes a new sharing of some secret, and a consensus protocol
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would seem the obvious way for all correct servers to agree on which new sharing
to adopt. But instead, each server embraces all of the new sharings; a consensus
protocol for the asynchronous model is not then needed. Clients of APSS refer
to individual shares by using names that enable servers to know which sharing is
involved. So here is a place where establishing consensus turns out to be unnec-
essary after the problem specification is changed slightly—APSS creates at most
n new and independent sharings of a secret when started with n sharings, rather
than creating a single new sharing from a single sharing.

Certain service specifications cannot be implemented without solving a con-
sensus problem, so abandoning consensus is not always an option. But it is an
option, albeit one that is (too) rarely considered.

Option II: Employ Randomization. The impossibility result of Fischer et al. [11]
does not rule out protocols that use randomization, and practical randomized asyn-
chronous Byzantine agreement protocol have been developed. A practical exam-
ple is the consensus protocol of Cachin et al. [5], which builds on some new cryp-
tographic primitives including a non-interactive threshold signature scheme and a
threshold coin-tossing scheme; the protocol is part of the Sintra toolkit [6] devel-
oped at the IBM Zurich Research Center. Sintra supports a variety of broadcast
primitives needed for coordination in replicated systems.

Option III: Sacrifice Liveness (Temporarily). A service cannot be very re-
sponsive when processes and message delivery have become glacially slow, so the
liveness property of a consensus protocol might temporarily be relaxed in those
circumstances. After all, there are no real-time guarantees in the asynchronous
model anyway. The crux of this option, then, is to employ a consensus proto-
col (i) that satisfies its liveness property only while the system satisfies assump-
tions somewhat stronger than found in the asynchronous model but (ii) that always
satisfies its safety property (so different state machine replicas still agree on re-
quests they process). Lamport’s Paxos protocol [20] is a well known example of
trading liveness for operation under the weaker assumptions of the asynchronous
model. Other examples include the protocol of Chockler, Malkhi and Reiter [9]
and BFT [8].
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7 Computing with Server Confidential Data

Some services involve data that must be kept confidential. Unlike secrets used
in connection with cryptography (viz. keys), such server data cannot be changed
periodically as part of proactive recovery, because values now have significance
beyond just being secret and could be part of computations that support the ser-
vices semantics.

Information stored unencrypted on a server becomes known to the adversary
if that server is compromised. Thus, confidential service data must always be
stored in some sort of encrypted form—either replicated or partitioned among
the servers. Unfortunately, few algorithms have been found that perform inter-
esting computations on encrypted data (although some limited search operations
can now be supported [31]). Even temporarily decrypting the data on a server
replica or storing it on a backup in unencrypted form risks disclosing secrets to
the adversary.

One promising approach is to employ secure multi-party computations [14].
Much is known about what can and cannot be done as a secure multi-party com-
putation; less is known about what can and cannot be done efficiently, and the
prognosis is not good for efficiently supporting arbitrary computations (beyond
cryptographic operations like decryption and signing).

It is not difficult to implement a service that simply stores confidential data for
subsequent retrieval by clients. An obvious scheme has the client encrypt the con-
fidential data and forward that encrypted data to a storage service for subsequent
retrieval. Only the client and other principals with knowledge of the decryption
key would then be able to make sense of the data they retrieve. Note, the ser-
vice here has no means to control which principals are able to access unencrypted
confidential data.

In cases where we desire the service—and not client that initially stores the
confidential data—to implement access control, then simply having a client en-
crypt the confidential data no longer works. The key elements of the solution to
this problem have already been described, though.

• The confidential data (or a secret key to encrypt the data) is encrypted using
a service public key.

• The corresponding private key is shared among replicas using an (n, t + 1)
secret sharing scheme and refreshed periodically using proactive secret shar-
ing.
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• A copy of the encrypted data is stored on every replica to preserve its in-
tegrity and availability in face of server compromises and failures.

Two schemes have been proposed for clients to retrieve the encrypted data.

Re-encryption. A re-encryption protocol produces a ciphertext encrypted under
one key from a ciphertext encrypted under another but without the plain-
text becoming available during intermediate steps. Such protocols exist for
public key cryptosystems where the private key is shared among a set of
servers [17]. To retrieve a piece of encrypted data, the service executes a
re-encryption protocol on data encrypted under the service public key; data
encrypted under the public key of an authorized client is the result.

Blinding. A client chooses a random blinding factor, encrypts it using the ser-
vice public key, and sends that to the service. If that client is deemed by
the service to be authorized for access then the service multiplies the en-
crypted data by this blinding factor and then employs threshold decryption
to compute un-encrypted but blinded data, which is sent back to the client.
The client, knowing the blinding factor, can then recover the data from that
blinded data.

Blinding can be considered a special case of re-encryption, because blinding
is essentially encryption with a one-time pad (the random blinding factor). Unlike
the re-encryption scheme in [17], which demands no involvement of the client and
produces a ciphertext for a different key in the same encryption scheme, our use
of blinding requires client participation and yields a ciphertext under a different
encryption scheme. So, re-encryption can be used directly for cases where a client
itself is a distributed service with a service public key, while the blinding-based
scheme cannot without further modification. In fact, a re-encryption scheme based
on blinding appears in [35]. There, ciphertext encrypted under the service public
key is transformed into ciphertext encrypted under the client public key (as with
the re-encryption scheme in [17]), thereby allowing a flexible partition of work
between client and service.

8 Status and Future Directions

Various systems have been built using the elements we have just outlined. These
efforts are summarized in Figure 1 and Figure 2. There is clearly much to be
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BFS [8]: An NFS file system implementation built using BFT. See Figure 2 for a de-
scription of the BFT toolkit.

COCA [37]: A trustworthy distributed certification authority. COCA avoids consensus
protocols by using a Byzantine quorum systems. The system employs threshold
cryptography to produce certificates signed by the service, using proactive recov-
ery in conjunction with off-line administrator keys for maintaining authenticated
communication links. COCA assumes the asynchronous model.

CODEX [24]: A robust and secure distribution system for confidential data. CODEX
stores private keys using secret sharing with proactive refresh, uses threshold cryp-
tography, and employs a distributed blinding protocol in order to send confidential
information from the service to a client or to another distributed service. CODEX
assumes the asynchronous model.

E-Vault [13]: A secure distributed storage system. E-vault employs threshold cryp-
tography to maintain private keys, uses blinding for retrieving confidential data,
and implements proactive secret sharing. E-vault assumes the synchronous system
model.

Figure 1: Systems that Employ Elements of Distributed Trust.

learned about how to engineer systems based on these elements, and only a small
part of the landscape has been explored.

The trustworthiness of a system is ultimately tied to a set of assumptions about
the environment in which that system must function. Weaker assumptions should
be preferred, since then there is less risk that they will be violated by natural
events or attacks. But that renders irrelevant much prior work in fault-tolerance
and distributed algorithms.

First, until recently, the synchronous model of computation has generally been
assumed. But there are now good reason to investigate algorithms and system
architectures for asynchronous models of computation: concern about denial-of-
service attacks and interest in distributed computations that span wide-area net-
works. Second, most of the prior work on replication has ignored confidential-
ity. Yet confidentiality is not orthogonal to replication and poses a new set of
challenges, so it cannot be ignored. Moreover, because confidentiality is not a
property of an individual component’s states or state transitions, usual approaches
to specification and system refinement, which are concerned with what actions
components perform, are not germane.

The system design approach outlined in this paper has been referred to as im-
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BFT [8]: A toolkit for implementing replicated state machines in the asynchronous
model. Services tolerate Byzantine failures and use a proactive recovery mecha-
nism for periodically re-establishing secure links among replicas and restoring the
code and the state of each replica. BFT employs consensus protocols and sacrifices
liveness to circumvent the impossibility result for consensus in the asynchronous
model. For proactive recovery, BFT assumes a secure cryptographic co-processor
and a watchdog timer. BFT does not provide support for storing confidential infor-
mation or for maintaining a service private key that is required for scalability.

ITTC (Intrusion Tolerance via Threshold Cryptography) [32]: A toolkit that includes a
threshold RSA implementation with distributed key generation and share refresh-
ing. Share refreshing is done when instructed by an administrator. No clear system
model is provided, but the protocols seem to be suitable for use in the asynchronous
model.

Phalanx [23]: Middleware for implementing scalable persistent survivable distributed
object repositories. A Byzantine quorum system allows Byzantine failures to be
tolerated, even in the asynchronous model. Ramdomized protocols are used to cir-
cumvent the impossibility result for consensus in the asynchronous model. Phalanx
does not provide support for storing confidential information or for maintaining
confidential service keys; it also does not implement proactive recovery.

Proactive security toolkit (IBM) [1]: A toolkit for maintaining proactively secure com-
munication links, private keys, and data storage in synchronous systems. The de-
sign employs attack-awareness approach (with ROM) for refreshing the servers’
public/private key pairs.

SINTRA (Secure INtrusion-Tolerant Replication Architecture) [6]: A toolkit that pro-
vides a set of group communication primitives for implementing a replicated state
machine in the asynchronous model where servers can exhibit Byzantine failures.
Randomized protocols are used to circumvent the impossibility result for consen-
sus in the asynchronous model. SINTRA does not provide support for storing
confidential information or for maintaining a service private key that is required
for scalability, although the design of an asynchronous proactive secret sharing
protocol is documented elsewhere.

Figure 2: Toolkits for Implementing Distributed Trust.
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plementing distributed trust [27], because it allows a higher level of trust to be
placed in an ensemble than could be placed in a component. There is no magic
here. Distributed trust requires that component compromise be independent. To
date, only a few sources of diversity have been investigated and only a subset
of those have enjoyed practical deployment. Real diversity is messy and often
brought about by random and unpredictable natural processes, in contrast to how
most computations are envisaged (as a preconceived sequence of state transitions).
Think about how epidemics spread (from random, hence diverse, contacts be-
tween individuals) to wipe out a population (a form of “reliable broadcast”); think
about how individuality permits a species to survive or how diverse collections of
species allow an ecosystem to last.

Finally, if cryptographic building blocks, like secret sharing and threshold
cryptography, seem a bit arcane today, it is perhaps worth recalling that twenty
years ago, research in consensus protocols was considered a niche concern that
most systems builders ignored as impractical. Today, systems designers under-
stand and regularly use such protocols in order to implement systems that can
tolerate various kinds of failures even though hardware is more reliable than ever.
The promising technologies for trustworthiness, such as secret sharing and thresh-
old cryptography, are today also seen by many as a niche concern. This cannot
persist for long, given our growing dependence on networked computers which,
unfortunately, makes us hostage not only to failures but also to attacks.
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