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1. Introduction
A secure system must defend against all possible at-
tacks—including those unknown to the defender. But 
defenders, having limited resources, typically develop 
defenses only for attacks they know about. New kinds 
of attacks are then likely to succeed. So our growing 
dependence on networked computing systems puts at 
risk individuals, commercial enterprises, the public 
sector, and our military.  

The obvious alternative is to build systems whose 
security follows from first principles. Unfortunately, 
we know little about those principles. We need a 
science of cybersecurity (see box 1) that puts the con-
struction of secure systems onto a firm foundation 
by giving developers a body of laws for predicting the 
consequences of design and implementation choices. 
The laws should

�� transcend specific technologies and attacks, yet 
still be applicable in real settings, 

�� introduce new models and abstractions, thereby 
bringing pedagogical value besides predictive 
power, and

�� facilitate discovery of new defenses as well as de-
scribe non-obvious connections between attacks, 
defenses, and policies, thus providing a better 
understanding of the landscape. 

The research needed to develop this science 
of cybersecurity must go beyond the search for 

vulnerabilities in deployed systems and beyond the de-
velopment of defenses for specific attacks. Yet, use of a 
science of cybersecurity when implementing a system 
should not be equated with implementing absolute 
security or even with concluding that security requires 
perfection in design and implementation. Rather, a 
science of cybersecurity would provide—independent 
of specific systems—a principled account for tech-
niques that work, including assumptions they require 
and ways one set of assumptions can be transformed 
or discharged by another. It would articulate and or-
ganize a set of abstractions, principles, and trade-offs 
for building secure systems, given the realities of the 
threats and of our cybersecurity needs.

BOX 1. What is a science?

The term science has evolved in meaning since Aristotle used it 
to describe a body of knowledge. To many, it connotes knowl-
edge obtained by systematic experimentation, so they take that 
process as the defining characteristic of a science. The natural 
sciences satisfy this definition. 

Experimentation helps in forming and then affirming 
theories or laws that are intended to offer verifiable predictions 
about man-made and natural phenomena. It is but a small step 
from science as experimentation to science as laws that ac-
curately predict phenomena. The status of the natural sciences 
remains unaffected by changing the definition of a science in 
this way. But computer science now joins. It is the study of what 
processes can be automated efficiently; laws about specification 
(problems) and implementations (algorithms) are a comfortable 
way to encapsulate such knowledge.

Blueprint for a science 
of cybersecurity  |  

F r e d  B .  S c h n e i d e r



48

The field of cryptography comes close to exem-
plifying the kind of science base we seek. The focus 
in cryptography is on understanding the design and 
limitations of algorithms and protocols to compute 
certain kinds of results (for example, confidential or 
tamperproof or attributed) in the presence of certain 
kinds of adversaries who have access to some, but not 
all, information involved in the computation. Cryp-
tography, however, is but one of many cybersecurity 
building blocks. A science of cybersecurity would have 
to encompass richer kinds of specifications, comput-
ing environments, and adversaries. Peter Neumann [1] 
summarized the situation well when he opined about 
implementing cybersecurity, “If you think cryptog-
raphy is the answer to your problem, then you don’t 
know what your problem is.”

An analogy with medicine can be instructive for 
contemplating benefits we might expect from a sci-
ence of cybersecurity. Some health problems are best 
handled in a reactive manner. We know what to do 
when somebody breaks a finger, and each year we 
create a new influenza vaccine in anticipation of the 
flu season to come. But only after making significant 
investments in basic medical sciences are we start-
ing to understand the mechanisms by which cancers 
grow, and a cure seems to require that kind of deep 
understanding. Moreover, nobody believes disease will 
someday be a “solved problem.” We make enormous 
strides in medical research, yet new threats emerge 
and old defenses (for example, antibiotics) lose their 
effectiveness. Like good health, cybersecurity is never 
going to be a “solved problem.” Attacks coevolve with 
defenses and in ways to disrupt each new task that is 
entrusted to our networked systems. As with medical 
problems, some attacks are best addressed in a reactive 
way, while others are not. But our success in develop-
ing all defenses will benefit considerably from having 
laws that constitute a science of cybersecurity. 

This article gives one perspective on the shape of 
that science and its laws. Subjects that might be char-
acterized in laws are discussed in section 2. Then, sec-
tion 3 illustrates by giving concrete examples of laws. 
The relationship that a science of cybersecurity would 
have with existing branches of computer science is 
explored in section 4. 

If you think 
cryptography is the 

answer to your problem, 
then you don’t know 

what your problem is. 
 

-Peter Neumann
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2. Laws about what? 
In the natural sciences, quantities found in nature are 
related by laws: E = mc2, PV = nRT, etc. Continuous 
mathematics is used to specify these laws. Continuous 
mathematics, however, is not intrinsic to the notion 
of a scientific law—predictive power is. Indeed, laws 
that govern digital computations are often most con-
veniently expressed using discrete mathematics and 
logical formulas. Laws for a science of cybersecurity 
are likely to follow suit because these, too, concern 
digital computation.

But what should be the subject matter of these laws? 
To be deemed secure, a system should, despite attacks, 
satisfy some prescribed policy that specifies what the 
system must do (for example, deliver service) and 
what it must not do (for example, leak secrets). And 
defenses are the means we employ to prevent a system 
from being compromised by attacks. This account 
suggests we strive to develop laws that relate attacks, 
defenses, and policies. 

For generality, we should prefer laws that relate 
classes of attacks, classes of defenses, and classes of 
policies, where the classification exposes essential 
characteristics. Then we can look forward to hav-
ing laws like “Defenses in class  enforce policies in 
class  despite attacks from class A” or “By compos-
ing defenses from class ' and class ", a defense is 
constructed that resists the same attacks as defenses 
from class .” Appropriate classes, then, are crucial for 
a science of cybersecurity to be relevant. 

2.1. Classes of attacks 

A system’s interfaces define the sole means by which an 
environment can change or sense the effects of system 
execution. Some interfaces have clear embodiment 
to hardware: the keyboard and mouse for inputs, a 
graphic display or printer for outputs, and a network 
channel for both inputs and outputs. Other hardware 
interfaces and methods of input/output will be less 
apparent, and some are quite obscure. For example, 
Halderman et al. [2] show how lowering the operating 
temperature of a memory board facilitates capture of 
secret cryptographic keys through what they term a 

cold boot attack. The temperature of the environment 
is, in effect, an input to a generally overlooked hard-
ware interface. Most familiar are interfaces created 
by software. The operating system interface often 
provides ways for programs to communicate overtly 
through system calls and shared memory or covertly 
through various side channels (such as battery level or 
execution timings). 

Since (by definition) interfaces provide the only 
means for influencing and sensing system execution, 
interfaces necessarily constitute the sole avenues for 
conducting attacks against a system. The set of in-
terfaces and the specific operations involved is thus 
one obvious basis for defining classes of attacks. For 
example, we might distinguish attacks (such as SQL-
injections) that exploit overly powerful interfaces 
from attacks (such as buffer overflows) that exploit 
insufficiently conservative implementations. Another 
basis for defining classes of attacks is to characterize 
the information or effort required for conducting the 
attack. With some cryptosystems, for instance, effi-
cient techniques exist for discovering a decryption key 
if samples of ciphertext with corresponding plaintext 
are available for that key, but these techniques do not 
work when only ciphertext is available.

A given input might cause some policies to be 
violated but not others. So whether an input consti-
tutes an attack on a given system could depend on the 
policy that system is expected to enforce. This depen-
dence suggests that classes of attacks could be defined 
in terms of what policies they compromise. The defini-
tion of denial-of-service attacks, for instance, equates 
a class of attacks with system availability policies. 

For attacks on communications channels, cryptog-
raphers introduce classifications based on the compu-
tational power or information available to the attacker. 
For example, Dolev-Yao attackers are limited to read-
ing, sending, deleting, or modifying fields in messages 
being sent as part of some protocol execution [3]. (The 
altered traffic confuses the protocol participants, and 
they unwittingly undertake some action the attacker 
desires.) But it is not obvious how to generalize these 
attack classes to systems that implement more com-
plex semantics than message delivery and that provide 
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operations beyond reading, sending, deleting, or 
modifying messages. 

Finally, the role of people in a system can be a basis 
for defining classes of attacks. Security mechanisms 
that are inconvenient will be ignored or circumvented 
by users; security mechanisms that are difficult to 
understand will be misused (with vulnerabilities intro-
duced as a result). Distinct classes of attacks can thus 
be classified according to how or when the human 
user is fooled into empowering an adversary. Phishing 
attacks, which enable theft of passwords and ultimate-
ly facilitate identity theft, are one such class of attacks. 

2.2. Classes of policies  

Traditionally, the cybersecurity community 
has formulated policies in terms of three kinds 
of requirements:

�� Confidentiality refers to which principals are al-
lowed to learn what information.

�� Integrity refers to what changes to the system 
(stored information and resource usage) and to 
its environment (outputs) are allowed.

�� Availability refers to when must inputs be read 
or outputs produced. 

This classification, as it now stands, is likely to be 
problematic as a basis for the laws that form a science 
of cybersecurity.

One problem is the lack of widespread agree-
ment on mathematical definitions for confidentiality, 
integrity, and availability. A second problem is that 
the three kinds of requirements are not orthogonal. 
For example, secret data can be protected simply by 
corrupting it so that the resulting value no longer 
accurately conveys the true secret value, thus trading 
integrity for confidentiality.a As a second example, any 
confidentiality property can be satisfied by enforcing 
a weak enough availability property, because a system 
that does nothing cannot be accessed by attackers to 
learn secret information.

Contrast this state of affairs with trace properties, 
where safety (“no ‘bad thing’ happens”) and liveness 
(“some ‘good thing’ happens”) are orthogonal classes. 
(Formal definitions of trace properties, safety, and 
liveness are given in box 2 for those readers who are 
interested.) Moreover, there is added value when re-
quirements are formulated in terms of safety and live-
ness, because safety and liveness are each connected to 
a proof method. Trace properties, though, are not ex-
pressive enough for specifying all confidentiality and 
integrity policies. The class of hyperproperties [5], a 
generalization of trace properties, is. And hyperprop-
erties include safety and liveness classes that enjoy the 
same kind of orthogonal decomposition that exists 
for trace properties. So hyperproperties are a promis-
ing candidate for use in a science of cybersecurity. 

Box 2. Trace properties, safety, and liveness

A specification for a sequential program would characterize for 
each input whether the program terminates and what outputs it 
produces. This characterization of execution as a relation is inad-
equate for concurrent programs. Lamport [6] introduced safety 
and liveness to describe the more expressive class of specifica-
tions that are needed for this setting. Safety asserts that no “bad 
thing” happens during execution and liveness asserts that some 
“good thing” happens. 

A trace is a (possibly infinite) sequence of states; a trace prop-
erty is a set of traces, where each trace in isolation satisfies some 
characteristic predicate associated with that trace property. 
Examples include partial correctness (the first state satisfies the 
input specification, and any terminal state satisfies the output 
specification) and mutual exclusion (in each state, the program 
for at most one process designates an instruction in a critical 
section). Not all sets of traces define trace properties. Informa-
tion flow, which stipulates a correlation between the values 
of the two variables across all traces, is an example. This set of 
traces does not have a characteristic predicate that depends 
only on each individual trace, so the set is not a trace property. 

Figure 1. Phishing attacks, which enable theft of passwords 
and ultimately facilitate identity theft, can be classified ac-
cording to how the human user is fooled into empowering 
the adversary.

a. Clarkson and Schneider [4] use information theory to derive a law that characterizes the trade-off between confidentiality and integrity 
for database-privacy mechanisms.
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Every trace property is either safety, liveness, or the con-
junction of two trace properties—one that is safety and one 
that is liveness [7]. In addition, an invariance argument suffices 
for proving that a program satisfies a trace property that is 
safety; a variant function is needed for proving a trace property 
that is liveness [8]. Thus, the safety-liveness classification for 
trace properties comes with proof methods beyond offering 
formal definitions.

Any classification of policies is likely to be associ-
ated with some kind of system model and, in particu-
lar, with the interfaces the model defines (hence the 
operations available to adversaries). For example, we 
might model a system in terms of the set of possible 
indivisible state transitions that it performs while 
operating, or we might model a system as a black 
box that reads information streams from some chan-
nels and outputs on others. Sets of indivisible state 
transitions are a useful model for expressing laws 
about classes of policies enforced by various operating 
system mechanisms (for example, reference monitors 
versus code rewriting) which themselves are con-
cerned with allowed and disallowed changes to system 
state; stream models are often used for quantifying 
information leakage or corruption in output streams. 
We should expect that a science of cybersecurity will 
not be built around a single model or around a single 
classification of policies. 

2.3. Classes of defenses  

A large and varied collection of different defenses can 
be found in the cybersecurity literature.  

Program analysis and rewriting form one natural 
class characterized by expending the effort for deploy-
ing the defense (mostly) prior to execution. This class 
of defenses, called language-based security, can be fur-
ther subdivided according to whether rewriting occurs 
(it might not occur with type-checking, for example) 
and according to the work required by the analysis 
and/or the rewriting. The undecidability of certain 
analysis questions and the high computation costs 
of answering others is sometimes a basis for further 
distinguishing conservative defenses—those analysis 
methods that can reject as being insecure programs 
that actually are secure, and those rewriting methods 
that add unnecessary checks.

Run-time defenses have, as their foundation, only a 
few basic mechanisms:  

�� Isolation. Execution of one program is somehow 
prevented from accessing interfaces that are as-
sociated with the execution of others. Examples 
include physically isolated hardware, virtual 
machines, and processes (which, by definition, 
have isolated memory segments).  

�� Monitoring. A reference monitor is guaranteed to 
receive control whenever any operation in some 
specified set is invoked; it further has the capac-
ity to block subsequent execution, which it does 
to prevent an operation from proceeding when 
that execution would not comply with what-
ever policy is being enforced. Examples include 
memory mapping hardware, processors having 
modes that disable certain instructions, operat-
ing system kernels, and firewalls.

�� Obfuscation. Code or data is transmitted or 
stored in a form that can be understood only 
with knowledge of a secret. That secret is kept 
from the attacker, who then is unable to abuse, 
understand, or alter in a meaningful way the 
content being protected. Examples include data 
encryption, digital signatures, and program 
transformations that increase the work factor 
needed to craft attacks.  

Obviously, a classification of run-time defenses could 
be derived from this taxonomy of mechanisms. 

Another way to view defenses is in terms of trust 
relocation. For example, by running an application 

Figure 2. A firewall is an example of a reference monitor.
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under control of a reference monitor, we relocate trust 
in that application to trust in the reference monitor. 
This trust-relocation view of defenses invites discovery 
of general laws that govern how trust in one compo-
nent can be replaced by trust in another.

We know that it is always possible for trust in an 
analyzer to be relocated to a proof checker—sim-
ply have an analyzer that concludes P also generate 
a proof of P. Moreover, this specific means of trust 
relocation is attractive because proof checkers can be 
simple, hence easy to trust; whereas, analyzers can 
be quite large and complicated. This suggests a re-
lated question: Is it ever possible to add defenses and 
transform one system into another, where the latter 
requires weaker assumptions about components be-
ing trusted? Perhaps trust is analogous to entropy in 
thermodynamics—something that can be reversed 
only at some cost (where “cost” corresponds to the 
strength of the assumptions that must be made)? Such 
questions are fundamental to the design of secure 
systems, and today’s designers have no theory to help 
with answers. A science of cybersecurity could provide 
that foundation. 

3. Laws already on the books  
Attacks coevolve with defenses, so a system that 
yesterday was secure might no longer be secure 
tomorrow. You can then wonder whether yesterday’s 
science of cybersecurity would be made irrelevant by 
new attacks and new defenses. This depends on the 
laws, but if the classes of attacks, defenses, and poli-
cies are wisely constructed and sufficiently general, 
then laws about them should be both interesting and 
long-lived. Examples of extant laws can provide some 
confirmation, and two (developed by the author) are 
discussed below.  

3.1. Law: Policies and reference monitors  

A developer who contemplates building or modifying 
a system will have in mind some class of policies that 
must be enforced. Laws that characterize what poli-
cies are enforced by given classes of defenses would be 
helpful here. Such laws have been derived for vari-
ous defenses. Next, we discuss a law [9] concerning 
reference monitors.  

The policy enforced by a reference monitor is the 
set of traces that correspond to executions in which 
the reference monitor does not block any operation. 
This set is a trace property, because whether the refer-
ence monitor blocks an operation in a trace depends 
only on the contents of that trace (specifically, the pre-
ceding operations in that trace). Moreover, this trace 
property is safety; the set of finite sequences that end 
in an operation the reference monitor blocks consti-
tutes the “bad thing.” We conclude:  

Law. All reference monitors enforce trace 
properties that are safety.  

This law, for example, implies that a reference mon-
itor cannot enforce an information flow policy, since 
(as discussed in box 2) information flow is not a trace 
property. However, the law does not preclude using a 
reference monitor to enforce a policy that is stronger 
and, by being stronger, implies that the information 
flow policy also will hold. But a stronger policy will 
deem insecure some executions the information flow 
policy does not. So such a reference monitor would 
block some executions that would be allowed by a 
defense that exactly enforces information flow. The 
system designer is thus alerted to a trade-off—employ-
ing a reference monitor for information flow policies 
brings overly conservative enforcement.  

The above law also suggests a new kind of run-time 
defense mechanism [10]. For every trace property ψ 
that is safety, there exists an automaton mψ that accepts 
the set of traces in ψ [8]. 

Automaton mψ is a reference monitor for ψ because, 
by definition, it rejects traces that violate ψ. So if code 
Mψ that simulates mψ is invoked before every instruc-
tion in some given program S, then the result will be 
a new program that behaves just like S except it halts 
rather than executing an instruction that violates 
policy ψ. This is depicted in figure 3, where invoca-
tion Mψ(x) simulates the transition that automaton 
mψ makes for input symbol x and repeatedly returns 
OK until automaton mψ would reject the sequence of 
inputs it has processed. Thus, the statement

if Mψ(“S1”) ≠ OK then halt (1)

in figure 3 immediately prior to a program statement 
Si causes execution to terminate if next executing 
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b. There is also experimental evidence [11] that distinct versions built by independent teams nevertheless share vulnerabilities.

Si would violate the policy defined by automaton 
mψ—that is, if executing Si would cause policy ψ to 
be violated.

S1 if Mψ(“S1”) ≠ OK then halt

S2 S1

S3 ⇒ if Mψ(“S2”) ≠ OK then halt

S4 S2

… …

original inlined reference monitor

figure 3. Inlined reference monitor example

Such inlined reference monitors can be more effi-
cient at run-time than traditional reference monitors, 
because a context switch is not required each time an 
inlined reference monitor is invoked. However, an 
inlined reference monitor must be installed separately 
in each program whose execution is being monitored; 
whereas, a traditional reference monitor can be writ-
ten and installed once and for all. The per-program 
installation does mean that inlined reference monitors 
can enforce different policies on different programs, 
an awkward functionality to support with a single 
traditional reference monitor. And per-program in-
stallation also means that code (1) inserted to simulate 
mψ can be specialized and simplified, thereby allow-
ing unnecessary checks to be eliminated for inlined 
reference monitors.

3.2. Law: Attacks and obfuscators  

We define a set of programs to be diverse if all imple-
ment the same functionality but differ in their imple-
mentation details. Diverse programs are less prone 
to having vulnerabilities in common, because attacks 
often depend on memory layout and/or instruction 
sequence specifics. But building multiple distinct ver-
sions of a program is expensive.b So system implemen-
tors have turned to mechanical means for creating sets 
comprising diverse versions of a given program.

For mechanically generated diversity to work as a 
defense, not only must implementations differ (so they 
have few vulnerabilities in common), but the differ-
ences must be kept secret from attackers. For example, 

buffer overflow attacks are generally written relative to 
some specific run-time stack layout. Alter this layout 
by rearranging the relative locations of variables as 
well as the return address on the stack, and an input 
designed to perpetrate an attack for the original stack 
layout is unlikely to succeed. But if the new stack 
layout were known by the adversary, then crafting an 
attack again becomes straightforward.

Programs to accomplish such transformations have 
been called obfuscators. An obfuscator τ takes two in-
puts—a program S and a secret key K—and produces 
a morph, which is a program τ(S, K) whose semantics 
is equivalent to S but whose implementation differs 
from S and from morphs generated with other keys. 
K specifies which exact transformations are applied in 
producing morph τ(S, K). Note that since S and τ are 
assumed to be publicly known, knowledge of K would 
enable an attacker to learn implementation details for 
successfully attacking morph τ(S, K). 

Different classes of transformations are more or 
less effective in defending against the various different 
classes of attacks. This correspondence is important 
when designing a set of defenses for a given threat 
model, but knowing the specific correspondences is 
not the same as knowing the overall power of mechan-
ically generated diversity as a defense. That defensive 
power for programs written in a C-like language has 
been partially characterized in a set of laws [12]. Each 
Obfuscator Law establishes, for a specific (common) 
type system Ti and obfuscator τi pair, what is the rela-
tionship between two sets of attacks—those blocked 
when type system Ti is enforced versus those that 
cause execution of a morph τi (S, K) to abort for some 
secret key K.

The Obfuscator Laws do not completely quantify 
the difference between the effectiveness of type-check-
ing and obfuscation. But the laws are noteworthy for 
a science of cybersecurity because they circumvent 
the difficult problem of reasoning about attacks not 
yet invented. Laws about classes of known attacks risk 
irrelevance as new attacks are discovered. By formulat-
ing the Obfuscator Laws in terms of a relation between 
sets of attacks, the need to identify or enumerate 
individual attacks is avoided. To wit, the class of at-
tacks that type-checking defends against is not known 
and not given, yet the power of obfuscation to defend 
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against an attack can now be meaningfully conveyed 
relative to the power of type-checking.

4. The science in context  
A science of cybersecurity would build on knowledge 
from several existing areas of computer science. The 
connections to formal methods, fault-tolerance, and 
experimental computer science are nuanced; they are 
discussed below. However, cryptography, information 
theory, and game theory are also likely to be valuable 
sources of abstractions and laws. Finally, the physical 
sciences surely have a role to play—not only in matters 
of physical security but also for understanding un-
conventional interfaces to real devices that attackers 
might exploit (as exemplified by the cold boot attacks 
mentioned in section 2.1).  

Formal methods. Attacks are possible only because 
a system we deploy has flaws in its implementation, 
design, specification, or requirements. Eliminate the 
flaws and we eliminate the need to deploy defenses. 
But even when the systems on which we rely aren’t 
being attacked, we should want confidence that they 
will function correctly. The presence of flaws under-
mines that confidence. So cybersecurity is not the only 
compelling reason to eliminate flaws.  

The focus of formal methods research is on meth-
ods for gaining confidence in a system by using 
rigorous reasoning, including programming logics 
and model checkers.c This work has been remarkably 
successful with small systems or small specifications. It 
is used by companies like Microsoft to validate device 
drivers and Intel to validate chip designs. It is also 
the engine behind strong type-checking in modern 
programming languages (for example, Java and C#) 
and various code-analysis tools used in security audits.   
Further developments in formal methods could serve 
a science of cybersecurity well. However, to date, work 
in formal methods has been based on trace properties 
or something with equivalent expressive power. This 
foundation allows mathematically elegant character-
izations for whether a program satisfies a specification 
and for justifying stepwise refinement of programs. 
But trace properties are not adequately expressive for 
specifying all confidentiality, integrity, and availabil-
ity policies, and stepwise refinement is not sound for 

these richer policies. (A mathematical justification of 
this limitation is provided in box 3 for the interested 
reader.) So the foundations of today’s formal meth-
ods would have to be changed to something with the 
expressiveness of hyperproperties—no small feat.

Box 3. Satisfies and refinement 

A program S can be modeled as a trace property ΣS containing 
all sequences of states that could arise from executing S, and 
a specific execution of S satisfies a trace property P if the trace 
modeling that execution is in P. Thus, S satisfies P if and only if 
ΣS ⊆ P holds. 

We say that a program S' refines S, denoted S'  S, when S' 
resolves choices left unspecified by S. For example, a program 
that increments x by 1 refines a program that merely specifies 
that x be increased. A refinement S' of S thus exhibits a subset of 
the executions for S: S'  S holds if and only if ΣS' ⊆ ΣS holds. 

Notice that “satisfies” is closed under refinement. If S' refines 
S and S satisfies P, then S' satisfies P. Also, if we construct S' by 
performing a series of refinements S'  S1 , S1  S2 , . . . , Sn  S and 
S satisfies P then we are guaranteed that S' will satisfy P too. So 
programs can be constructed by stepwise refinement.

With richer classes of policies, “satisfies” is unfortunately not 
closed under refinement. As an example, consider two pro-
grams. Program Sx=y is modeled by trace property Σx=y contain-
ing all traces in which x = y holds in all states; program S* is 
modeled by ΣS* containing all sequences of states. We have that 
Σx=y ⊂ ΣS* holds, so by definition Sx=y  S*. However, program S* 
enforces the confidentiality policy that no information flows 
between x and y, whereas (refinement) Sx=y does not. Satisfies for 
the confidentiality policy is not closed under refinement, and 
stepwise refinement is not sound for deriving programs that 
satisfy this policy.

Byzantine fault-tolerance. A system is considered 
fault-tolerant if it will continue operating correctly 
even though some of its components exhibit faulty 
behavior. Fault-tolerance is usually defined relative 
to a fault model that defines assumptions about what 
components can become faulty and what kinds of 
behaviors faulty components might exhibit. In the 
Byzantine fault model [13], faulty components are per-
mitted to collude and to perform arbitrary state transi-
tions. A real system is unlikely to experience such 
hostile behavior from its faulty components, but any 
faulty behavior that might actually be experienced is, 
by definition, allowed with the Byzantine fault model. 
So by building a system that works for the Byzantine 

c. Other areas of software engineering are concerned with gaining confidence in a system through the use of experimentation (for ex-
ample, testing) or management (for example, strictures on development processes).
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fault model, we ensure that the system can tolerate 
all behaviors that in practice could be exhibited by its 
faulty components.  

The basic recipe for implementing such Byzantine 
fault-tolerance is well understood. We assume that the 
output of every component is a function of the preced-
ing sequence of inputs. Each component that might 
fail is replaced by 2t + 1 replicas, where these replicas 
all receive the same sequence of inputs. Provided that 
t or fewer replicas are faulty, then the majority of the 
2t + 1 will be correct. These correct replicas will gener-
ate identical correct outputs, so the majority output 
from all replicas is unaffected by the behaviors of 
faulty components.  

A faulty component in the Byzantine fault model 
is indistinguishable from a component that has been 
compromised and is under control of an attacker. We 
might thus conclude that if a Byzantine fault-tolerant 
system can tolerate t component failures, then it also 
could resist as many as t attacks—we could get se-
curity by implementing Byzantine fault-tolerance. 
Unfortunately, the argument oversimplifies, and the 
conclusion is unsound:

�� Replication, if anything, creates more opportuni-
ties for attackers to learn confidential informa-
tion. So enforcement of confidentiality is not 
improved by the replication required for imple-
menting Byzantine fault-tolerance. And storing 
encrypted data—even when a different key is 
used for each replica—does not solve the prob-
lem if replicas actually must themselves be able 
to decrypt and process the data they store. 

�� Physically separated components connected only 
by narrow bandwidth channels are generally 
observed to exhibit uncorrelated failures. But 
physically separated replicas still will share many 
of the same vulnerabilities (because they will use 
the same code) and, therefore, will not exhibit 
independence to attacks. If a single attack might 
cause any number of components to exhibit 
Byzantine behavior, then little is gained by toler-
ating t Byzantine components. 

What should be clear, though, is that mechanically 
generated diversity creates a kind of independence 
that can be a bridge from Byzantine fault tolerance to 

attack tolerance. The Obfuscation Laws discussed in 
section 3.2 are a first step in this direction.

Experimental computer science. The code for a 
typical operating system can fit on a disk, and all of the 
protocols and interconnections that comprise the In-
ternet are known. Yet the most efficient way to under-
stand the emergent behavior of the Internet is not to 
study the documentation and program code—it is to 
apply stimuli and make measurements in a controlled 
way. Computer systems are frequently too complex 
to admit predictions about their behaviors. So just as 
experimentation is useful in the natural sciences, we 
should expect to find experimentation an integral part 
of computer science.  

Even though we might prefer to derive our cyberse-
curity laws by logical deduction from axioms, the va-
lidity of those axioms will not always be self-evident. 
We often will work with axioms that embody approxi-
mations or describe models, as is done in the natural 
sciences. (Newton’s laws of motion, for example, ig-
nore friction and relativistic effects.) Experimentation 
is the way to gain confidence in the accuracy of our 
approximations and models. And just as experimenta-
tion in the natural sciences is supported by laborato-
ries, experimentation for a science of cybersecurity 
will require test beds where controlled experiments 
can be run.  

Experimentation in computer science is somewhat 
distinct from what is called “experimental computer 
science” though. Computer scientists validate their 
ideas about new (hardware or software) system de-
signs by building prototypes. This activity establishes 
that hidden assumptions about reality are not being 
overlooked. Performance measurements then demon-
strate feasibility and scalability, which are otherwise 
difficult to predict. And for artifacts that will be used 
by people (for example, programming languages and 
systems), a prototype may be the only way to learn 
whether key functionality is missing and what novel 
functionality is useful.  

Since a science of cybersecurity should lead to new 
ideas about how to build systems and defenses, the 
validation of those proposals could require building 
prototypes. This activity is not the same as engineering 
a secure system. Prototypes are built in support of a 
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science of cybersecurity expressly to allow validation 
of assumptions and observation of emergent behav-
iors. So, a science of cybersecurity will involve some 
amount of experimental computer science as well as 
some amount of experimentation. 

5. Concluding remarks  
The development of a science of cybersecurity could 
take decades. The sooner we get started, the sooner we 
will have the basis for a principled set of solutions to 
the cybersecurity challenge before us. Recent new fed-
eral funding initiatives in this direction are a key step. 
It’s now time for the research community to engage. 
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