
 The Next Wave  |  Vol. 19 No. 2  |  2012  |  47

1. Introduction
A secure system must defend against all possible at-
tacks—including those unknown to the defender. But
defenders, having limited resources, typically develop
defenses only for attacks they know about. New kinds
of attacks are then likely to succeed. So our growing
dependence on networked computing systems puts at
risk individuals, commercial enterprises, the public
sector, and our military.

The obvious alternative is to build systems whose
security follows from first principles. Unfortunately,
we know little about those principles. We need a
science of cybersecurity (see box 1) that puts the con-
struction of secure systems onto a firm foundation
by giving developers a body of laws for predicting the
consequences of design and implementation choices.
The laws should

�� transcend specific technologies and attacks, yet
still be applicable in real settings,

�� introduce new models and abstractions, thereby
bringing pedagogical value besides predictive
power, and

�� facilitate discovery of new defenses as well as de-
scribe non-obvious connections between attacks,
defenses, and policies, thus providing a better
understanding of the landscape.

The research needed to develop this science
of cybersecurity must go beyond the search for

vulnerabilities in deployed systems and beyond the de-
velopment of defenses for specific attacks. Yet, use of a
science of cybersecurity when implementing a system
should not be equated with implementing absolute
security or even with concluding that security requires
perfection in design and implementation. Rather, a
science of cybersecurity would provide—independent
of specific systems—a principled account for tech-
niques that work, including assumptions they require
and ways one set of assumptions can be transformed
or discharged by another. It would articulate and or-
ganize a set of abstractions, principles, and trade-offs
for building secure systems, given the realities of the
threats and of our cybersecurity needs.

BOX 1. What is a science?

The term science has evolved in meaning since Aristotle used it
to describe a body of knowledge. To many, it connotes knowl-
edge obtained by systematic experimentation, so they take that
process as the defining characteristic of a science. The natural
sciences satisfy this definition.

Experimentation helps in forming and then affirming
theories or laws that are intended to offer verifiable predictions
about man-made and natural phenomena. It is but a small step
from science as experimentation to science as laws that ac-
curately predict phenomena. The status of the natural sciences
remains unaffected by changing the definition of a science in
this way. But computer science now joins. It is the study of what
processes can be automated efficiently; laws about specification
(problems) and implementations (algorithms) are a comfortable
way to encapsulate such knowledge.

Blueprint for a science
of cybersecurity |

F r e d B . S c h n e i d e r

48

The field of cryptography comes close to exem-
plifying the kind of science base we seek. The focus
in cryptography is on understanding the design and
limitations of algorithms and protocols to compute
certain kinds of results (for example, confidential or
tamperproof or attributed) in the presence of certain
kinds of adversaries who have access to some, but not
all, information involved in the computation. Cryp-
tography, however, is but one of many cybersecurity
building blocks. A science of cybersecurity would have
to encompass richer kinds of specifications, comput-
ing environments, and adversaries. Peter Neumann [1]
summarized the situation well when he opined about
implementing cybersecurity, “If you think cryptog-
raphy is the answer to your problem, then you don’t
know what your problem is.”

An analogy with medicine can be instructive for
contemplating benefits we might expect from a sci-
ence of cybersecurity. Some health problems are best
handled in a reactive manner. We know what to do
when somebody breaks a finger, and each year we
create a new influenza vaccine in anticipation of the
flu season to come. But only after making significant
investments in basic medical sciences are we start-
ing to understand the mechanisms by which cancers
grow, and a cure seems to require that kind of deep
understanding. Moreover, nobody believes disease will
someday be a “solved problem.” We make enormous
strides in medical research, yet new threats emerge
and old defenses (for example, antibiotics) lose their
effectiveness. Like good health, cybersecurity is never
going to be a “solved problem.” Attacks coevolve with
defenses and in ways to disrupt each new task that is
entrusted to our networked systems. As with medical
problems, some attacks are best addressed in a reactive
way, while others are not. But our success in develop-
ing all defenses will benefit considerably from having
laws that constitute a science of cybersecurity.

This article gives one perspective on the shape of
that science and its laws. Subjects that might be char-
acterized in laws are discussed in section 2. Then, sec-
tion 3 illustrates by giving concrete examples of laws.
The relationship that a science of cybersecurity would
have with existing branches of computer science is
explored in section 4.

If you think
cryptography is the

answer to your problem,
then you don’t know

what your problem is.

-Peter Neumann

 The Next Wave  |  Vol. 19 No. 2  |  2012  |  49

feature

2. Laws about what?
In the natural sciences, quantities found in nature are
related by laws: E = mc2, PV = nRT, etc. Continuous
mathematics is used to specify these laws. Continuous
mathematics, however, is not intrinsic to the notion
of a scientific law—predictive power is. Indeed, laws
that govern digital computations are often most con-
veniently expressed using discrete mathematics and
logical formulas. Laws for a science of cybersecurity
are likely to follow suit because these, too, concern
digital computation.

But what should be the subject matter of these laws?
To be deemed secure, a system should, despite attacks,
satisfy some prescribed policy that specifies what the
system must do (for example, deliver service) and
what it must not do (for example, leak secrets). And
defenses are the means we employ to prevent a system
from being compromised by attacks. This account
suggests we strive to develop laws that relate attacks,
defenses, and policies.

For generality, we should prefer laws that relate
classes of attacks, classes of defenses, and classes of
policies, where the classification exposes essential
characteristics. Then we can look forward to hav-
ing laws like “Defenses in class enforce policies in
class despite attacks from class A” or “By compos-
ing defenses from class ' and class ", a defense is
constructed that resists the same attacks as defenses
from class .” Appropriate classes, then, are crucial for
a science of cybersecurity to be relevant.

2.1. Classes of attacks

A system’s interfaces define the sole means by which an
environment can change or sense the effects of system
execution. Some interfaces have clear embodiment
to hardware: the keyboard and mouse for inputs, a
graphic display or printer for outputs, and a network
channel for both inputs and outputs. Other hardware
interfaces and methods of input/output will be less
apparent, and some are quite obscure. For example,
Halderman et al. [2] show how lowering the operating
temperature of a memory board facilitates capture of
secret cryptographic keys through what they term a

cold boot attack. The temperature of the environment
is, in effect, an input to a generally overlooked hard-
ware interface. Most familiar are interfaces created
by software. The operating system interface often
provides ways for programs to communicate overtly
through system calls and shared memory or covertly
through various side channels (such as battery level or
execution timings).

Since (by definition) interfaces provide the only
means for influencing and sensing system execution,
interfaces necessarily constitute the sole avenues for
conducting attacks against a system. The set of in-
terfaces and the specific operations involved is thus
one obvious basis for defining classes of attacks. For
example, we might distinguish attacks (such as SQL-
injections) that exploit overly powerful interfaces
from attacks (such as buffer overflows) that exploit
insufficiently conservative implementations. Another
basis for defining classes of attacks is to characterize
the information or effort required for conducting the
attack. With some cryptosystems, for instance, effi-
cient techniques exist for discovering a decryption key
if samples of ciphertext with corresponding plaintext
are available for that key, but these techniques do not
work when only ciphertext is available.

A given input might cause some policies to be
violated but not others. So whether an input consti-
tutes an attack on a given system could depend on the
policy that system is expected to enforce. This depen-
dence suggests that classes of attacks could be defined
in terms of what policies they compromise. The defini-
tion of denial-of-service attacks, for instance, equates
a class of attacks with system availability policies.

For attacks on communications channels, cryptog-
raphers introduce classifications based on the compu-
tational power or information available to the attacker.
For example, Dolev-Yao attackers are limited to read-
ing, sending, deleting, or modifying fields in messages
being sent as part of some protocol execution [3]. (The
altered traffic confuses the protocol participants, and
they unwittingly undertake some action the attacker
desires.) But it is not obvious how to generalize these
attack classes to systems that implement more com-
plex semantics than message delivery and that provide

50

Blueprint for a science of cybersecurity

operations beyond reading, sending, deleting, or
modifying messages.

Finally, the role of people in a system can be a basis
for defining classes of attacks. Security mechanisms
that are inconvenient will be ignored or circumvented
by users; security mechanisms that are difficult to
understand will be misused (with vulnerabilities intro-
duced as a result). Distinct classes of attacks can thus
be classified according to how or when the human
user is fooled into empowering an adversary. Phishing
attacks, which enable theft of passwords and ultimate-
ly facilitate identity theft, are one such class of attacks.

2.2. Classes of policies

Traditionally, the cybersecurity community
has formulated policies in terms of three kinds
of requirements:

�� Confidentiality refers to which principals are al-
lowed to learn what information.

�� Integrity refers to what changes to the system
(stored information and resource usage) and to
its environment (outputs) are allowed.

�� Availability refers to when must inputs be read
or outputs produced.

This classification, as it now stands, is likely to be
problematic as a basis for the laws that form a science
of cybersecurity.

One problem is the lack of widespread agree-
ment on mathematical definitions for confidentiality,
integrity, and availability. A second problem is that
the three kinds of requirements are not orthogonal.
For example, secret data can be protected simply by
corrupting it so that the resulting value no longer
accurately conveys the true secret value, thus trading
integrity for confidentiality.a As a second example, any
confidentiality property can be satisfied by enforcing
a weak enough availability property, because a system
that does nothing cannot be accessed by attackers to
learn secret information.

Contrast this state of affairs with trace properties,
where safety (“no ‘bad thing’ happens”) and liveness
(“some ‘good thing’ happens”) are orthogonal classes.
(Formal definitions of trace properties, safety, and
liveness are given in box 2 for those readers who are
interested.) Moreover, there is added value when re-
quirements are formulated in terms of safety and live-
ness, because safety and liveness are each connected to
a proof method. Trace properties, though, are not ex-
pressive enough for specifying all confidentiality and
integrity policies. The class of hyperproperties [5], a
generalization of trace properties, is. And hyperprop-
erties include safety and liveness classes that enjoy the
same kind of orthogonal decomposition that exists
for trace properties. So hyperproperties are a promis-
ing candidate for use in a science of cybersecurity.

Box 2. Trace properties, safety, and liveness

A specification for a sequential program would characterize for
each input whether the program terminates and what outputs it
produces. This characterization of execution as a relation is inad-
equate for concurrent programs. Lamport [6] introduced safety
and liveness to describe the more expressive class of specifica-
tions that are needed for this setting. Safety asserts that no “bad
thing” happens during execution and liveness asserts that some
“good thing” happens.

A trace is a (possibly infinite) sequence of states; a trace prop-
erty is a set of traces, where each trace in isolation satisfies some
characteristic predicate associated with that trace property.
Examples include partial correctness (the first state satisfies the
input specification, and any terminal state satisfies the output
specification) and mutual exclusion (in each state, the program
for at most one process designates an instruction in a critical
section). Not all sets of traces define trace properties. Informa-
tion flow, which stipulates a correlation between the values
of the two variables across all traces, is an example. This set of
traces does not have a characteristic predicate that depends
only on each individual trace, so the set is not a trace property.

Figure 1. Phishing attacks, which enable theft of passwords
and ultimately facilitate identity theft, can be classified ac-
cording to how the human user is fooled into empowering
the adversary.

a. Clarkson and Schneider [4] use information theory to derive a law that characterizes the trade-off between confidentiality and integrity
for database-privacy mechanisms.

 The Next Wave  |  Vol. 19 No. 2  |  2012  |  51

feature

Every trace property is either safety, liveness, or the con-
junction of two trace properties—one that is safety and one
that is liveness [7]. In addition, an invariance argument suffices
for proving that a program satisfies a trace property that is
safety; a variant function is needed for proving a trace property
that is liveness [8]. Thus, the safety-liveness classification for
trace properties comes with proof methods beyond offering
formal definitions.

Any classification of policies is likely to be associ-
ated with some kind of system model and, in particu-
lar, with the interfaces the model defines (hence the
operations available to adversaries). For example, we
might model a system in terms of the set of possible
indivisible state transitions that it performs while
operating, or we might model a system as a black
box that reads information streams from some chan-
nels and outputs on others. Sets of indivisible state
transitions are a useful model for expressing laws
about classes of policies enforced by various operating
system mechanisms (for example, reference monitors
versus code rewriting) which themselves are con-
cerned with allowed and disallowed changes to system
state; stream models are often used for quantifying
information leakage or corruption in output streams.
We should expect that a science of cybersecurity will
not be built around a single model or around a single
classification of policies.

2.3. Classes of defenses

A large and varied collection of different defenses can
be found in the cybersecurity literature.

Program analysis and rewriting form one natural
class characterized by expending the effort for deploy-
ing the defense (mostly) prior to execution. This class
of defenses, called language-based security, can be fur-
ther subdivided according to whether rewriting occurs
(it might not occur with type-checking, for example)
and according to the work required by the analysis
and/or the rewriting. The undecidability of certain
analysis questions and the high computation costs
of answering others is sometimes a basis for further
distinguishing conservative defenses—those analysis
methods that can reject as being insecure programs
that actually are secure, and those rewriting methods
that add unnecessary checks.

Run-time defenses have, as their foundation, only a
few basic mechanisms:

�� Isolation. Execution of one program is somehow
prevented from accessing interfaces that are as-
sociated with the execution of others. Examples
include physically isolated hardware, virtual
machines, and processes (which, by definition,
have isolated memory segments).

�� Monitoring. A reference monitor is guaranteed to
receive control whenever any operation in some
specified set is invoked; it further has the capac-
ity to block subsequent execution, which it does
to prevent an operation from proceeding when
that execution would not comply with what-
ever policy is being enforced. Examples include
memory mapping hardware, processors having
modes that disable certain instructions, operat-
ing system kernels, and firewalls.

�� Obfuscation. Code or data is transmitted or
stored in a form that can be understood only
with knowledge of a secret. That secret is kept
from the attacker, who then is unable to abuse,
understand, or alter in a meaningful way the
content being protected. Examples include data
encryption, digital signatures, and program
transformations that increase the work factor
needed to craft attacks.

Obviously, a classification of run-time defenses could
be derived from this taxonomy of mechanisms.

Another way to view defenses is in terms of trust
relocation. For example, by running an application

Figure 2. A firewall is an example of a reference monitor.

52

Blueprint for a science of cybersecurity

under control of a reference monitor, we relocate trust
in that application to trust in the reference monitor.
This trust-relocation view of defenses invites discovery
of general laws that govern how trust in one compo-
nent can be replaced by trust in another.

We know that it is always possible for trust in an
analyzer to be relocated to a proof checker—sim-
ply have an analyzer that concludes P also generate
a proof of P. Moreover, this specific means of trust
relocation is attractive because proof checkers can be
simple, hence easy to trust; whereas, analyzers can
be quite large and complicated. This suggests a re-
lated question: Is it ever possible to add defenses and
transform one system into another, where the latter
requires weaker assumptions about components be-
ing trusted? Perhaps trust is analogous to entropy in
thermodynamics—something that can be reversed
only at some cost (where “cost” corresponds to the
strength of the assumptions that must be made)? Such
questions are fundamental to the design of secure
systems, and today’s designers have no theory to help
with answers. A science of cybersecurity could provide
that foundation.

3. Laws already on the books
Attacks coevolve with defenses, so a system that
yesterday was secure might no longer be secure
tomorrow. You can then wonder whether yesterday’s
science of cybersecurity would be made irrelevant by
new attacks and new defenses. This depends on the
laws, but if the classes of attacks, defenses, and poli-
cies are wisely constructed and sufficiently general,
then laws about them should be both interesting and
long-lived. Examples of extant laws can provide some
confirmation, and two (developed by the author) are
discussed below.

3.1. Law: Policies and reference monitors

A developer who contemplates building or modifying
a system will have in mind some class of policies that
must be enforced. Laws that characterize what poli-
cies are enforced by given classes of defenses would be
helpful here. Such laws have been derived for vari-
ous defenses. Next, we discuss a law [9] concerning
reference monitors.

The policy enforced by a reference monitor is the
set of traces that correspond to executions in which
the reference monitor does not block any operation.
This set is a trace property, because whether the refer-
ence monitor blocks an operation in a trace depends
only on the contents of that trace (specifically, the pre-
ceding operations in that trace). Moreover, this trace
property is safety; the set of finite sequences that end
in an operation the reference monitor blocks consti-
tutes the “bad thing.” We conclude:

Law. All reference monitors enforce trace
properties that are safety.

This law, for example, implies that a reference mon-
itor cannot enforce an information flow policy, since
(as discussed in box 2) information flow is not a trace
property. However, the law does not preclude using a
reference monitor to enforce a policy that is stronger
and, by being stronger, implies that the information
flow policy also will hold. But a stronger policy will
deem insecure some executions the information flow
policy does not. So such a reference monitor would
block some executions that would be allowed by a
defense that exactly enforces information flow. The
system designer is thus alerted to a trade-off—employ-
ing a reference monitor for information flow policies
brings overly conservative enforcement.

The above law also suggests a new kind of run-time
defense mechanism [10]. For every trace property ψ
that is safety, there exists an automaton mψ that accepts
the set of traces in ψ [8].

Automaton mψ is a reference monitor for ψ because,
by definition, it rejects traces that violate ψ. So if code
Mψ that simulates mψ is invoked before every instruc-
tion in some given program S, then the result will be
a new program that behaves just like S except it halts
rather than executing an instruction that violates
policy ψ. This is depicted in figure 3, where invoca-
tion Mψ(x) simulates the transition that automaton
mψ makes for input symbol x and repeatedly returns
OK until automaton mψ would reject the sequence of
inputs it has processed. Thus, the statement

if Mψ(“S1”) ≠ OK then halt (1)

in figure 3 immediately prior to a program statement
Si causes execution to terminate if next executing

 The Next Wave  |  Vol. 19 No. 2  |  2012  |  53

feature

b. There is also experimental evidence [11] that distinct versions built by independent teams nevertheless share vulnerabilities.

Si would violate the policy defined by automaton
mψ—that is, if executing Si would cause policy ψ to
be violated.

S1 if Mψ(“S1”) ≠ OK then halt

S2 S1

S3 ⇒ if Mψ(“S2”) ≠ OK then halt

S4 S2

… …

original inlined reference monitor

figure 3. Inlined reference monitor example

Such inlined reference monitors can be more effi-
cient at run-time than traditional reference monitors,
because a context switch is not required each time an
inlined reference monitor is invoked. However, an
inlined reference monitor must be installed separately
in each program whose execution is being monitored;
whereas, a traditional reference monitor can be writ-
ten and installed once and for all. The per-program
installation does mean that inlined reference monitors
can enforce different policies on different programs,
an awkward functionality to support with a single
traditional reference monitor. And per-program in-
stallation also means that code (1) inserted to simulate
mψ can be specialized and simplified, thereby allow-
ing unnecessary checks to be eliminated for inlined
reference monitors.

3.2. Law: Attacks and obfuscators

We define a set of programs to be diverse if all imple-
ment the same functionality but differ in their imple-
mentation details. Diverse programs are less prone
to having vulnerabilities in common, because attacks
often depend on memory layout and/or instruction
sequence specifics. But building multiple distinct ver-
sions of a program is expensive.b So system implemen-
tors have turned to mechanical means for creating sets
comprising diverse versions of a given program.

For mechanically generated diversity to work as a
defense, not only must implementations differ (so they
have few vulnerabilities in common), but the differ-
ences must be kept secret from attackers. For example,

buffer overflow attacks are generally written relative to
some specific run-time stack layout. Alter this layout
by rearranging the relative locations of variables as
well as the return address on the stack, and an input
designed to perpetrate an attack for the original stack
layout is unlikely to succeed. But if the new stack
layout were known by the adversary, then crafting an
attack again becomes straightforward.

Programs to accomplish such transformations have
been called obfuscators. An obfuscator τ takes two in-
puts—a program S and a secret key K—and produces
a morph, which is a program τ(S, K) whose semantics
is equivalent to S but whose implementation differs
from S and from morphs generated with other keys.
K specifies which exact transformations are applied in
producing morph τ(S, K). Note that since S and τ are
assumed to be publicly known, knowledge of K would
enable an attacker to learn implementation details for
successfully attacking morph τ(S, K).

Different classes of transformations are more or
less effective in defending against the various different
classes of attacks. This correspondence is important
when designing a set of defenses for a given threat
model, but knowing the specific correspondences is
not the same as knowing the overall power of mechan-
ically generated diversity as a defense. That defensive
power for programs written in a C-like language has
been partially characterized in a set of laws [12]. Each
Obfuscator Law establishes, for a specific (common)
type system Ti and obfuscator τi pair, what is the rela-
tionship between two sets of attacks—those blocked
when type system Ti is enforced versus those that
cause execution of a morph τi (S, K) to abort for some
secret key K.

The Obfuscator Laws do not completely quantify
the difference between the effectiveness of type-check-
ing and obfuscation. But the laws are noteworthy for
a science of cybersecurity because they circumvent
the difficult problem of reasoning about attacks not
yet invented. Laws about classes of known attacks risk
irrelevance as new attacks are discovered. By formulat-
ing the Obfuscator Laws in terms of a relation between
sets of attacks, the need to identify or enumerate
individual attacks is avoided. To wit, the class of at-
tacks that type-checking defends against is not known
and not given, yet the power of obfuscation to defend

54

Blueprint for a science of cybersecurity

against an attack can now be meaningfully conveyed
relative to the power of type-checking.

4. The science in context
A science of cybersecurity would build on knowledge
from several existing areas of computer science. The
connections to formal methods, fault-tolerance, and
experimental computer science are nuanced; they are
discussed below. However, cryptography, information
theory, and game theory are also likely to be valuable
sources of abstractions and laws. Finally, the physical
sciences surely have a role to play—not only in matters
of physical security but also for understanding un-
conventional interfaces to real devices that attackers
might exploit (as exemplified by the cold boot attacks
mentioned in section 2.1).

Formal methods. Attacks are possible only because
a system we deploy has flaws in its implementation,
design, specification, or requirements. Eliminate the
flaws and we eliminate the need to deploy defenses.
But even when the systems on which we rely aren’t
being attacked, we should want confidence that they
will function correctly. The presence of flaws under-
mines that confidence. So cybersecurity is not the only
compelling reason to eliminate flaws.

The focus of formal methods research is on meth-
ods for gaining confidence in a system by using
rigorous reasoning, including programming logics
and model checkers.c This work has been remarkably
successful with small systems or small specifications. It
is used by companies like Microsoft to validate device
drivers and Intel to validate chip designs. It is also
the engine behind strong type-checking in modern
programming languages (for example, Java and C#)
and various code-analysis tools used in security audits.
Further developments in formal methods could serve
a science of cybersecurity well. However, to date, work
in formal methods has been based on trace properties
or something with equivalent expressive power. This
foundation allows mathematically elegant character-
izations for whether a program satisfies a specification
and for justifying stepwise refinement of programs.
But trace properties are not adequately expressive for
specifying all confidentiality, integrity, and availabil-
ity policies, and stepwise refinement is not sound for

these richer policies. (A mathematical justification of
this limitation is provided in box 3 for the interested
reader.) So the foundations of today’s formal meth-
ods would have to be changed to something with the
expressiveness of hyperproperties—no small feat.

Box 3. Satisfies and refinement

A program S can be modeled as a trace property ΣS containing
all sequences of states that could arise from executing S, and
a specific execution of S satisfies a trace property P if the trace
modeling that execution is in P. Thus, S satisfies P if and only if
ΣS ⊆ P holds.

We say that a program S' refines S, denoted S' S, when S'
resolves choices left unspecified by S. For example, a program
that increments x by 1 refines a program that merely specifies
that x be increased. A refinement S' of S thus exhibits a subset of
the executions for S: S' S holds if and only if ΣS' ⊆ ΣS holds.

Notice that “satisfies” is closed under refinement. If S' refines
S and S satisfies P, then S' satisfies P. Also, if we construct S' by
performing a series of refinements S' S1 , S1 S2 , . . . , Sn S and
S satisfies P then we are guaranteed that S' will satisfy P too. So
programs can be constructed by stepwise refinement.

With richer classes of policies, “satisfies” is unfortunately not
closed under refinement. As an example, consider two pro-
grams. Program Sx=y is modeled by trace property Σx=y contain-
ing all traces in which x = y holds in all states; program S* is
modeled by ΣS* containing all sequences of states. We have that
Σx=y ⊂ ΣS* holds, so by definition Sx=y S*. However, program S*
enforces the confidentiality policy that no information flows
between x and y, whereas (refinement) Sx=y does not. Satisfies for
the confidentiality policy is not closed under refinement, and
stepwise refinement is not sound for deriving programs that
satisfy this policy.

Byzantine fault-tolerance. A system is considered
fault-tolerant if it will continue operating correctly
even though some of its components exhibit faulty
behavior. Fault-tolerance is usually defined relative
to a fault model that defines assumptions about what
components can become faulty and what kinds of
behaviors faulty components might exhibit. In the
Byzantine fault model [13], faulty components are per-
mitted to collude and to perform arbitrary state transi-
tions. A real system is unlikely to experience such
hostile behavior from its faulty components, but any
faulty behavior that might actually be experienced is,
by definition, allowed with the Byzantine fault model.
So by building a system that works for the Byzantine

c. Other areas of software engineering are concerned with gaining confidence in a system through the use of experimentation (for ex-
ample, testing) or management (for example, strictures on development processes).

 The Next Wave  |  Vol. 19 No. 2  |  2012  |  55

feature

fault model, we ensure that the system can tolerate
all behaviors that in practice could be exhibited by its
faulty components.

The basic recipe for implementing such Byzantine
fault-tolerance is well understood. We assume that the
output of every component is a function of the preced-
ing sequence of inputs. Each component that might
fail is replaced by 2t + 1 replicas, where these replicas
all receive the same sequence of inputs. Provided that
t or fewer replicas are faulty, then the majority of the
2t + 1 will be correct. These correct replicas will gener-
ate identical correct outputs, so the majority output
from all replicas is unaffected by the behaviors of
faulty components.

A faulty component in the Byzantine fault model
is indistinguishable from a component that has been
compromised and is under control of an attacker. We
might thus conclude that if a Byzantine fault-tolerant
system can tolerate t component failures, then it also
could resist as many as t attacks—we could get se-
curity by implementing Byzantine fault-tolerance.
Unfortunately, the argument oversimplifies, and the
conclusion is unsound:

�� Replication, if anything, creates more opportuni-
ties for attackers to learn confidential informa-
tion. So enforcement of confidentiality is not
improved by the replication required for imple-
menting Byzantine fault-tolerance. And storing
encrypted data—even when a different key is
used for each replica—does not solve the prob-
lem if replicas actually must themselves be able
to decrypt and process the data they store.

�� Physically separated components connected only
by narrow bandwidth channels are generally
observed to exhibit uncorrelated failures. But
physically separated replicas still will share many
of the same vulnerabilities (because they will use
the same code) and, therefore, will not exhibit
independence to attacks. If a single attack might
cause any number of components to exhibit
Byzantine behavior, then little is gained by toler-
ating t Byzantine components.

What should be clear, though, is that mechanically
generated diversity creates a kind of independence
that can be a bridge from Byzantine fault tolerance to

attack tolerance. The Obfuscation Laws discussed in
section 3.2 are a first step in this direction.

Experimental computer science. The code for a
typical operating system can fit on a disk, and all of the
protocols and interconnections that comprise the In-
ternet are known. Yet the most efficient way to under-
stand the emergent behavior of the Internet is not to
study the documentation and program code—it is to
apply stimuli and make measurements in a controlled
way. Computer systems are frequently too complex
to admit predictions about their behaviors. So just as
experimentation is useful in the natural sciences, we
should expect to find experimentation an integral part
of computer science.

Even though we might prefer to derive our cyberse-
curity laws by logical deduction from axioms, the va-
lidity of those axioms will not always be self-evident.
We often will work with axioms that embody approxi-
mations or describe models, as is done in the natural
sciences. (Newton’s laws of motion, for example, ig-
nore friction and relativistic effects.) Experimentation
is the way to gain confidence in the accuracy of our
approximations and models. And just as experimenta-
tion in the natural sciences is supported by laborato-
ries, experimentation for a science of cybersecurity
will require test beds where controlled experiments
can be run.

Experimentation in computer science is somewhat
distinct from what is called “experimental computer
science” though. Computer scientists validate their
ideas about new (hardware or software) system de-
signs by building prototypes. This activity establishes
that hidden assumptions about reality are not being
overlooked. Performance measurements then demon-
strate feasibility and scalability, which are otherwise
difficult to predict. And for artifacts that will be used
by people (for example, programming languages and
systems), a prototype may be the only way to learn
whether key functionality is missing and what novel
functionality is useful.

Since a science of cybersecurity should lead to new
ideas about how to build systems and defenses, the
validation of those proposals could require building
prototypes. This activity is not the same as engineering
a secure system. Prototypes are built in support of a

56

Blueprint for a science of cybersecurity

science of cybersecurity expressly to allow validation
of assumptions and observation of emergent behav-
iors. So, a science of cybersecurity will involve some
amount of experimental computer science as well as
some amount of experimentation.

5. Concluding remarks
The development of a science of cybersecurity could
take decades. The sooner we get started, the sooner we
will have the basis for a principled set of solutions to
the cybersecurity challenge before us. Recent new fed-
eral funding initiatives in this direction are a key step.
It’s now time for the research community to engage.

Acknowledgments
An opportunity to deliver the keynote at a work-
shop organized by the National Science Foundation
(NSF), NSA, and the Intelligence Advanced Research
Projects Activity on Science of Security in Fall 2008
was the impetus for me to start thinking about what
shape a science of cybersecurity might take. The
feedback from the participants at that workshop as
well as discussions with the other speakers at a sum-
mer 2010 Jasons meeting on this subject was quite
helpful. My colleagues in the NSF Team for Research
in Ubiquitous Secure Technology (TRUST) Science
and Technology Center have been a valuable source
of feedback, as have Michael Clarkson and Riccardo
Pucella. I am grateful to Carl Landwehr, Brad Martin,
Bob Meushaw, Greg Morrisett, and Pat Muoio for
comments on an earlier draft of this paper.

Funding
This research is supported in part by NSF grants
0430161, 0964409, and CCF-0424422 (TRUST), Of-
fice of Naval Research grants N00014-01-1-0968 and
N00014-09-1-0652, and a grant from Microsoft. The
views and conclusions contained herein are those of
the author and should not be interpreted as necessar-
ily representing the official policies or endorsements,
either expressed or implied, of these organizations or
the US Government.

About the author
Fred B. Schneider joined the Cornell University
faculty in 1978, where he is now the Samuel B. Eckert
Professor of Computer Science. He also is the chief
scientist of the NSF TRUST Science and Technol-
ogy Center, and he has been professor at large at the
University of Tromso since 1996. He received a BS
from Cornell University (1975) and a PhD from Stony
Brook University (1978).

Schneider’s research concerns trustworthy systems,
most recently focusing on computer security. His early
work was in formal methods and fault-tolerant distrib-
uted systems. He is author of the graduate textbook
On Concurrent Programming, coauthor (with David
Gries) of the undergraduate text A Logical Approach
to Discrete Math, and the editor of Trust in Cyberspace,
which reports findings from the US National Research
Council’s study that Schneider chaired on information
systems trustworthiness.

A fellow of the American Association for the
Advancement of Science, the Association for Com-
puting Machinery, and the Institute of Electrical and
Electronics Engineers, Schneider was granted a DSc
honoris causa by the University of Newcastle-upon-
Tyne in 2003. He was awarded membership in Norges
Tekniske Vitenskapsakademi (the Norwegian Acad-
emy of Technological Sciences) in 2010 and the US
National Academy of Engineering in 2011. His survey
paper on state machine replication received a Special
Interest Group on Operating Systems (SIGOPS) Hall
of Fame Award.

Schneider serves on the Computing Research As-
sociation’s board of directors and is a council member
of the Computing Community Consortium, which
catalyzes research initiatives in the computer sciences.
He is also a member of the Defense Science Board and
the National Institute for Standards and Technology
Information Security and Privacy Advisory Board.
A frequent consultant to industry, Schneider co-
chairs Microsoft’s Trustworthy Computing Academic
Advisory Board.

Dr. Schneider can be reached at the Department
of Computer Science at Cornell University in Ithaca,
New York 14853.

 The Next Wave  |  Vol. 19 No. 2  |  2012  |  57

References
[1] Kolata G. The key vanishes: Scientist outlines unbreak-
able code. New York Times. 2001 Feb 20. Available at: http://
www.nytimes.com/2001/02/20/science/the-key-vanishes-
scientist-outlines-unbreakable-code.html

[2] Halderman JA, Schoen SD, Heninger N, Clarkson W,
Paul W, Calandrino JA, Feldman AJ, Appelbaum J, Felten,
EW. Lest we remember: Cold boot attacks on encryption
keys. In: Proceedings of the 17th USENIX Security Sympo-
sium; July 2008; p. 45–60. Available at: http://www.usenix.
org/events/sec08/tech/full_papers/halderman/halderman.
pdf

[3] Dolev D, Yao AC. On the security of public key
protocols. IEEE Transactions on Information Theory.
1983;29(2):198–208. DOI: 10.1109/TIT.1983.1056650

[4] Clarkson M, Schneider FB. Quantification of integrity.
In: Proceedings of the 23rd IEEE Computer Security Founda-
tions Symposium; Jul 2010; Edinburgh, UK, p. 28–43. DOI:
10.1109/CSF.2010.10

[5] Clarkson M, Schneider FB. Hyperproperties. Journal of
Computer Security. 2010;18(6):1157–1210.

[6] Lamport L. Proving the correctness of multiprocess
programs. IEEE Transactions on Software Engineering.
1977;3(2):125–143. DOI: 10.1109/TSE.1977.229904

[7] Alpern B, Schneider FB. Defining liveness. Infor-
mation Processing Letters. 1985;21(4):181–185. DOI:
10.1016/0020-0190(85)90056-0

[8] Alpern B, Schneider FB. Recognizing safety and liveness.
Distributed Computing. 1987;2(3):117–126. DOI: 10.1007/
BF01782772

[9] Schneider, FB. Enforceable security policies. ACM
Transactions on Information and System Security.
2000;3(1):30–50. DOI: 10.1145/353323.353382

[10] Erlingsson U, Schneider, FB. IRM enforcement of Java
stack inspection. In: Proceedings of the 2000 IEEE Sympo-
sium on Security and Privacy; May 2000; Oakland, CA; p.
246–255. DOI: 10.1109/SECPRI.2000.848461

[11] Knight JC, Leveson NG. An experimental evalua-
tion of the assumption of independence in multiversion
programming. IEEE Transactions on Software Engineering.
1986;12(1):96–109.

[12] Pucella R, Schneider FB. Independence from ob-
fuscation: A semantic framework for diversity. Journal of
Computer Security. 2010;18(5):701–749. DOI: 10.3233/
JCS-2009-0379

[13] Lamport L, Shostak R, Pease M. The Byzantine generals
problem. ACM Transactions on Programming Languages.
1982;4(3):382–401. DOI: 10.1145/357172.357176

