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Simpler Proofs for Concurrent
Reading and Writing

Fred B. Schneider!

Abstract

Simplified proofs are given for Lamport’s protocols to coordinate concur-
rent reading and writing.

1 Introduction

In most computing systems, hardware ensures that read and write opera-
tions to some basic unit of memory can be considered mutually exclusive.
As a result, a read that overlaps with a write is serialized and will appear
cither to precede that write or to follow it. Operations that make multiple
accesses to memory are not serialized by the hardware. The programmer
must ensure that when such operations overlap, they produce meaningful

results.

In this paper, we give simplified proofs for two protocols proposed by
Lamport [1] for coordinating read and write operations that involve mul-
tiple accesses to memory. The two key theorems in [1] are long and intri-
cate. Here, we show that both are corollaries of a single, relatively simple
theorem. Our facility with proofs and the use of formalism has improved
significantly in a little over 15 years.? This is due, in part, to the influence

of Edsger Dijkstra.

'This material is based on work supported in part by the Office of Naval Re-
search under contract N00014-86-K-0092, the National Science Foundation un-
der Grant No. CCR-8701103, and Digital Equipment Corporation. Any opinions,
findings, and conclusions or recommendations expressed in this publication are
those of the author and do not reflect the views of these agencies.

*[1] was first submitted for publication in September 1974.
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2  Words from digits

Consider a computing system in which the basic unit of memory is a digit,
and a digit can contain one of B > 2 distinct values. Any element from a
finite set of values can be encoded using a finite sequence of digits. We call
such a sequence of digits a word. To read the value stored by a word, read
operations are performed on its digits; to write a value, write operations
are performed. Observe that overlapping read and write operations to a
word will not be serialized by the hardware. Therefore, without additional
constraints on execution, it is possible for a read that overlaps a write to
obtain a meaningless value. For example, suppose digits can encode integers
from O through 9 and a word w constructed from three digits initially
encodes the value 099. A read that is concurrent with a write of value 100
might obtain any of the following results: 099, 090, 009, 000, 199, 190, 109,
100.

By constraining the order in which digits are read and the order in which
digits are written, we can ensure that a read overlapping one or more
writes does obtain a meaningful value. Desired are constraints that are both
easily implemented and non-intrusive. Execution of neither read nor write
operations should be delayed, nor should the constraints require elaborate
synchronization primitives.

In the protocols that follow, a word w is implemented by a sequence
w(0Jw(1]...w[n] of digits. Think of w[0] as the most-significant (left-most)
digit and w|n] as the least-significant (right-most) digit of a base B number
being stored by w. We assume that w is written by a single, sequential
process. Define w(z]” to be the value written to digit w(i] by write operation
number p.? Also, for any sequence s = s[0]s[1]... s[n], define s[i..j] to be
the subsequence consisting of s[i] . .. s[j], and define [s| to be the length of s.
Thus, w[0..k] is the word constructed from the most-significant (left-most)
k -+ 1 digits of w.

A read operation that overlaps with one or more writes can obtain a
value that corresponds to the result of no write operation. We can describe
such values by using a slice, a sequence of positive integers. For a word w
and a slice ¢ of equal length, define:

w® = w(0]”Pw1)7W . wn)e

We write (N) ® v to denote a length N sequence of v’s. Thus, w("+1)®?
equals w[0]Pw[1]P...w[n]?, the value written to w by write operation num-
ber p.

A slice o is non-decreasing if (Vi : 0 < i < |o| : oi — 1] < ¢[i]) and

It will be convenient to assume that a write operation to a word writes a
value to every digit. The new value can, of course, be the same as the old.
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non-increasing if (Vi: 0 < i < |o| : o[i — 1] = oli]). For slices o and 7 such
that |o| = |7|, define
cCr = (Vi:0<i<|o|:ofi] <7[i]).
Finally, in order to reason about the relative order in which operations

occur, define p;(z) to be the number of writes that have been made to digit
wli] as of time z. Observe that = < =’ implies that p;(z) < pi(z’) is valid.

3 The main result

We first show that if slices ¢ and T satisfy certain restrictions (H1-H3) and
values written to w are non-decreasing (H4), then w? < w” where “<”

denotes lexicographic ordering.

Theorem 1 Let o and 7 be slices such that |o| = |7| > N + 1. Then,
wl0..N)° < w[0..N]"

provided:
(H1) o is non-decreasing,
(H2) 7 is non-increasing,
(H3) ¢ C 7, and
(H4) w[0.N)(N+1®i < [0, N|J(N+D®F  for all i < j.

Proof From hypothesis H4 and the definition of lexicographic ordering,
we conclude that for all i < j and any m such that 0 <m < N:

LO:  w[0.m]mtD®1 < oy[0..m](m+1)®

The proof now proceeds by induction on the number of digits in w.

Base Case: Assume w is constructed using a single digit.

w?

= {By assumption that w is a single digit and hypothesis
that |o| > N + 1.}

w(0..0]°10)
{By LO, since o C 7 by H3.}
w|0..0]7)

= {By assumption that w is a single digit and hypothesis
that [7| > N + 1.}

IA

w
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Induction Case: Assume the Theorem holds for any n+1 digit word w([0..n],
where 0 < n < N. We show that it holds for the n+2 digit word w([0..n+1].

{From H1, ¢ is non-decreasing. Therefore, any prefix is.}
i @(0..n] is non-decreasing.

{Definition of non-increasing.}
2. a = (n+ 1) ® o[n + 1] is non-increasing.

{By construction of ¢[0..n] and «, since (H1) ¢ is
non-decreasing. }
3. al0..n] C a.

{By induction hypothesis, since H1-H4 are satisfied due to
1, 2, 3, and LO.}
4. w[0..n]7l0-7 < w[0.n]*

{Definition of lexicographic order.}
5. w[0..n]710 Mw[n + 1]°+ < w[0..n]*wln + )7 +1]

{By LO, since g[n + 1] < 7[n + 1] because (H3) o C 7.}
6. w[0..n)*wn + 17" < w[0.n + 1)(m+2)@7[n+1)

{Transitivity with 5 and 6.}
7. w[0..n)7 0 Plyn 4 17+ < w(0..n 4 1)(r+2)@7In+1]

{Definition of non-decreasing.}
8. B =(n+1)®r[n+ 1] is non-decreasing,.

{From H2, 7 is non-increasing. Therefore, any prefix is.}
9. 7[0..n] is non-increasing,.

{By construction of 3 and 7[0..n], since (H2) t is
non-increasing. }
10. 8 C 7[0..n]

{By induction hypothesis, since H1-H4 are satisfied due to
8,9, 10, and LO.}

11. w(0..n)? < w[0..n)7(0-7
{Definition of lexicographic order.}

12. w[0..n)fwn 4+ 1]7 M < w[0..n]70Ply[n + 1)+
{Transitivity with 7 and 12.}

13. w[ﬂnn]a’[u.‘rliu}[n%_1]a[n+l] S w[O..n]T[U“"]w[n i 1]7’[71+I]

{o[0..n + 1] = &[0..n]e[n + 1] and 7[0..n + 1] = 7[0..n]7[n + 1]}
14. w(0..n 4 1]70-7+1 < (0.0 4 1)70-7+1]
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4 Reading to the left, writing to the right

We can now show that if the digits of w are read from right to left (i.e.
w(n), win—1],...,w[0]) but written from left to right (i.e. wl0],...,wln —1],
w(n]) then only certain mixtures of values can be obtained from overlapping
writes. In particular, the value read is bounded from below by the value
written by the earliest write whose digit is obtained by this read.

Read-Left, Write-Right:

If (i) the sequence of values written to w is non-decreasing, (ii) digits are
written from left to right, and (iii) digits are read from right to left, then
the value w” obtained by the read satisfies wN+D@TIR] < o7,

Proof We first show that T is non-increasing. Let z; be the time that

digit w4 is read. Thus, 7[i] = pi(z;) and, due to hypothesis (iii) that digits

are read from right to left, z, < z,—1 < ... < xo. For any i, 0 <i <m:
7[i]

{Assumption that (1] = pi(x:).}

pi(z;)
{Digits are written from left to right due to hypothesis (ii).}

v

pit1(Ti)
> {2: 2 EBig1o}
Pi+1(Tiv1)

{Assumption that 7[i] = p(z:).}

I

Tli + 1]

The correctness of Read-Left, Write-Right now follows from Theorem 1.
Choose (N + 1) @ 7[n] for o; this choice for o satisfies H1 and H3. We
showed above that 7 satisfies H2. H4 is satisfied by hypothesis (i). Thus,
from Theorem 1 we conclude wN+1®7In] < o7,

0O

There are two interesting things to note about this protocol. First, ex-
clusive access to digits is the only synchronization required. Second, read
operations and write operations do not delay each other.

5 Reading to the right, writing to the left

By reversing the order in which digits are read and written, we obtain
another protocol for concurrent reading and writing. With this protocol,
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the value read is bounded from above by the value written by the latest
write whose digit is obtained by this read.

Read-Right, Write-Left:

If (i) the sequence of values written to w is non-decreasing, (ii) digits are
written from right to left, and (iii) digits are read from left to right, then
the value w” obtained by any read satisfies w” < w(V+1®aln],

Proof We first show that o is non-decreasing. Let z; be the time that
digit w(i] is read. Thus, o[i] = pi(x;) and, due to hypothesis (iii) that digits
are read from left to right, 2o < z; < ... < z,. Forany ¢, 0 <i < mn:
oli]
= {Assumption that 7[i] = p;(z;).}
pi ()
< {Digits are written from right to left due to hypothesis (ii).}
piv1(2i)
< {2 < Zipasd
i1 (Tiv1)

{Assumption that ofi] = pi(z:).}

olt + 1]

The correctness of Read-Right, Write-Left now follows from Theorem 1.
Choose (N + 1) ® a[n] for 7; this choice for 7 satisfies H2 and H3. We
showed above that o satisfies H1. H4 is satisfied by hypothesis (i). Thus,
from Theorem 1 we conclude w® < w(N+1)&an],

O

As before, exclusive access to digits is the only synchronization required,
and operations are never delayed.

6 Final remarks

This paper is now in its third revision. The first version contained simple
and informal proofs. These, like the proof of Theorem 1 given above, used
induction on the number of digits in a word. Unfortunately, the proofs were
wrong — the informality let details slip through the cracks. The second ver-
sion of the paper contained correct and formal versions of those proofs. A
total of four lemmas were required —two lemmas for each protocol— al-
though the two pairs of lemmas had proofs that were disturbingly similar.
Theorem 1 of the current version of the paper generalizes two of those lem-
mas, and its proof results from combining the proofs of those two lemmas.
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