INFORMATION AND COMPUTATION 107, 151-170 (1993)

Proving Nondeterministically
Specified Safety Properties
Using Progress Measures

NiILs KLARLUND*

IBM T. J. Watson Research Center,
P.O. Box 704, Yorktown Heights, New York 10598

AND

FRED B. SCHNEIDER'

Department of Computer Science,
Cornell University, Ithaca, New York 14853

Using the notion of progress measures, we discuss verification methods for
proving that a program satisfies a property specified by an automaton having finite
nondeterminism. Such automata can express any safety property. Previous
methods, which can be derived from the method presented here, either rely on
transforming the program or are not complete. In contrast, our ND progress
measures describe a homomorphism from the unaltered program to a canonical
specification automaton and constitute a complete verification method. The
canonical specification automaton is obtained from the classical subset construction
and a new subset construction, called historization. @ 1993 Academic Press, Inc.

1. INTRODUCTION

Nondeterministic automata are a convenient mathematical abstraction
for programs and specifications that define infinite sequences of events
[Arn83, Par81, Sis89, Var87]. A program is modelled as an automaton
Ap, called the program automaton, which accepts a language L(Ap) of
infinite behaviors (words); a specification is modelled as an automaton Ag,

* Supported by grants from the University of Aarhus, Denmark, the Danish Research
Academy, and the Thanks to Scandinavia Foundation, Inc. Current address: Department of
Computer Science, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark.

* Supported in part by the Office of Naval Research under Contracts N0OO014-86-K-0092
and N00014-91-J-1219, the National Science Foundation under Grant CCR-8701103 and
DARPA/NSF Grant CCR-9014363, and Digital Equipment Corporation. Any opinions,
findings. and conclusions or recommendations expressed in this publication are those of the
authors and do not reflect the views of these agencies.

151
0890-5401/93 $5.00

Copyright ¢+ 1993 by Academic Press, Inc.
Al rights of reproduction in any form reserved.

152 KLARLUND AND SCHNEIDER

called a specification automaton, which accepts the language L(Ag). Both
automata may be infinite-state. A, satisfies Ag if every behavior of 4, is
allowed by Ag; that is, if the containment L(Ap)< L(Ag) holds. The
verification problem is to find a method based on reasoning about states
and transitions of 4, and 4 for establishing that Ap satisfies As.

In this paper we address the verification problem using the notion of
progress measure, introduced in [K1a90]. A progress measure g for estab-
lishing L(A4p)< L(Ag) quantifies how a behavior of 4, converges towards
a behavior accepted by A43. More precisely, with each state p of 4, 1s
associated information u(p) about the progress of A5, and the convergence
is expressed in a mathematical, but nonnumeric sence, by a progress
relation =g, which depends on only Ag:

(VC) For any transition of Ap from state p to p’ emitting symbol
e, u(p) s u(p’) holds.

(VC) is a verification condition since it is a local requirement about states
and transitions. (In addition, some technical conditions relating the initial
states of A, and A must hold.)

A verification method based on progress measures for proving that A4,
satisfies L(Ag) is sound if the existence of a progress measure implies
that L(Ap)< L(Ag) holds. In that case, whenever p,, p,,.. 1S a run
over a behavior {egy, e(,..) in L(Ap),' the >-related sequence u(po)gs
y(p,)x;s---(whose existence is guaranteed by the verification condition
above) gives rise to a run of Ag over (¢, ¢,,..>. A method is complete if
such a u is guaranteed to exist whenever A, satisfies 4.

No sensible method based on progress measures can be sound and
complete for specifications given by arbitrary nondeterministic automata
[Sis897]. Therefore, we restrict attention to specification automata that are
infinite-state but whose nondeterminism is finite; such automata are called
safety automata, because they express the class of safety properties?
[(AL88, Kla90]. Other papers, such as [AS89, CBK90, KK91], address the
verification problem for (usually deterministic) automata that can also
express liveness properties.

A particularly simple progress measure is the automaton homomorphism,
known as a refinement mapping. For this kind of progress measure, the
progress relation o> is just the transition relation of 4. Thus the verifica-
tion condition expresses that g maps any transition of 4p to a transition
of A5. (In addition, p maps initial states of A, to initial states of Ag.)

" A run of an automaton is a sequence of automaton states corresponding to a behavior
accepted by that automaton.

Y Informally, a safery properry is one stating that some “bad thing” does not happen.
Formally, a safety property is a closed set [AS85].

NONDETERMINISM AND PROGRESS MEASURES 153

Regrettably, there are simple situations where the inclusion L(Ap) S L(A4g)
holds but this cannot be proved by a homomorphism.

Abadi and Lamport [AL88] showed that there are two problems behind
the indadequacy of homomorphisms. One problem, which we call the
prophecy problem, stems from the nondeterminism of Ag and suggests that
u(p) must designate several states of Ag at once.” The other problem,
which we call the history problem, is more intricate. Intuitively, it arises
when A, may visit the same state p in different ways, each giving rise to
a different corresponding state of Ag; thus this problem also suggests that
u(p) must designate several states of Ag at once. Abadi and Lamport
showed that these problems can be overcome by adding prophecy and
history variables, respectively, to the program automaton so that a
homomorphism p can be constructed. The result is a sound and compilete
verification method, but at the expense of transforming the program
automaton.

Often it is desirable to understand how each step executed by the
unaltered program contributes to bringing the resulting computation closer
to satisfying the specification. Therefore, some authors have proposed more
powerful kinds of progress measures [Mer90, Lam83, LT87, Par81, Sis91,
Sta887], which we here call prophecy measures and history measures. These
progress measures map a program state to a ser of specification sets and
can sometimes eliminate the need to transform the program automaton. A
prophecy measure, for example, corresponds to a homomorphism from A,
to the deterministic automaton %44 obtained by applying the classic sub-
set construction [RS59] for determinization, here denoted by &, to the
specification automaton. If prophecy measures are used in the method of
Abadi and Lamport, the need for prophecy variables disappears. Yet, as we
shall see, no progress measure based on mappings to sets of specification
states can form a complete verification method, unless transformations are
used.

This paper gives a new progress measure, called the ND measure, and a
new kind of subset construction, which we call historization and denote by
#. The # construction allows us to explain history measures in terms of
homomorphisms from 4, to # Ag. Similarly, ND measures correspond to
homomorphisms from Ap to # 2 Ag, which is the automaton obtained by
first performing determinization and then performing historization. The
significance of # % A4 is that there is always a homomorphism from A4, to
H# G As when A, satisfies 45. The need for prophecy variables disappears
because of determinization; the need for history variables disappears
because of historization, and a homomorphism can be constructed from A4,
to #2Ag. Therefore, #ZAg is a canonical specification automaton.

* The notions of prophecy and history are derived from [AL8R].

154 KLARLUND AND SCHNEIDER

Moreover, as an alternative to constructing all of # 2 A4 at once and then
using a homomorphism, the ND progress measure allows the description
of only parts of #ZAg. This approach to verification may be important
in practice, just as Abadi and Lamport showed that with their method,
it is not always necessary to add variables to A, that describe all the
information inherent in their completeness proof.

The remainder of this paper is organized as follows. Section 2 contains
definitions and describes basic properties of infinite-state automata. In
Section 3 we consider some natural approaches to the verification problem
and we prove that the resulting methods are incomplete. Section 4 discusses
completeness results for the methods of homomorphisms and prophecy
progress measures. Section 5 describes the history and ND measures and
their relationship to historization. Then Section 6 explains in detail how
our results are related to existing verification methods from the literature.
Section 7 relates our approach to recursion theory. Section 8 contains a
summary.

2. DEFINITIONS AND BASIC PROPERTIES

Let 2 be a fixed, countable alphabet of symbols called events
(representing actions, communications, or observable parts of states). A
behavior is a sequence (infinite if not otherwise stated) (e, e,,... > of events.
2 is the set of behaviors and X'* is the set of finite behaviors. We denote
the concatenation of sequences u and w, where u is finite, by u - w.

Let V be a set (countable if not otherwise stated) of stares. A transition
relation on V is a relation - < V x X' x V, where a transition (v, e, v’')€ —is
denoted v—% v'. An automaton A= (X, V, —, °} consists of an alphabet
X, a state space V, a transition relation — on V, and a set of initial states
yec v

For v,v'eV and u=<eq,..,e,>€2* n=—1, denote by v —- v’ that
there exist vy, ..,v,,,€V such that vy,—>...5 v, |, where v=u,,
v'=uv,, ; if in addition v, e V°, then v’ is reachable over u. The set L, (A)
of finite behaviors of A consists of all ue X™* such that some state v is
reachable over . In the infinite case, v —> means that there exist vq, v,, ...
such that vo—"% v, —% ..., where v=1y, and w={ey, e,,..>e2; if in
addition v, e VY, then vy, vy, ... is a run of A over w and we say that w is
accepted by A or is a behavior of A. L(A) is the set of behaviors of A. The
language or property L(A) accepted by A is the set of infinite behaviors
of A.

The set of states reachable over we 2* is denoted #,(u). Note that
A,)=V A transition relation -» has finite nondeterminism if for
all eeX and all veV, the set {v'|v—> v’} is finite. Automaton

NONDETERMINISM AND PROGRESS MEASURES 155

A=(2,V, -, V° is a safety automaton if V° is finite and — has finite
nondeterminism. And, if ¥° and all sets {v' | v—% v’} have at most one
element, then A is deterministic. Observe that if 4 is deterministic, then a
canonical mapping h,: L (A)—V is defined by h,(u)=v, where
{fv} =R ,(u). Tt is well known [AL88, Arn83, Kla90] that safety automata
define the class of safety properties:?

PROPOSITION 1. The following are equivalent:

(a) S is a safety property.
(b) S=L(A) for some safety automaton A.
(¢} S=L(A) for some deterministic automaton A.

A dead-end is a state v from which it is not possible to follow transitions
ad infinitum, i.e., such that for no we X2, v —. Automaton A is dead-end-
free if it has no dead-ends. Note that if a dead-end-free automaton has an
initial state, then it accepts a non-empty language. Moreover, from every
automaton A= (X, V, —, V'), it is possible to obtain a dead-end-free
automaton A4’ such that L(A4')= L(A4) by deleting from V the dead-ends.
This procedure, however, is not computable, since it requires deciding
whether there is an infinite path from a node in a graph-—something that
is X'{-complete for countable recursively represented graphs [Rog67]. In
practice, this incomputability is usually not a problem, since predicates
often can be used to describe the states occurring in infinite computations.

If for all v in V there is exactly one finite behavior » such that ve %, (1),
then A4 is historical; the intuition is that each state describes the finite
behavior or history leading up to that state. Note that if 4 is historical and
L(A)+# &, then A is infinite-state.

In what follows, we consider a program automaton Ap = (X, Vp, —p, V5)
and a specification automaton Ag= (X, Vg, =g, V3).

DEerINITION 1. A homomorphism or refinement mapping u for (Ap, Ag)
is a mapping u: Vp — Vg such that the following verification conditions are
satisfied:

(REul) peVi=u(pre Vs
(REp2) p—Sp p'=pu(p)——su(p’)

(REu1) stipulates that g maps initial states of 4, to initial states of Ag,
and (REu2) stipulates that for every transition p—-, p’ of A, there is a
transition u(p)—=—g u(p') of Aq.

4 A safety property is a closed set, i.e., the complement of an open set {uw,-w{i>1 and
we X}, where {u,},,, is a set of finite prefixes, denoting the set of “bad things.”

156 KLARLUNI> AND SCHNFIDER

ProroOSITION 2. If there is a homomorphism u for (Ap, As), then
L(Ag) = L(As).

Proof. Given a homomorphism p and a behavior {egy,e,,..> of Ap,
there is a run py—%p p, —=p---of Ap, and from (REul) and (REu2) it
follows that u(p,) —=¢ u{p,) ~=¢---is a run of Ag, whence {e,, e,,..> is
a behavior of Ap. Thus L(Ag)< L(Ag). |}

3. INCOMPLETENESS OF SOME PREVIOUS APPROACHES

In this section we consider some candidate progress measures for
showing that L(A4p)< L(Ag) holds. This leads to our proof that there
can be no sound and complete verification method based on a progress
measure that maps states of Ap either to states of 45 or to sets of states
of Asg.

3.1. Incompleteness of Homomorphisms

Homomorphisms (refinement mappings) do not yield a complete method
for nondeterministic automata. It is well known that even for finite-state
automata A, and Ag such that 4, satisfies A5, a homomorphism may not
exist. To see this, assume that A satisfies A5 and that this can be proved
by some homomorphism w. Consider the situation in Fig. 1, where states p
of Ap and s',s" of Ag are all the states reachable over some finite w.
Also assume that there exist w’ and w” such that u-w' and u-w" are
different behaviors that allow only the runs depicted. Suppose that
Po» o P Pos P - 18 the run of A, over u-w' and that pg, ..., p, pi, pi, -
is the run over w-w". Thus u(pg), ..., p(p), u(po), u(p)), ... must be the run
of A5 over u-w' and p(py), ... u(p), u{py), p(py), ... must be the run of Ag
over u-w”, because A, satisfies 4. However, this is impossible because for

u
w’ _
1
3
30
U w'
sII
'
u
po "
p

FiG. 1. Situation that calls for a prophecy set.

NONDETERMINISM AND PROGRESS MEASURES 157

0 u v w
'@ > — @
s s"
0 u v w
P e >0 >@—
p P

FiG. 2. Situation that calls for a history set.

the run over u-w’, it must be the case that u(p)=ys', and for the run over
u-w", it must be the case that u(p)=s".

To avoid the incompleteness inherent in homomorphisms, we might con-
sider a progress measure that maps program states to sets of specification
states. For the situation above, we define u(p)={s’,s"} where {5, 5"} is
called a prophecy set because it predicts that either s” or s” is the state of
the specification automaton corresponding to p.

In the simple case where A4 is deterministic, the need for prophecy sets
does not arise, and we might hope that a homomorphism for (Ap, As)
would always exist. This is not always so, however. In the situation shown
in Fig. 2, u(p) would have to be both s’ and s” at the same time. Again in
this case, it would be natural to let u(p) be a set, namely {s’, s"}, which
we call a history set since each state corresponds to a different finite
behavior or history leading up to the state. Above, 1 and u - v are two such
histories leading up to p.

3.2. Incompleteness of Measures Mapping to Sets of States

We now show that in the general case, where 4, and A both are non-
deterministic (but only finite-state), not even progress measures that map
to sets of specification states can form a complete verification method. Con-
sider an automaton Ag given as in Fig. 3, where both s, and s_ are initial
states. The behaviors defined by A5 are the sequences that consist of either
a’s and b’s or a’s and c¢’s (i.e., the w-regular language (a+ b)* U (a+ ¢)*).
We first show that there can be no progress relation =g on Vg={s,,s,}
yielding a reasonable verification method; such a method, we claim, would

satisfy the criterion:
Q aorb Q aorc
Sp Sc

FiG. 3. Automaton Ag.

6437107 1-11

158 KLARLUND AND SCHNEIDER

F1G. 4. Automaton Ap.

(M) If Cy |e>°S C, Ie>ls cC, ;S where Cy, C,, ... are sets of specxﬁca-
tion states, then there are s, Cy, s, € Cy, ... such that 5o —¢ 5, g ---is
a run of Ag.

This criterion must hold for the method to be sound. Usually we would
also expect a requirement relating initial states of 4p and A5 to C,. In
the case of 45 as defined above, however, there is no need for such a
requirement since both states of 4 are initial.

Let the program automaton A4, be defined as shown in Fig. 4, where p,
is the initial state. The infinite behaviors of A4, are (b, a,q,..),
{c,a,a,..>, {a, b, b,..>, and {a,c, ¢, ...>. Observe that L(Ap)<S L(As).
Since we assume that the hypothesized method is complete, there must
then exist a progress measure y that maps each state of A, to a nonempty
subset of {s,, s.}. There are only three such subsets. Thus u is not injective.
Since the verlﬁcatlon condition is that p —»p p’ implies u(p) |>S u(p’), the
case analysis in Tablel gives a behavior w, which—according to
(M)—must be a behavior of 45. But in each case this contradicts the
definition of Ag; thus no reasonable verification method exists.

TABLE 1

Case Analysis

Case Consequence Behavior w
#(po)=p(p,) B(Pa) Bs 1(pa) = 1 po) s 1(pa) = p(po) - - <b.e,b,c,..)
p(po) = u(py) 1(py) B 1 py) = 1 po) B i(py) S plp,) - (boc,aa,.d
u(po) = ulp.) (P s u(p) = B Po) B H(P,) s i(p,) - (eoboaa, .
(P = u(ps) #(Po) S5 1 Pa) = 1 Py) Bs () -+ Cerbibyd
p(p.)=u(p,) p(Po) Bs 1Py = p(p,) s pl(p,) - (boe,c,

w(py)=uip.) 1(py) Bs 1(pa) = 1(p.) s (P,) s plp,) - (hoee,)

NONDETERMINISM AND PROGRESS MEASURES 159

4, HOMOMORPHISMS AND PROPHECY MEASURES

In this section we use progress measures to explain two well-known
verification methods for establishing L(A4p)< L(Ag), namely homomor-
phisms and prophecy measures.

4.1. Homomorphisms

By imposing restrictions on Ap and Ag, a complete verification method
based on homomorphisms can be obtained:

PrROPOSITION 3. Let Ap be a historical dead-end-free automaton and let
Ag be a deterministic automaton. If L(Ap) < L(Ag), then (Ap, As) has a
homomorphism.

Proof. Assume L(Ap)< L(As). Since A, is historical, there is for every
state p exactly one ue 2™ such that pe #,,(u). Because Ap is dead-end-
free, there is a w such that uw-we L(A4p). Therefore, u-we L(Ap) < L(A4g),
whence ue L, (Ag). Thus we can define u(v)=h, (u), where h, is the
canonical mapping of the deterministic automaton Ag. It can be verified
that p so defined satisfies (REul) and (REu2). |

4.2. Prophecy Measures and the Classical Subset Construction

Similarly, it is not difficult to obtain a complete method based on map-
ping program states to prophency sets. First we define a progress relation
on such sets.

DermNITION 2. The prophecy relation tpp of a transition relation — on
V is the transition relation on 2V given as’
(=pr) St;pk S'ifVseS :IseS s 5"

An infinite opg-related sequence of nonempty finite sets gives rise to an
infinite —-related sequence of states:

LEMMA 1. (Prophecy Relation Lemma). If S, gpk S, x‘;PR -+ and
S;# & is finite for all i, then there exists a sequence sq— 5, ---with
s;€8, fori=0,

Proof. Construct a forest as follows. Each node is of the form
So— .=~ 5. such that s;e S, for i<n and s5,—5,,, for i<n; in
particular, the roots are elements of S,. The edges are of the form

(S50 s g s),
Since S; is finite, the forest is a finite collection of finitely branching

S 2V denotes the set of all subsets of V.

160 KLARLUND AND SCHNEIDER

trees. The forest is infinite, because for all n, it follows from
S, |e>°pR S, f>lpR ---and S,;#0 that there are some sg,.., 5, such that
So—2 ...—=Ls 5, is a node. Hence by Konig's Lemma, there is an infinite
path through one of the trees. This path defines s, —> s, = ---. |

Next we define a prophecy progress measure, which maps each program
state to a finite prophecy set of specification states:

DEFINITION 3. A prophecy measure p for (Ap, Ag) is a mapping
u:Ve— 2Vg such that

(PRul) peVi=pu(p)cVy
(PRu2) p—p p’'= p(p) pr u(p’)
(PRu3) u(p)# & and finite,

where t=py Is the prophecy relation of —g.

Prophecy measures give a sound verification method for nondeter-
ministic automata:

PROPOSITION 4. If (Ap, As) has a prophecy measure, then L(Ap)S
L(Ag).

Proof Assume that (A4p, Ag) has a prophecy measure - Let
Po—=p py—>p---be a run of 4,. By (PRu2), N(Po)‘>pn ﬂ(Pl)‘>PR
and by (PRu3), u(p,)# & and finite for i = 0. We can use the Prophecy
Relation Lemma to obtain a sequence So = N 51 -~>S ., where sy € u(p,).
By (PRul), soe u(po) = Vs, whence so—>g s, —g---is a run of 4. |

A completeness result for prophecy measures can easily be obtained by
taking advantage of the classical subset construction, which is:

DEFINITION 4. Let A=(ZX, V, -, V°) be a safety automaton. Define
GA=(2, F V, ——»D, {V°}), where U—>, U’ if U’ # & is maximal such
that Uspp U’y i, if U'={v' | JveU:v—> v’} and U’ # . (Since A is a
safety automaton, V, is a finite set and U’ is always a finite set.®) ¥4 is
the determinization of A.

Note that if 4 is finite-state with n states, then 24 has 2” states, and if
A’s state space is countably infinite, then &4 has still only countably many
states.

PROPOSITION 5. L(A)=L(ZA).

Proof. To see that L(A)S L(ZA), let vy, —=» v, - ...be a run of 4 and
define U,=V,, U,={v'|JvelU,_,:v——>0v}, i>0. By induction,
v,e U, Thus Uy, U, <55 .-+, which is a run of 24

* Z 1 denotes the set of finite subsets of V.

NONDETERMINISM AND PROGRESS MEASURES 161

On the other hand, L(¥A4)< L(A4) holds by Proposition4 since the
mapping pp, defined by p(S)=S is a prophecy measure for (#4, 4). }

PROPOSITION 6. Let Ap be a historical dead-end-free automaton and let
Ag be a safety automaton. If L{Ap) <= L(Ag), then

» there exists a homomorphism for (Ap, 2 A4g), and

o there exists a prophecy measure for (Ap, Ag).

Proof. A homomorphism u for (4, ¥4g) exists by Proposition 3 and
from the definitions of prophecy measure and Z A4y, it follows that u is a
prophecy measure. |

According to the discussion in Section 3.1, the method of prophecy
measures is not complete if the restriction that 4, must be historical is
removed.

5. HISTORY AND ND MEASURES

In this section we first show how to prove L(Ap)<= L(Ag) when the
specification automaton A is deterministic. The progress measures that
arise are called history measures and the completeness of the resulting
method stems from a new subset construction that we call historization.
Next, we define ND measures as a natural generalization of history
measures.

5.1. History Measures

Assume Ag is deterministic and consider a program state p. It can be
reached by different finite behaviors. Let the progress measure u(p) be the
history set—-the set of specification states that are reached by these finite
behaviors (there is one such state per behavior because 4 is deterministic).
On a transition p — p’ and for each state se u(p), there must be a state
s"eu(p') such that s—5 s'; this ensures that every partial run of 44 can
be extended. Thus we define:

DEerFINITION 5. The history relation o, of a transition relation — on V
1s the transition relation on 2V given as
() Cy C il VseC:3Is'eC s~ .
The history relation of — has the following property:

LemMa 2 (History Relation Lemma). If C, f;w C, r‘;m -+, then for all
so€ Cy, there exists a sequence such that s, —> s, — - .- with s,e C, for all i.

162 KLARLUND AND SCHNEIDER

Proof. Let s, be any state in C,. Then by definition of =, there is a
state s, in C, such that s,—% 5,. By iterating this argument, we obtain
So—2 5, —% . ..such that for all i, 5,€ C.. |

A history measure maps a program state to a possibly infinite set of
specification states:

DEFINITION 6. A history measure p for (Ap, Ag) is a mapping
w: Ve — PVg such that
(Hlul) peVSi=3seu(p):seV?
(HIp2) p—5p p' = p(p) Sy p(p'),
where >, is the history relation of —g.

History measures also give a sound verification method for nondeter-
ministic automata:

PROPOSITION 7. If (Ap, As) has a history measure, then L{Ap)< L(Ag).

Proof. Let po—%p p,—p---be a run of AP By (H]ul) there is an
S0 € #(po) such that sye Vg, By (Hlﬂz) .U(Po)‘>m #(Pl)‘>m . Thus by
the History Relation Lemma there is a run s, —og 5, —g - of As. 1

To obtain a completeness result for history measures, we define a
new automaton construction, which is the dual of the classical subset
construction.

DEFINITION 7. Let 4= (X, V, —, V°) be an automaton. Define #4 =
(2, PV, oy, {CSVICn VO). H A is the historization of A.

Note that if 4 is finite-state with n states, then # 4 has 2" states, and if
A’s state set is countably finite, then s 4 has 2™ many states, i.c., uncoun-
tably many states.

PrROPOSITION 8. L(A)=L(#A).

Proof. The mapping y defined by p(v)= {v} is a homomorphism for
(A, # A); thus by Proposition 2, L(A)gL(J?A) The mapping uy defined
by uy(C)=C is a history measure for (# A4, A); thus by Proposition 7,
L(# A= L(A). |

The following is the key proposition of our paper:

PROPOSITION 9. Let Ap be a dead-end-free automaton and let Ag be a
deterministic automaton. If L{Ap) < L(Ag), then

NONDETERMINISM AND PROGRESS MEASURES 163

e there exists a homomorphism for (Ap, # Ag), and

o there exists a history measure for (Ap, Ag).

Proof. Asume L(Ap)<S L(Ag) and let s° be the initial state of As.
Define p(p)={s| 3u: pe #,,(u) and s° ~>¢ s}. Note that u(p) is possibly
empty.

To prove (Hlul), let peV$. Since pe,,({ D), it follows that
s%e u(p).

To see that (HIx2) holds, let p, e, p’, and s be such that p—, p’ and
s € pu(p). Thus there is a finite behavior u such that s°—5g sand pe #,, ().
By the assumption that Ap is dead-end-free, there exists w such that p’ —,
hence u-<{e)-we L(Ap). Since L(Ap)S L(Ag) and Ag is deterministic,
there is an s’ such that s —“»5s". Then s' € u(p’), because p'e A, (u-<{e)).
Thus (HIx2) holds and u is a history measure for (Ap, Ag).

In addition, it follows from the definition of #A4 that u is a
homomorphism for (Ap, # A4s). |

According to the results of Section 3.1, history measures do not
constitute a complete verification method for A that are safety automata.

5.2. ND Measures

We have discussed progress relations that give complete methods for two
special cases above: prophecy relations when A, is historical and history
relations when Ag is deterministic. Our solution to the general case consists
of combining these relations: the ND progress relation is the history
relation of the prophecy relation.

DEefFINITION 8. The ND relation o>y on % V of a transition relation
— on V is defined as
{(>np) C|€>NDC’ if VSeC:38' e :Vs'eS :3seS:5— 575",

An immediate consequence of the two preceding lemmas is:

LEMMa 3 (ND Relation Lemma). If C, f;ND C, QNDW, SoeCy, and
& ¢ C, for all i, then there is a sequence so—> 5, — - with s,€ Sy.

Proof. As SoeC, and as C, f;m C, f>'H,---, there is by the History
Relation Lemma a sequence S, gpk S, QPR .-.with §;eC,.

Moreover since ¢ C,, ie, S;# F, and since §; is finite for all i, it
follows by the Prophecy Relation Lemma that there is a sequence
S0~ 5, — ... such that so€S;. |

An ND measure u associates with each program state a (history) set of
(prophecy) sets of specification states:

164 KLARLUND AND SCHNEIDER

DermviTION 9. An ND measure u for (4p, Ag) i1s a mapping
w:Ve—PFVg such that

(NDul) peV$=3Seu(p):ScV?
(NDp2) p->p p'= pu(p) o p(p')
(NDu3) ¢ ulp).

PrOPOSITION 10. If (Ap, Ag) has an ND measure, then L(Ap) S L(Ag).
Proof. Follows from the ND Relation Lemma. |}

Our main result is:

THEOREM 1. Let Ap be a dead-end-free automaton and let Ag be a safety
automaton. If (Ap) < L(Ag), then

o there exists a homomorphism for (Ap, #ZAg), and
» there exists an ND measure for (Ap, Ag).

Proof. Assume L(Ap)< L(As). By Proposition9, there is a homo-
morphism u for (4p, #ZAs). In addition, it is not hard to see that u is
also an ND progress measure for (Ap, A5). |

6. DERIVATION OF PREVIOUS METHODS

In this section we derive from our ND measures Abadi and Lamport’s
method [Ai88] as applied to safety properties. We also show how to
obtain the verification methods of [Mer90, Sis91].

The goal of [AL88] is to show that L(A4p)<= L(As) by means of a
homomorphism. This is done by adding history and prophecy information
to the program automaton before the refinement mapping is constructed.
This information is such that one can verify locally that the language
L{Ap) accepted does not shrink when it is added. The main result of [AL88]
is that L{Ap)< L(Ag) if and only if there is an automaton Ap-—obtained
by adding first history, then prophecy information to 4p,—and there is a
refinement measure for (A4, Ag). The work in [Mer90, Sis91] uses prohecy
measures and constitutes what can be regarded as an intermediate
approach between ours and that of [AL88]. In [Sis91] it was shown that
a complete method results from modifying the program automaton and
using a prophecy measure: L(Ap)< L(Ag) if and only if there is an
automaton A p——obtained by adding history information to 4p—and there
is a prophecy measure of (A, Aq).

NONDETERMINISM AND PROGRESS MEASURES 165

6.1. Adding History Information

Using ND measures, we can derive the methods of [Mer90, Sis91] as
follows.

DEFINITION 10. Adp = (2, Vp,, —p, V5. is obtained from A4, by adding
history information if V. < Vp x I—with I countable—and

(HI1) peVy=3i:(p,i)eV}
(HI2) p-pp Alp.i)eVp=3i":(p,i)~>p (p,i)
The projection n,, : Vp — Vp is defined by n . (p, i) = p.

Note that (HI1) and (HI2) are equivalent to saying that the inverse
projection n ' : Vp— V. (defined by 7} (p)={(p, i) (p,)eVp})is a
history measure for (Ap, Ap:). Also observe hat A, is not necessarily a
dead-end-free automaton or a safety automaton, even if A, is.

PrOPOSITION 11. If Ay is obtained from Ap by adding history informa-
tion, then L(Ap) < L(Ap).

Proof. As noted above, 7 is a history measure for (4p, Ap-). Thus by
Proposition 7, L(Ap)< L(Ap) holds. |

(The original definition of adding history variables in [AL88] is
stronger and, as a result, implies that L(Ap)= L(Ag).) The method of
[Mer90, Sis91] now follows from Theorem 1:

PROPOSITION 12. Let Ap be a dead-end-free automaton and let Ag be a
safety automaton. Then L(Ap) S L(As) if and only if there is an automaton
Ap—obtained by adding history information to Ap—and there is a prophecy
measure for (Ap., Ag).

Proof. “<" By Proposition 11, L(4p)< L(Ap-), and by Proposition 4,

L(Ap) < L(A4g).
“=" By Proposition 9, there is a homomorphism g, for (4p, #' FAs).

Let I=FVs, Ve={(p.S)|Seuun(p)l. Vo=1(p.S)eVp|pel?,
Sc V), and (p, S)~Sp (p, S') if p—>p p’ and S&pg . Then A, is
obtained from Ap by adding history information, because 7n,':p—
{(p, S)| Seuyp(p)} is a history measure for (4p, Ap-).

Define u(p, S)=S. Then it can be seen that u is a prophecy measure for
(AP" AS) l

The completeness proofs in [AL8S, Sis91] rely on changing 4, into an
infinite-state automaton by adding information that records the past
history of states. In contrast, the analysis above shows that if 4, and A

166 KLARLUND AND SCHNEIDER

are finite-state, then Ap. can be chosen to be finite-state; for in the proof
of Proposition 12, the number of different history sets is finite when Vp is
finite. In light of this observation, the concepts of history measure and
history information are slightly misleading. Distinguishing among histories
of the program automaton is not the crucial point—what matters is to
distinguish among prophecy sets of the specification automaton.

6.2. Adding Prophecy Information
To obtain the verification method of [AL88], we define:
DERINITION 11, Ap =(Z, Vp, V5., =) is obtained from A, by adding
prophecy information if ¥ < Vp x I-—with I countable—and
(PRl) peVia(p i)eVp=(p i)eV}
(PR2) p—Spp A(p.iVeVp=3ii(p,i)—p (p,i)
(PR3) @ #{il(p, i)eVp} is finite.
The projection n,,: Vp — Vp is defined by n, (p, i)=p.
Note that this definition is equivalent to requiring that the inverse
projection m,':Vp— Vp be a prophecy measure for (Ap, 4p). Also

observe that Ap. is not necessarily a safety automaton nor is it necessarily
complete, even if 4, has these properties.

PROPOSITION 13. If Ap is a safety automaton obtained from Ay by
adding prophecy information, then L(Ap)< L(Ap.).

Proof. This follows from Proposition 4 and the observation above that

m,, is a prophecy measure for (4p, 4p). |

A version of Theorem 2 of [AL88] follows from Theorem 1:

PROPOSITION 14. Let Ap be a dead-end-free automaton and let Ag be a
safety automaton. Then L{Ap)<S L(Ag) if there is a safety automaton
Ap. —obtained by adding first history, then prophecy information to Ap—and
there is a homomorphism for (Ap., Asg).

Proof. “<" By Proposition 11 and Proposition 13, L{4p) < L{A4,.). By
Proposition 2, L(Ap-) € L(As).

“=” Assume L(A4p)SL(Ag). By Proposition9 there is a
homomorphism . of (Ap, KD As). Let Ap. = (Z, V., —p-, Vi), where
Voo, V.S Vp x F Vg x Vg are given by

Ver=1(p, S, s) | se Se pup(p)}
Vo.={(p. S.sy|seSeupp(p) A pe Vi A SSV}

and (p, S, 5) 5 p. (p, S, 5V if p—p p', Stpr S and 5~ s,

NONDETERMINISM AND PROGRESS MEASURES 167

Then it is not hard to see that A,. is obtained by adding prophecy infor-
mation to Ap from the proof of Proposition 12. Also, it can be seen that
u defined by p(p, S, s)=1s is a homomorphism for (Ap., Ag). |

Although the approaches of Abadi and Lamport [AL88] can be derived
from ours, their work is more general in two respects. First, they show how
safety and liveness issues can be separated by using automata that are
equipped with auxiliary liveness properties (see also [Mer90]). Second,
they use stuttering automata. A stuttering automaton is one in which repeti-
tion of events is considered a single event. Stuttering is important when
multiple steps of the program automaton correspond to a single step of the
specification automaton (see also [Sis91]). For simplicity we have not
considered this issue here. In [AL89], translations between the method
of [AL88] and our method (originally described in [KS89]) were first
outlined.

7. DiscuUsSION

Our verification methods hinge on two restrictions: that the specification
automaton may only have finite nondeterminism and that the program
automaton must be dead-end-free. The restriction to finite nondeterminism
is also imposed in previous methods. As discussed in [Sis89], there are
recursion-theoretic arguments showing that there does not exist any sen-
sible verification method for automata having infinite nondeterminism; in
fact, the question L(A4p)< L(Ag) is IT)-complete and we should expect a
verification method to be at most in X} (corresponding to guessing a map-
ping and verifying first order conditions) or perhaps in X'} (corresponding
to guessing a mapping and then verifying well-foundedness and first order
conditions).

The restriction to dead-end-free program automata is also rooted in the
laws of recursion theory. Just to determine if an effectively presented non-
deterministic automaton A4, defines the empty set (i.e.,, that L(4p) = &) is
I1}-complete, because there is a reduction from the /T}-complete problem
of determining whether an effectively represented tree has only finite paths.
On the other hand, all the methods described here involve a second order
existential quantification; ie., each method is of the following form:
L(Ap) < L(Ag) if and only if there is a relation R such that some first-order
conditions hold.” Thus the methods are essentially X! and therefore cannot
even be used for the general problem L(Ap} < ¢ where Ap is not assumed

7 An ND measure g can be defined by Seu(p) if and only if R(p, #5), where #5 is a
number encoding the finite set S.

168 KLARLUND AND SCHNEIDER

TABLE II

Progress Measures for Sound and Complete Verification Methods

Ag
Ap (dead-end-frec) Deterministic Safety
Historical Refinement Prophecy
Nondeterministic History ND

dead-end-free. One can lower the computational complexity by reformu-
lating the verification problem. We say that 4, simulates Ay if each finite
and infinite behavior of 4, is a behavior of Ag. Perhaps surprisingly, the
problem of determining whether nondeterministic A4, simulates safety
automaton Ag—something that looks stronger than L(A4)< L(S)—is
computationally much easier. In fact this problem can be shown to be
M-complete.”

8. SUMMARY

We have described a verification method based on our ND progress
measure for nondeterministic automata. Unlike previous complete
methods, ours is direct in the sense that it requires modifying neither the
program nor the specification. Progress measures also have allowed us to
classify the applicability of previous methods that do not depend on
program transformations. According to whether A, is historical or not, or
whether Ay is deterministic or safety, the progress measure indicated in
Table II constitutes a sound and complete verification method for showing
L(Ap) < L(Ag). Unfortunately, the most powerful progress measure, the
ND measure, 1s rather complex since it maps program states to sets of sets
of specification states. This complexity is inherent in the verification

Proof sketch. Assume that the states of A4, and A are natural numbers and that their
transition relations and sets of initial states are recursively represented. In addition, there are
a maximal initial state, known to A4g, and a recursive function b, known to 4, bounding the
branching of 4g; i.e., s~ s’ = s < h(s). The problem L(Ap) < L(Ag) is in ITY because it can
be written Vue 2™ : P(u)—where the recursive predicate P(u) is “u is a finite behavior of
Ap=>u is a finite behavior of 4¢" —which can be shown to be /1. Ay is a safety automaton
ensures that (Yue X*: P(u)) implies L(Ap)< L(Ag). Also, by standard recursion theoretic
techniques, the /79-complete problem “Does M, not halt on x 7" (where M, x=0, 1. ... is an
enumeration of Turing machines) can be reduced to a question of the form £ < L(4), where

'=1{0} and A is a deterministic automaton that allows the finite behavior 0" if and only if
M, does not halt on v after n steps.

NONDETERMINISM AND PROGRESS MEASURES 169

problem. No method based on just mapping program states to sets of
specification states can be both sound and complete for nondeterministic
automata.

ACKNOWLEDGMENTS

We thank M. Abadi, B. Alpern, D. Kozen, L. Lamport, M. Merritt, A. Zwarico, and an
anonymous referee for their very helpful comments on earlier versions of this paper.

RECEIVED September 21, 1989; FINAL MANUSCRIPT RECEIVED September 10, 1991

Note added in proof. Since the present paper was submitted, it was reported in [AAM92]
that a construction resembling our historization is used in a technical report [Car70].
published in 1970, to obtain a characterization of minimal nondeterministic automata
equivalent to a given automaton.

In the same year, and probably independently. a similar construction was published in
[KW?70] as part of an algorithm to search for a minimal nondeterministic automaton. We are
grateful to A. Potthoff at the University of Kiel for providing us with this information. He also
located a technical report appearing a couple of years later [Kim74], which further
investigated the issue.

This carlier work did not address the verification issuc. Thus concepts such as automata
accepting infinite words and mappings from states to sets of states (or sets of sets of states})
were not considered.

REFERENCES

[AAM92] ArnoLD. A., DICKY, A., AND NIVAT, M. (1992), A note about minimal nondeter-
ministic automata, Bulletin of the EATCS 47, 166-169.

[AL88] Apapi, M.. AND Lamport, L. (1991). The existence of refinement mappings,
Theoret. Comput. Sci. 2(82), 253-284.

[AL89] Apapi, M., anp LamMporT, L. (1989), Private communication.

[Arn83] ARNoOLD. A. (1983). Topological characterizations of infinite behaviors of
transition systems, in “Proceedings, 10th Colloquium Automata, Languages and
Programming,” pp. 490--510, Lecture Notes in Computer Science, Vol. 154,
Springer-Verlag. Berlin/New York.

[AS85) ALPERN, B., AND SCHNEIDER, F. B. {1985). Defining liveness. Inform. Process. Let.
21, 181-185.

[AS89] ALPERN, B.. AND SCHNEIDER, F. B. (1989), Verifying temporal propertics without
temporal logic, ACM Truns. Programming Languages Systems 11(1), 147-167.

[Car70] Carrez, C.(1970), On the minimalization of non-deterministic automata, Technical
report, Laboratoire de Calcul de la Faculté des Sciences de I'Université de Lille.

[CBK90} Crark, E. M., BROWNE, 1. A., AND KURSHAN. R. P. {1990). A unified approach
for showing language containment and equivalence beiween various types
of m-automata, in “CAAP" (A. Arnold., Ed.). pp. 103 116, Lecture Notes in
Computer Science, Vol. 431, Springer-Verlag, Berlin/New York.

[Kim74] Kim, J. (1974), State minimization of nondeterministic machines, Technical
Report RC4896 (#21805), IBM T. J. Watson Research Center.

170

[KK91]

[Kla90]
[KS89]
[KW70]
[Lam83]

[LT87]

[Mer90]

[Par81]

[Rog67]
[RS59]
[Sis89]
[Sis91]
[Sta88]

[Var87]

KLARLUND AND SCHNEIDER

KLarRLUND, N., anDp KoOzEN, D. (1991), Rabin measures and their applications to
fairness and automata theory, in “Proceedings, Sixth Symposium on Logic in
Computer Science,” [EEE, New York.

KLARLUND, N. (1990), “Progress Measures and Finite Arguments for Infinite
Computations,” Ph.D. thesis and Technical Report TR-1153, Cornell University.
KrarLunn, N., aNp Scuneiper. F. B. (1989), Verifying safety properties using
infinite-state automata, Technical Report TR-1036, Cornell University.

KameDa, T., anp WEINER, P. (1970), On the state minimization of nondeter-
ministic automata, Trans. on Computers, C-19 7, 617-627.

Lamport, L. (1983), Specifying concurrent program modules, ACM Trans.
Programming Languages Systems §(2), 190-222.

LyNncH, N., anp Turrtie, M. (1987), Hierarchical correctness proofs for
distributed algorithms, in “Proceedings, Sixth Symposium on the Principles of
Distributed Computing,” pp. 137-151, Assoc. Comput. Math., New York.
MERRITT, M. (1990), Completeness theorems for automata, in “Stepwise
Refinement of Distributed Systems,” Proceedings of the REX Workshop, Mook,
The Netherlands, May/June 1989, pp. 544-560, Lecture Notes in Computer
Science, Vol. 430, Springer-Verlag, Berlin/New York.

Park, D. (1981), Concurrency and automata on infinite sequences, in
“Proceedings, Sth GI Conference” (P. Deussen, Ed.), pp. 167-183, Lecture Notes
in Computer Science, Vol. 104, Springer-Verlag.

RogGers, H., Ir. (1967}, “Theory of Recursive Functions and Effective Computa-
bility,” McGraw-Hill, New York.

RaBIN, M. O., anp Scort, D. (1959), Finite automata and their decision
problems, /BM J. Res. 3(2), 115-125.

SisTLA, A. P. (1989), On verifying that a concurrent program satisfies a nondeter-
ministic specification, Inform. Process. Lett. 32{1), 17-24.

SisTLa. A. P. {(1991), Proving correctness with respect to nondeterministic safety
specifications, Inform. Process. Lett. 39(1).

Stark, E. (1988), Proving entailment between conceptual state specifications,
Theoret. Comput. Sci. 56, 135-154.

VARrDI, M. (1987), Verification of concurrent programs: The automata-theoretic
framework, in “Proceedings, Symposium on Logic in Computer Science,” 1EEE,
New York.

Printed in Belgium

Uitgever: Acadenic Press, Inc.
Verantwaordelijke uitgever voor Belgié.
Hubert Van Maele

Altenastraar 20, B-8310 Sint-Kruis

