Information Technology, J. Moneta (editor)
© JCIT3/North-Holland Publishing Company, 1978

On Language Restrictions to Ensure Desterministic
Behavior in Concurrent Systems *

A. J. Bernstein
F. B. Schneider

Dept. of Computer Science
S.U.N.Y. at Stony Brook
Stony Brook, New York U.S.A.

Abstract:

Software that supports concurrent operation of asynchronous
processes often produces results which are timing dependent.
As a result it is difficult to validate and debug such systems.
A set of language restrictions is presented which ensures that
timing dependent behavior can not occur. Concurrency is not

excessively limited by these restrictions,

howaver. The

application of this to system design is discussed.

*
This research was supported in part by NSF agrant MCS

76-04828.

The profusion of software systems that do
not function as they should is alarming.
Rzsearch to control errors in software ranges
from theoretical to practical approaches.
Verification of programs by axiomatics
[Owic76], [Hoar69] and other formal models
[Denn72], although presently not applicable to
large systems, shows promise of becoming one
means to eliminate errors. In the meantime, the
development and widespread adoption of high
level languages for systems programming,
structured programming techniques [Dijk72],
modularization [Parn74] [Lisk74] [Wulf76], and
hierachical system construction [Dijk68] have
been successfully employed to control errors in
the construction of software.

The most difficult software systems to
validate or verify are those which involve
concurrent processes . Operating systems are
examples of such systems. They support a number
of independent processes which share data,
perhaps using some synchronization mechanism to
support cooperation. It is often the case that
such systems exhibit timing dependent or
non—deterministic behavior.

For example, consider the system access
graph of Figure 1. In this graph a node
represents a module and an arc from one node
to another indicates that the former module may
make a call upon the latter [Brin75]. Assume
the algorithms implemented in m_ and m
involve successive calls to m, and my. I?
processes ¢ and r, are simultanecusly
executing in m_ and m_, timing dependent
behavior may ensue. The following sequence of
events illustrates this:

537

enters m
enters

enters m
returns Eom
enters m
returns Eo
enters m
returns to
enters m
returns %o ma

Lo T T T T T O T T
NN D

~

Notice that process r, sees the state of
module m, bafore r, has éntered it but sees
the state of m, after r, has completed
execution in that mc%ule- This:?behavior is the
result of a particular intasrleaving of the
execution of concurrently running processes.

Mg mp

ﬂ1| mo

Figure 1



538 A.J. BERNSTEIN and F.B. SCHNEIDER

It may not be possible to obtain the same
results by running t, and r, in a serial
fashion nor can we bé sure %hat the same
interleaving will occur if we attempt to
reproduce the sequence of events by initiating
r, and r,, at the same relative times. This
i8& becalise the rate of progress of a process in
the system may depend upon such unpredictable
factors as latency, seek times and the
vagaries of a scheduling algorithm. As a
result it may be very difficult to reproduce a
particular sequence of events and thus the
results produced may be timing dependent.The
system designer should have anticipated all
possible interleavings of execution in modules.
Nevertheless, systems which exhibit this type
of behavior are particularly difficult to
validate.

It is the goal of this research to define a
set of language restrictions to ensure
deterministic operation of asynchronous
systems. These restrictions impose sufficient
structure on the system so that timing
dependent (non-reproducible) behavior can not
occur. Unfortunately not all of the
restrictions are compile time checkable, though
the run time checks incur minimal overhead. In
addition, we believe the restrictions leave
enough flexibility so that the application of
this theory to real system implementation is
feasible.

A system is viewed as a passive entity: a
hierachically organized collection of
sequential modules. These modules interact with
each other via a call/return mechanism. In
addition, we postulate the existence of active
entities, processes, which initiate requests. A
request is the execution which results in the
system when a process makes a call to the
system. Each process is assumed to be
sequential and executes asynchronously with
other processes. Thus no assumptions are made
about the relative speeds of the processes;
only that each will make finite progress.

A monitor [Brin73] [Hoar74] is an extension
of the abstract data type concept [Lisk74].
The latter was first developed in the language
Simula [Dahl68] and called a class. A class is
a module which encapsulates a set of variables
and all the routines which access them. Access
to the variables is not permitted outside the
module. They are referrsd to as permanent
variables since their values are retained
between calls (as with Algol own variables).
Thus, a class provides to other modules of the
system a high level data object whose
implementation details are hidden and which can
be manipulated by the high level operations
supported by the module's procedures.

A monitor extends these ideas so that they
can be used in an asynchronous environment.

It is a module that consists of a number of
entry procedures, local procedures and
permanent variables. The only way to execute in
a monitor is to call an entry procedure. Entry
to a monitor is regulated by mutual exclusion
so that at most one process is permitted to
execute in the monitor at any time. This
permits many processes to share the permanent
variables in an orderly manner, and is an aid
in guaranteeing their integrity. The wait
statement is provided so that a process may
relinquish control of a monitor in the event
that the state is not conducive to continued
execution. We assume the conditional wait
facility proposed by Kessels [Kess77] (though
others may be used). When a process executes a
wait statement, a boolean expression
associated with the statement is evaluated. If
the value produced is false, the process is
suspended at that statement and the mutual
exclusion associated with the monitor is
released. The process is subsequently
reactivated if there is no process active in a
monitor procedure and the boolean condition
that caused the process to be suspended is no
longer false. An example of a monitor is shown
in Figure 2.

type single resource = monitor ;
var inuse : boolean ;
ok : condition {not inuse} ;
procedure entry acquire ;
in
ok.wait ;
: inuse := true
end ; -
procedure entry release ;
begin
inuse := false
end ;
in
inuse := false
end

Figure 2

We will describe the results of the
research in terms of the language Concurrent
Pascal [Brin75], a systems implementation

language based on Pascal [Wirt71]. Concurrent

Pascal implements the monitor construct
described above as well as the class construct,

Several systems have been implemented in this .

language [Brin76] [Graf77].

The execution in the system that results '

from a number of requests will be called an
experiment. If the system is constrained s

that no request is submitted until the previous |
request has either been blocked at a wait &

statement or mutual exclusion, or exited the

system then we shall call the execution that =
results a synchronous experiment.
Alternately, the situation in which more thm °

e AWt

IR S

s




mber of
s and
cute in
Entry
clusion
ted to

This
manent
. an aid
e walt
es8s may
event
ntinued
1 wait
(though
utes a
ession
ed. 1f
cess is
mutual
tor is
uently
e in a
ndition
is no
s shown

of the
:urrent
ntation
urrent
1Istruct
struck.
in this

results
.led an
1ined so
cevious
. a wait
:ed the
ion that
ment.
re than

ON LANGUAGE RESTRICTIONS 539

one r=quest is processed at a time will be
called an asynchronous experiment.

Note that a certain limited form of
concurrent activity can occur in a synchronous
experiment. This would happen if a request
awakens a previous request which was suspended
in the system. Thus a synchronous experiment
may exhibit timing dependent behavior. 1In this
paper we will describe certain restrictions
which can be imposed on the way a system is
built. These restrictions guarantee that
corresponding to every experiment there exists
a synchronous experiment which, starting from
the same initial state and involving the same
requests, produces identical results [Schn78a].
Furthermore, the corresponding synchronous
experiment is entirely reproducible - it
exhibits no timing dependent behavior. The
implication of this is that if it can be shown
that the set of corresponding synchronous
experiments produce correct results then it
will be the case that the system functions
correctly under any circumstances. Since thesa
experiments are not timing dependent their
validation is considerably simplified. There
are several benefits which accrue from such an
equivalence result. First, the designer of
systems that adhere to these restrictions need
not be concerned with the interaction of
concurrently executing tasks. The designer may
think of each request as executing in
isolation, with the assurance that the system
state seen by the request in the various
modules that it enters will be the same as what
it could have seen in the equivalent
synchronous experiment. This simplifies the
design task. Similarly, such systems will
exhibit no timing dependent errors, a
particularly difficult type of error condition
to isolate and reproduce which frequents
asynchronous systems. Consequently, the
difficulty of validating (and debugging if
necessary) such systems is considerably reduced
as one need only be concerned with the set of
corresponding synchronous experiments. Lastly,
proofs of systems that exhibit the equivalence
property are simplified. Normally a proof of a
concurrent program shows that every possible
interleaving of execution in all system modules
vields acceptable results. It can be shown that
as a consequence of the restrictions the number
of interleavings that can occur is greatly
reduced.

The language restrictions necessary to
guarantee the equivalence between an arbitrary
experiment and some reproducible synchronous
experiment will now be presented. As the formal
development of the results is rather laborious,
we will restrict oursalves to an informal
discussion of the theory. A formal development
can be found in [Akko77a]l [Akko77b] [Schn78a].

One restriction deals with the use of the
wait statement and specifies that it may
appeart as the first and/or last statement of a
monitor procedure. Since it is often necessary
to do some computations prior to the wait
statement for purposes of scheduling, a
generalization of the Hoare priority wal*
scheme [Hoar74] has been defined called the
generalized condition [Akko77b]. This
facilitates certain computations accociated
with waiting even though the wait statement
syntactically appears as the first statement of
a monitor procedure. Wait statements can also
appear in the middle of monitor procedures,
although subject to the resktriction that no
monitor is called by a reqguest after such a
walt statement is executed.

A second restriction specifies that no
request attempt to enter a monitor after it has
exited from a monitor. The timing dependent
operation illustrated in Figure 1 is a
consequence of a violation of this restriction
(monitor m, is entered after return from
monitor m,J. From this restriction it follows
that the common modules visited by any pair of
requests are all visited first by one request,
and then by the other. This means that the
state of the system as viewad by any request is
as though all preceding requests had completed,
and all suceeding reguests had not vyet been
initiated, even though these requests might be
executing concurrently.

This restriction is not a limitation on the
functions which can be performed by the system
but rather a restriction on the structure used
to implement those functions.Thus a request
executing as described in Figure 1 can be
divided into two separate requests, one which
executes in m, and the second in m,. Each
of the new reduests now satisfies the
restriction. This has the effect of exhibiting
in synchronous experiments results which could
only have been produced by interleaved requests
in asynchronous experiments in the original
design. Thus the eguivalence result is
achieved. This transformation unfortunately
complicates the user interface, i.e., the user
must make two system calls instead of one. A
second transformation involves changing the
topology of the access graph as illustrated in
Figure 3. In this case m, is a monitor and
either m; or m, may be a monitor (but not
both) g‘ nef‘esaary Once again the restriction
is satisfied. This structure has the
disadvantage of reducing the amount of
parallelism in the system. It is no longer
possible for requests that originate in m
and m to execute in and m
concucrently. Howavnr, the addac} pwrall;llsm
afforded by the structure in Figure 1 is
exactly what may cause the undesired timing

a



540 A.J. BERNSTEIN and F.B. SCHNEIDER

dependent behavior, and consequently we conten_d
this reduction of potential parallelism 1S
advantageous.

L

mz

m m2

Figure 3

Since the restriction is part of a
sufficient condition it is not surprising to
find situations in which the equivalence
result may be achieved although the restriction
is violated. This is illustrated by the
resource scheduling scheme used in [Brin75]. In
this case, m, is a module which schedules a
resource represented by module m (for
example m., might control a shared dévice or
buffer). gince both m, and m, can be
entered by many processes, they mdst both be
monitors. A higher level module, m_, uses the
resource by calling m, first?T Since the
resource is shared the calling process may be
suspended in m, until the resource is freed.
At that time t%e return from m, to m
occurs, the process calls m,, and upon
completion, calls m, again to indicate that
the resource is gr.'ee. Although this protocol
violates the restriction, note that no
information is returned by m, to its caller
(i.e., all parameters passed to'm; are value
parameters). Thus there is no way that a
request can detect an interleaving which might
occur as a result of a similar and concurrent
pattern of calls originating in m_. As a
result, if m, schedules correctly, this
violation of the restriction can be allowed
without sacrificing the equivalence result.

Tha resource scheduling algorithm described
above has an important deficiency when
implemented in a language (eg. Concurrent
Pascal) which statically allocates access
rights for inter-module calls. Since m_ must
call m.,, it must be granted an accesS right
for thal':.)‘ purpose at initialization time. As a
result it is very difficult to guarantee at
compile time that my is called prior to each
call to m,. Ifddeed, m_ may call m
without calling my first, causing the system
to function in an unpredictable way. If dynamic
allocation is permitted then m, can return to
m_ an access right (capability) for m, at
tfe time the calling process is scheduled and
the right can be returned when use of the
resource is completed. In this way correct
execution of the protocol can be assured. This
notion has been extended in the manager concept
(Silb77] to a module which schedules acess to
a number of identical resources. Although in
this case the manager returns information to
its caller, the information is an access right
and can be sealed. As a result, the calling
module receives no information which might
cause it to produce results which depend upon
whether or not an interleaving has occurred.
Thus we can conclude that if in Figure 1, m
is a manager which functions correctly,
equivalence will be preserved.

Although dynamic allocation of access
rights can be used as described above to
provide some assurance that the protocol for
resource use will be applied correctly, it does
not come to grips with a second problem
associated with this scheme. The protocol is
undesirable since it reveals to higher levels
of the system (i.e., m_, m_ ) the function

A a

of scheduling and resourceé use as separate
entities and requires separate invocation of
sach. A more desirable arrangement would be to
provide a single call which invoked both the
scheduling and use functions and returned to
the higher level on completion. Although Figure
3 exhibits this type of structure (with m, a
scheduling monitor and m, the module which
controls the resource) "it is unacceptable
because entry to the scheduling module is
prevented (by the mutual exclusion at m,) if
the resource is in use and thus no rceal
scheduling can take place. To solve this
problem a oriority function may be bound to the
monitor entry operation [Schn78b]. This permits
requests to be admitted to the a module in an
order which is computed by this priority
function. The scheduling discipline to be
imposed is embodied in the priority
computation. Scheduling can be done by
incorporating the priority function directly in
the module controlling the resource. This
permits a simple solution to the scheduling
problem. Further, the equivalence between
synchronous and asynchronous operation is
preserved by the mechanism.




cribed
Yy when
urrent
access
must
a right
As a
ntee at
0 each
11l m
system
dynamic
urn to
imzat
2d and
of the
rrect
i. This
ncept
ess to
sugh in
ion to
5 right
alling
1 might
i upon
suered.
l, m
actly,

access
we to
0l for
. does
:oblem
0l is
levels
iIction
parate
.on of
|l be to
ch the
ned to
‘igqure
hm, a
which
ptable
le is
m,) if
teal
this
o the
ermits
in an
ority
to be
ority
1e by
tly in
This
duling
tween
ion is

ON LANGUAGE RESTRICTIONS

The question of the applicability of this
theory to the design and implementation of real
systems remains open. Presently we are studying
this problem with encouraging results. In
addition, generalization of the results to
message-based systems is also under study.

References

[Akko77a] Akkoyunlu, E. A., A. J. Bernstein, F.
B. Schneider, A. Silberschatz, "Conditions
for the Equivalence of Synchronous and
Asynchronous Systems", TR-6%, Dept. of
Computer Science, SUNY at Stony Brook (Jan.
1977)

(Akko77b] Akkoyunlu, E. A., A. J. Bernstein, F.
B. Schneider, "Medium Term Scheduling and
Equivalence of Synchronous and Asynchronous
lperation", TR-72, Dept. of Computer
Science, SUNY at Stony Brook (June 1977)

[Brin73] Brinch Hansen, Per, Operating System
Principles, Prentice Hall, New Jersey,
1973

(Brin75] Brinch Hansen, Per, "The Programming
Language Concurcent Pascal", IEEE
Transactions on Software Engineering,
SE-1,2 (June 1975) pp 199-206

[Brin76] Brinch Hans=zn, Per, "The Solo
Operating System: A Concurrent Pascal
Program", Software Practice and
Experience, Vol. 6, op 141-149

[Dah168] Dahl, O. J., B. Myhrhaung, K. Nygaard
The Simula 67 Common Base Language.
Norwegian Computing Center, Oslo, Norway
19638

[Denn72] Dennis, J. B., "Concurrency in
Software Systems", in Advanced Course in
Software Engineering, F. L. Bauer (Bd.),
Springer - Verlag, Berlin, W. Germany,
1973, vp 111-127

[Dijk68] Dijkstra, E. W., "The Structure of the
T.H.E. Multiprogramming System", CACM
11,5 (May 1968), pp 341-346

[Dijk72) Dijkstra, E. W., "Notes on Structured
Programming" in Structured Programming,
0. J. Dahl, E. W. Dijkstra, C. A. R. Hoar=
(=ds), Academic Press, New York, 1972

541

[Graf77] Graf, W., H. Kretschmar, K. P. Lohr,
B. Morawetz, "How to Design and Implement
Small Time-Sharing Systems Using Concurrent
Pascal", TR 77-89, Fachbereich Informatik,
TU Berlin, 1977

[Hoar69] Hoare, C. A. R., "An Axiomatic Basis
for Computer Programming”, CACM 12,18
(Oct. 1969), pp 576-587

[Hoar74] Hoare, C. A. R., "Monitors: An
Operating System Structuring Concept",
CACM 17,10 (Oct. 1974), pp 549-557

[Kess77] Kessels, J. L. W., "An Alternative to
Event Queues for Synchronization in
Monitors", CACM 24,7 (July 1977), pp
598-503

[Lisk74] Liskov, B., S. Zilles, "An Approach to
Abstraction" in Proc. of a Symposium on
Very High Level Languages, SIGPLAN
Notices, 9,4 (April 1974)

[Lisk77] Liskov, B., A. Snyder, R. Atkinson, C.
Schaffert, "Abstraction Mechanisms in CLU",

cacM 29,8 (Aug. 1977), pp 564-576

{Owic76] Owicki, S. S., D. Gries, "Ver ifying
Properties of Parallel Programs: An
axiomatie Approach", CACM 19,5 (May
1976), pp 280-285

[Parn74] Parnas, D. L., "On the Criteria to be
Used in Decomposing Systems into Modules",
CACM 15,12 (Dec. 1972), pp 1853-1058

{Schn78a] Schneider, F. B., "Language
Restrictions to Ensure Deterministic
Behavior in Concurrent Systems", Ph.D.
Thesis, SUNY at Stony Brook (in
preparation)

{Schn78b] Schneider, F. B., A, J. Bernstein,
"Seheduling in Concurrent Pascal",
Operating Systems Review 12,2 (April
1978)

[Silb77] Silberschatz, A., R. B. Kieburtz, A.
J. Bernstein, "Extending Concurrent Pascal
to Allow Dynamic Resource Management",
IEEE Transactions of Software

Engineering, SE-3,3 (May 1977)

[Wirt71] Wicth, N., "The Programming Language
Pascal", Acta Informatica 1, pp 33-53,
1971

[Wulf76) Wulf, W. A., R. L. London, M. Shaw,
"An Tntroduction to the Construction and
Yerification of Alphard Programs", IEEE
Transactions on Software Engineering,
8g-2,4 (Dec. 197%), op 253-265




