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Abstract. Formulas of Proof Outline Logic are program texts annotated with
assertions. Assertions may contain control predicates as well as terms whose
values depend on previous states, making the assertion language rather expressive.
The logic is complete for proving safety properties of concurrent programs. A
deductive system for the logic is presented. Solutions to the mutual exclusion and
readers/writers problems illustrate how the logic can be used as a tool for program
development.
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1. Introduction

Proof Outline Logic is a generalization of Hoare’s 1969 logic for proving partial
correctness of sequential programs. Generalizing from partial correctness to arbi-
trary safety properties requires that control state and values of variables in past
states be expressible in assertions, dramatically affecting the assertion language.
Generalizing from sequential programs to concurrent ones forces formulas to
associate an assertion with every control point, rather than just associating asser-
tions with the entry and exit points of the entire program as in Hoare’s logic.

Like most other programming logics, Proof Outline Logic allows one to
prove formally that a program satisfies a specification. In Proof Outline Logic,
this is done by establishing a link between two languages: programs specified in a
programming language are shown to satisfy safety properties specified in a
linear-time Temporal Logic. We employ a specification language different from
proof outlines to avoid having the specification bias the structure of an implemen-
tation. Had we required that specifications be given as proof outlines, the specifier
would have to postulate some program structure. Of course, one is not precluded
from specifying a property by giving a proof outline.

Proof Outlines link specifications and programs, because the meaning of a
proof outline is formalized as a Temporal Logic formula and the meaning of a
program is formalized as a set of Temporal Logic interpretations. One conse-
quence of defining the one logic in terms of the other is that not only must Proof
Outline Logic stand on its own, but it must also make sense in the context of a
Temporal Logic. For example, the language of Temporal Logic must be an exten-
sion of the assertion language for proof outlines.
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A goal of our work has been to deal with realistic programming language
constructs. In so far as our interest is concurrent programs, this meant axiomatiz-
ing a programming language that was expressive enough to describe the various
synchronization and communications structures that one finds in real programs.
Guard evaluation in if and do statements, for example, define atomic actions in
our programming language. Our reasoning apparatus supports this, even though
such guard evaluation actions are not programming language statements per se.

2. Programs and Properties
Execution of a program § defines a set #{ of potentially infinite histories
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where the s5;’s denote program states, the o;’s denote atomic actions, and execu-
tion of each o, in state s; can terminate in state s;,,. For a concurrent program,
sequence o 0 ... is the result of interleaving atomic actions from each of the
processes in the order these actions were executed. Finite histories correspond to
terminating executions; the final state of a finite history must be one in which no
atomic action can execute. Note that s, need not be an initial state of the pro-
gram.

We represent both full and partial executions as anchored sequences—_pairs

(o, j) where o is the finite or infinite sequence of states corresponding to a history
and j is a non-negative integer satisfying j < |o|. For =545 ..., we write o[..i]
to denote prefix sgs;...5;, ofi] to denote state s;, and ofi..] to denote suffix
S; 8;41 ... . Parameter j in (o, j) partitions o into

e  a (possibly empty) sequence ol..j—1] of past states,

e  acurrent state ofj], and

e a(possibly empty) sequence o[j+1..] of future states.

To the extent possible, we wish to reason compositionally. Doing so is
facilitated by reasoning about executions that start in the middle of a program as
well as executions that start from an initial state.

(2.1) Program-Execution Interpretations. Let S denote the set of all non-
empty finite and infinite sequences of program states for S. Set H con-
tains anchored sequences (o, j) where o[;..] is an element in %.

Hs: ((0,)) | 6 €8™ A olj.]eHs) O

By including in #g those anchored sequences (o, j) where of..j—1] is an arbitrary
sequence of program states and o[}..] is a history of §, we remove the distinction
between S comprising an entire program and § serving as a component of a pro-
gram. Arbitrary prefix o[..j—1] models an unspecified execution that precedes
execution of §.
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Our specification language—Temporal Logic—is interpreted with respect to
anchored sequences. For every anchored sequence (o, j) and every Temporal
Logic formula P, either (g, j) is a model for P, denoted (o, j)F=P, or it is not. We
write #zE=P iff every element of #{; is a model for P or, equivalently, #; is a sub-
set of the models for P.

For our purposes, it suffices to restrict consideration to two classes of Tem-
poral Logic formulas: P and OJP, where P is a Predicate Logic formula. When P
an formula of ordinary Predicate Logic, (o, j)=P holds iff P is satisfied in state
o[j]. This is consistent with identifying o[j] as the current state of (o, j). We
define (o, j)EOP in terms of the suffixes of (g, j):

(o, )EOP iff Foralli, j<i<|o|: (o,i)FP

Executions and properties are sets of anchored sequences—not simply sets
of state sequences. This is unconventional, but has advantages when the language
for writing specifications is sufficiently expressive. Initg=> P asserts that P need
hold only for anchored sequences (o, 0), where o[0] is an initial state, if the
specification language includes a formula Init that is satisfied only at the start of
executing program §. Thus, by proving Hsk(Initg = P), we can establish that
only those executions of § starting from an initial state need satisfy P. Moreover,
by proving HsE=P, we can establish that all executions—including those that start
in the middle of the program—satisfy P. Reasoning about executions that start in
the middle of a program is particularly useful when considering concurrent pro-
grams.

3. A Programming Language

A program consists of declarations followed by statements. The declarations
introduce program variables and associate a type with each. The statements
define sets of atomic actions. Consequently, a program defines a set of program
states and a set of atomic actions. Each program state assigns a value of the
correct type to every program variable and contains control information to indi-
cate which atomic actions might next be executed.

The syntax of a declaration is:

varid, : typey; idy:types; o idy:type,

Each it_i; is a list of distinct identifiers, separated by commas. Each fype; gives a
type for the variables in id;. This type can be Bool, Nat, Int, or Real or it can be
an enumeration, set, array, or record, specified in the usual way.

3.1. Statements

Executing a statement results in execution of a sequence of atomic actions,
each of which indivisibly transforms the program state. Therefore, we define the
semantics of a statement S by giving its atomic actions A(S) and the effect of
each.
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The skip statement is a single atomic action whose execution has no effect
on any program variable. Its syntax is:

(3.1) skip
The assignment is also a single atomic action. Execution of
(B2} XpoXosea Xy €585 s

where x,, x5, ..., x,, are called targets of the assignment, first computes values for
all expressions appearing in the statement (including those in the targets, as in
x[e]). If (i) any of the x; is undefined (e.g. x; is an array reference x[e] and the
value of e is outside the range of permissible subscripts) or (ii) the value com-
puted for some expression e; is not consistent with the type of corresponding tar-
get x;, then execution of (3.2) is blocked. Otherwise execution proceeds by set-
ting x; to the value computed for e, then setting x, to the value computed for e,
and so on.

We assume that expressions are defined in all states, although the value of a
given expression might be unspecified in some of those states. Thus, execution of
x :=y/z will assign some value to x even if started in a state in which z=0 holds
provided the (unspecified) value of y/z is consistent with the type of x.

Statement juxtaposition combines two statements S, and §, into a new one:
33) §; 8,

The atomic actions of (3.3) are just the atomic actions of §; and §,. Execution is
performed by executing §; and, when (and if) it terminates, executing S .

The syntax of an if statement § is:

(B34) S: fB;, =S8 1 B—>55 ] [ B,—S, fi

Each B; — §; is called a guarded command. The guard B; is a boolean-valued
expression, and S; is a statement. The atomic actions of if statement S consist of
the atomic actions of S, through S, and an additional guard evaluation action,
GEval ((S), which selects one of S, through S, for execution. Execution of (3.4)
proceeds as follows. First, GEval (S) is executed. This blocks until at least one
of guards B through B, holds and then selects some guarded command B; — S;
for which guard B; holds. Next, corresponding statement §; is executed.

The do statement

(35) S: doBi—>8; 1 Bg—-)Sz 1] ] B,,—)S,,od

is used to specify iteration. Its atomic actions are the atomic actions of S, through
S, plqs a guard evaluation action GEval 4,(S). Execution of (3.5) consists of
repeating the following until no true guard is found: use GEval 4,(S) to select a
guarded command B; — §; where B; is true; then, execute ;.
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The cobegin statement
(3.6) S: cobegin S; Il S Il --- 1 §, coend

specifies concurrent execution of processes Sy, ..., S. Its atomic actions are the
atomic actions of §, through S,. Execution of § results in interleaving the atomic
actions of its processes and terminates when all of these processes have ter-
minated.

Placing angle brackets around a statement § defines an atomic statement,
which is executed indivisibly as a single atomic action. Thus, (§) defines a state-
ment whose execution is blocked unless the state satisfies enbl(S), where

(3.7) enbl(c): wp(o, true).

Because enbl(S) can, in general, differ from enbl(c) for o the first atomic action
of §, the angle-bracket notation allows condition synchronization to be specified.

An atomic action a is defined to be unconditional in a program § if and only
if enbl() holds in all program states; otherwise, o is conditional in §. Thus, a

skip is unconditional but the guard evaluation for an if can be conditional'.

Allowing arbitrary programs to appear inside angle brackets can pose
implementation problems. However, if atomic statements are used only to
describe synchronization mechanisms that already exist, such implementation
problems need never be confronted. The question of what synchronization
mechanisms are available depends on hardware and underlying support software.

Statement Labels

A label L is associated with a statement by prefixing that statement with L fol-
lowed by a colon. We use indentation and sometimes a brace to indicate when a
label is associated with the statement that results from a juxtaposition of two or
more statements. For example, in the program of Fig. 3.1, indentation is used to
indicate that S5 labels the statement juxtaposition formed from the if labeled S,
and the assignment labeled S+.

We assume that every statement in a program has a unique label. This said,
Fig. 3.1 illustrates how including such labels can result in a program texts that are
cluttered and difficult to read. Therefore, wherever possible, we avoid explicitly
giving statement labels. For example, when no ambiguity results, we use the text
of a statement as a label for that statement.

UIf the disjunction of the guards in an If is satisfied in all program states, then the
guard evaluation action for that if is unconditional.
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var i :Int; m:Real; a:array [0. n] of Real

Sy: i,m:=0,al0]

Sp: do i#n — S5 Sy ifali+l]1<sm — Ss: skip
Nali+ll>m — S¢ m:=ali+1]
fi

S0 =i+l
od

Fig. 3.1. Maximum Element of an Array

4. Predicate Logic

We extend ordinary first-order predicate logic so that it specifies sets of program
states and sets of past state sequences. To characterize program states, we add
axioms to the logic. These axioms restrict what values can be associated with
variables and what values program counters can take. To characterize past state
sequences, we add to the logic special terms and predicates that allow us to con-
struct Predicate Logic formulas P for which (o, j)=P depends on sequence
ol..j—1] of past states as well as current state o[/].

4.1. Axioms for Program Variables

The declarations in a program § give rise to a set VarAx(S) of Predicate Logic
axioms called program variable axioms. These axioms rule out states in which
variables have values that are not type-correct. Thus, the axioms characterize
which values program states can associate with variables. For example, the
declarations in the program of Fig. 3.1 imply that the following holds for all pro-
gram states.

(4.1) ielnt A meReal A (e elntA0<e<n = ale] eReal)

Given an arbitrary program S, we construct the set VarAx(S) of program variable
axioms as follows.

(4.2) Program Variable Axioms. VarAx(S) is the union of ValAx(v,t) for
every program variable v declared in S, where ¢ is its type. ValAx(v, 1) is
defined in Fig. 4.1. O

The origin of (4.1) should now be clear—each conjunct is a program vari-
able axiom. We obtain i €Int from the declaration that i is of type Int, m eReal
from the declaration that m is of type Real, and e €lnt A 0<e<n = a[e] eReal
from the declaration that a is of type array [0..n] of Real.

ype
Bool, Nat, Int, Real

enum( C] A Cz. sisd Cn )
set of type

array [a; .. by,
az..by,

a,..b,] of type

record( id; : type;;
id, : types,

idy, : typey )
Fig. 4.1
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lype ValAx(v, type)
Bool, Nat, Int, Real v Etype

enl.lm( CI’CZi"" Cn ) v E[Cl’ Cz, wany Cﬂ]
set of type vClype

array [a, ..b,, (e; elntaag;<e,<b; A
aj..by, e, elntaas<e,<bs A

e, €lntana,<e,<b,)
= Vam(v[el 1 €25 ey en]a D’Pe)

a,..b,] of ype

ValAx(v.id,, type,),
Vale(V.idz. type 2),

record( id, : type,;
id, : typey;

id, : type, ) ValAx(v.id,, type,)

Fig. 4.1. Definition of ValAx(v, t)

4.2. Control Predicates

The control points of a program are defined by its atomic actions. Each atomic
action has distinct entry control points and exit control points. For example, the
atomic action that implements skip has a single entry control point and a single
exit control point; a guard evaluation atomic action GEval ,(S) has one entry con-
trol point and multiple exit control points—one for each guarded command.

Execution of an atomic action o can occur only when an entry control point
for o is active. Among other things, execution causes that active entry control
point to become inactive and an exit control point of o to become active. The pro-
gram state usually encodes which control points are active by representing this
information in (implicit) variables, called program counters, each of which ranges
over some subset of the control points.

Since a statement S defines a set 4(S) of atomic actions, each statement also
defines a set of control points. In specifying and proving properties of programs,
itis useful to be able to assert that one or another control point is active. To facili-
tate this, we define a nullary predicate, called a control predicate, for each § an
atomic action or statement:

at(S): an entry control point of § is active.
after(S): an exit control point of § is active.

In addition, it will sometimes be convenient to assert that an entry control point
for an atomic action in A(S) is active. The following control predicate permits
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this, where Parts(S) is a set consisting of label § and the label of any component
of §.

in(S): at(T) holds for some T € Parts(S).
For our programming language, Parts(S) is defined based on the structure of S:

(4.3) Statement Decomposition. Parts(S) is defined by:
For § a skip, an assignment, a guard evaluation action, or an atomic state-
ment
Parts(S) = (S).
ForS: §¢ 82,
Parts(S) = {§) U Parts(§,) U Parts(S,).

For§: if By =S8, [l 0 B,—S, fi,
Parts(S) = (S, GEval {S)} v . é._JSnParts(S,-).

ForS: do B, —»8; 1 0 B,—S, od,
Parts(S) = (S, GEval 4,(5)} v lL:) Parts(S;).
Sisn

For §: cobegin §; |l Il S, coend
Parts(S) = (S} vy Parts(S)).
1=isn O

In order to reason about formulas containing control predicates, we intro-
duce control predicate axioms. These axioms formalize how the control predi-
cates for a statement or atomic action S relate to the control predicates for con-
structs comprising § and constructs containing S, based on the control flow
defined by S. The axioms also characterize the entry and exit control points for
each § by defining at(S) and after(S). Operator @ (with the same precedence as
v) is used to denote n-way exclusive-or, so that P, ®P,® --- ®P, is a
predicate that is true when exactly one of P, through P, is.

Four axioms are a direct consequence of how in(S) and Parts(S) are
defined:

@44) InAxioms: (a) at(S) = in(S)
(b) For T €Parts(S): in(T) = in(S)
(c) For T eParts(S): after(T) = (after(S) v in(S))
(d) For § a single atomic action: at(§) = in(S)

The next axiom asserts that an exit control point for T cannot be active at
the same time as an entry control point for T or for any of its components.

(4.5) EntrylExit Axiom: —(in(T) A after(T))

|
|
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Since all reasoning is with respect to what happens during execution of

some program S, every state must satisfy one of the following: (i) § has not yet
started, (i) § has started but not yet terminated, or (iii) § has terminated. This
allows us to conclude:

4.6)

4.7)

(4.8)

4.9)

Program Control: For § the entire program: in(S) © after(S)

The control predicate axioms for a statements are based on control flow.

Statement Juxtaposition Control Axioms: For § the juxtaposition Sy S5:
(a) ai(S) = ax(S,)

(b) after(S) = after(S7)

(c) after(S,) = ai(S>)

(@ in(S) = (in(S1) vin(S2))

(e) (in(S) v after(S)) = (in(S,) @ in(S,) @ after(S))

if Control Axioms: For an if statement:
S: if B] —'>S1 1} Bz—)Sz ]
() at(S) = at(GEval (S))
(b) after(S) = (after(S1) v after(S2) v ... v dfter(S,))
(c) after(GEval ((S)) = (at(S,) v ar(S,) v...vat(S,))
(@) in(S) = (in(GEval,(S)) v in(S1) v in(S§3) v ... v in(S,))

(e) (in(S) v after(S)) = (in(GEval (S)) ® in(S;) @ in(S2) @ ... ® in(S,)
@ after(S,) @ after(S,) © ... ® after(S,))

- [l B,>S, &

do Control Axioms: For a do statement:
S:doB; =S8, [l B,—82 1[I I B,—>S, od

(a) at(GEval 4,(8)) = (at(S) v after(S,) v after(S,) v ... v after(§,))
(b) at(GEval 4,(S)) = (at(S) @ after(S,) ® after(S,) ® ... © after(§,))
(c) after(GEval 4,(S)) = (after(S) v at(S,) v at(S3) v ... v at(S,))

(d) after(GEval 4,(S)) = (after(S) ® at(S,) ® at(S,) ® ... ® ax(S,))
(e) in(S) = (in(GEval 4,(5)) v in(S1) v ... v in(S,))

(©) (in(S) v after(S)) = (in(GEvali{S)) ® in(S) ® in(S) @ ... ® in(S,)
@ after(S))



360

(4.10) cobegin Control Axioms: For a cobegin statement:
S: cobegin §; Il S5 Il
(@) al(S) = (at(§1) A ... A al(S,)
(b) after(S) = (after(§1) A~ ... A after(S,))
(c) in(S) = ((in(S,) v after(§,)) A ... A (in(S,) v after(S,))
A —(after(S1) A ... A dfter(S,)))
(4.11) (S) Control Axioms: For an atomic statement:
S: (T

Il §, coend

(@) a(S) = auT)
(b) in(S) = ax(S)
(c) after(S) = after(T)

4.3. Past and Derived Terms

Proof Outline Logic is intended for proving safety properties. A safety property
proscribes some "bad thing". Such a "bad thing" might be any state in some set.
For example, — (in(CS,) A in(CS,)) specifies program states in which processes
concurrently execute CS, and CS,. A safety property to proscribe such states in
executions of a program § would be given by the Temporal Logic formula:

Initg = O (@In(CS ) A in(CS53))

This formula asserts CS, and CS, are mutually exclusive in executions of S that
start with an initial state.

For some safety properties, whether a state is considered a "bad thing"
depends on what states precede it. The defining characteristic of such safety pro-
perties is a set of finite sequences of states. Prescribing a program variable x to be
non-decreasing is an example of such a safety property—the "bad thing" is a pair
of adjacent states in which the value of x decreases.

Given a sufficiently expressive Predicate Logic for writing Etern, every
safety property for a program § can be specified by a Temporal Logic formula
Initg => O Etern. Thus far, our Predicate Logic formulas could only specify those
safety properties where a set of states defines the "bad thing". This is because we
defined (o, j)EP (for a Predicate Logic formula P) to equal the value of P in
current state ofj]. Past states o[..j—1] were ignored. We now enrich the
language of Predicate Logic to include formulas that are sensitive to past states.

Past Terms and Predicates

Let (o, /)71l denote the value of a term 7 in anchored sequence (o, j). For terms
of ordinary Predicate Logic, (o, j)[Z] is defined as is conventional when states,
rather than anchored sequences, are the interpretations.
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T | (0, HITI
constant C C
rigid variable R value of R in state [0]
variable v value of v in state o[ ]

term 7, ..., T,) | E( (o, HITD, ..., (. HIZT])

A past term consists of a finite sequence of ©’s (each read "previous”) fol-
lowed by a term. We assign to © the same precedence as is given to the unary
operators of Predicate Logic. The value of (o, j)[©T] is essentially the same as
evaluating 7 in (o, j—1).

q (o, NIOT]

- : c if j=1

constant or rigid variable C unspecified (but fixed) if j<1
(o,j-DIv] if j=1

Tamiaie unspecified (but fixed) if j<1
(o, j-DIE(T, ... T)D if j=1
term (T, ..., ) unspecified (but fixed) if j<1

For example, the value of ©x in (s 5, 52, 2), is the value of x in 5,. So, the value
Ox<xin (595 54, 2) is true iff the value of x in s, is no greater than the value of
xin §2.

Consistent with the view that a Predicate Logic formula is a boolean-valued
term, © may be applied to the formulas of Predicate Logic. It has the expected
meaning based on the definition just given for (o, ))[©T].

‘ ‘ (o, ji—-DIP]l=true if j=1
(0, JFOP: 3 unspecified (but boolean) if j<1

Finally, in order to characterize those anchored sequences for which a given
past term is defined, we introduce a nullary predicate defg .

(0, Nldefe 1: j>0

Predicate defg allows formulas to have specified values in any anchored sequence
(o, j), regardless of |o|. An example is defg = Ox<x, which has a specified
value in all anchored sequences; in contrast, ©x <x has an unspecified value for
sequences having a single state, because the value of ©x is unspecified in these
sequences.
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(4.12) © Expression Expansion: For (T, ..., T,) a non-nullary term or formula
that is constructed from terms Ty, ..., Tyt
T

defe = (O'E(Ts seey n) = ‘ZIG‘I{, eey 9‘1;))

(4.13) © Constant Expansion: For arigid variable or constant C:
defe = (OC=0)

(4.14) Textual Substitution [Past Term]: For a past term eT:
©17); = 6T

(4.15) Trace Induction Rule: —déefo = P, (defe nOP) =P
P

Derived Terms

Inits = O Etern can describe only those safety properties for which the "bad
thing" is definable as — Etern. However, the "bad thing" of a safety property
might be any set of finite sequences of states. Therefore, to be able to use
Initg = O\ Etern for specifying any safety property, we must be able to character-
ize any set of finite sequences of states using a Predicate Logic formula —Etern.

Some sets of finite sequences of states can be characierized only by writing
a formula that depends on all of the states in a sequence. An example is finite
sequences of states in which x is non-decreasing. A formula whose past terms
involved n ©’s can depend on at most n+1 of the states in an anchored sequence;
but, an arbitrary finite sequence might have more than n+1 states. Thus, extend-
ing Predicate Logic with © and defe does not yield a logic that is sufficiently
expressive for our purposes.

A Predicate Logic with the expressiveness we seek results if we allow a
form of primitive recursive definition over the sequence of past states. We do this
by adding a new class of terms. To define a derived term, we give its name and a
method for computing its (unique) value in each anchored sequence.” The syntax
we employ for defining a derived term Z is to give a collection of clauses, each
comprising an expression e; and a guard B;

e, ifB,

e, ifB,

2By convention, derived terms are named by identifiers starting with an upper-case
letter.
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where:
e  Zdoes not appear in guards.
e  Each occurrence of Z in an expression ¢; appears in the scope of @' for i>0.
e  Each expression ¢; containing Z in the scope of ©' has an associated guard
B; containing conjunct ' defg .

The value of Z in (o, j) is (o, j)[e;] where ¢; is the expression corresponding to
the unique guard B; that holds. If no guard holds or more than one guard holds,
then the value of Z is unspecified.

An example of a derived term is M, defined below. The value of M in (o, j)
is the largest value x assumes in states c[0], o[1], ..., c[j].

b Bl
M: \max(x, M) if def,

Notice how the presence of ©M in the second clause causes the value of M to
depend on all states, even though only a fixed number of ©@’s are mentioned in the
definition.

A variant of Leibniz’s law—substitution of equals for equals—allows a
derived term Z in a Predicate Logic formula to be replaced by its definition. In the
following, we denote a term 7 prefixed by i © operators by ©'7. When i is 0,
then ©'7 is just 7.

(4.17) Derived Term Expansion Rule: For Z a derived term
€1 1f31
Z:
e, ifB,

and P a Predicate Logic formula where x does not occur free within the
scope of ©:

1<k<n
Pgz = ((elBl AP:eiet) vV ottt v (G)iBnAP@e,))

A (G‘Bk = -ﬁ(VkOIBj))
j#

The hypothesis of the rule ensures that exactly one of the guards ©'B; holds,
thereby ensuring that the value of Z is not unspecified.

5. Syntax and Meaning of Proof Outlines

The formulas of Proof Qutline Logic include Predicate Logic formulas, proof out-
lines for programs, and triples for guard evaluation actions. A proof outline
PO(S) for a program § is a program in which every statement is preceded and fol-
lowed by an assertion enclosed in braces ("{" and "}"). Fig. 5.1 contains an
example. A triple is a proof outline (P} S {Q) in which program § is a single
atomic action.
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An assertion is a Predicate Logic formula in which all free variables® are
program variables or rigid variables, and all predicates are control predicates or
predicates defined by the types of the program variables. Assertions that depend
only on the values of program variables in the current state are called primitive.
Thus, primitive assertions may not mention control predicates, ©, or defg . For
example, in the proof outline of Fig. 5.1, x is a program variable, X is a rigid vari-
able, and all assertions except the first and last are primitive.

The assertion that immediately precedes a statement T in a proof outline is
called the precondition of T and is denoted by pre(T); the assertion that directly
follows T is called the postcondition of T and is denoted by posi(T). For the proof
outline in Fig. 5.1, this correspondence is summarized in Fig. 5.2. Finally, for a
proof outline PO(S), we write pre(PO(S)) to denote pre(S), post(PO(S)) to
denote post(S), and write

G.1) (P} POS) (Q)

to specify the proof oudine in which pre(S) is P, post(S) is Q, and all other pre-
and postconditions are the same as in PO(S).

Meaning of Proof Outlines

A proof outline PO(S) can be regarded as associating an assertion pre(T) with
control predicate a«(T) and an assertion post(T) with after(T) for each statement T
in Parts(§). Consequently, a proof outline defines a mapping from each control
point A of a program to a set of assertions—those assertions associated with con-
trol predicates that are true whenever A is active.

{x=X A at(5))
§: ifx20 - {x=X Ax20)
§,: skip
{x=abs(X)}
Jx<0— (x=X Ax<0)
Sy xi=—x
{x=abs(X)}
fi

{x=abs(X) A after(S))

Fig.5.1. Computing abs(x)

*Program variables are typeset in lower-case italic; rigid variables are typeset in
upper-case roman.
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Assertion Assertion Text
pre(S) x=X A at(s)
post(S) x=abs(X) A after(S)
pre(Sy) x=X Ax20
post(S;) | x=abs(X)
pre(Sa) | x=XAx<0
post(S;) | x=abs(X)

Fig. 5.2. Assertions in a Proof Outline

In most cases, a control point is mapped to a single assertion. For example,
the proof outline

(52) (P} S, (@) Sz (R)

maps the entry control point for program §; S, to the single assertion P. This is
because af(S;) and at(S; S,) are the only control predicates that are rrue if and
only if the entry control point for §; §3 is active, and (5.2) associates P with both
of these control predicates.

However, a proof outline can map a given control point to a set with more
than one assertion. An example of this appears in Fig. 5.1. There, the exit control
point for §, is mapped to two assertions—post(S ) and post(S)—because when-
ever the exit control point of S is active both after(S ) and after(S) are true.

Assertions in a proof outline are intended to characterize the program state
as execution proceeds. The proof outline of Fig. 5.1, for example, implies that if
execution is started at the beginning of §; with x=23 (a state that satisfies
pre(S1)), then if S, completes, post(S1) will be satisfied by the resulting program
state, as will post(S). And if execution is started at the beginning of § with x=X,
then whatever assertion is next reached—be it pre(S,) because X20 or pre(S7)
because X <0—that assertion will hold when reached, and the next assertion will
hold when it is reached, and so on.

With this in mind, we define a proof outline PO (S) to be valid if it describes
a relationship among the program variables and control predicates of § that is
invariant and, therefore, is not falsified by execution of S. The invariant defined
by a proof outline PO(S) is "if a control point A is active, then all assertions that A
is mapped to by PO(S) are satisfied" and is formalized as the proof outline invari-
ant for PO(S)

(53 Trosy ;N S)((GI(T) = pre(T) A (after(T) = post(T)),

where Stmts(T) is Parts(T) with all guard evaluation actions removed.
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Notice that our definition for proof outline validity requires that Ipg(sy not
be falsified by execution started in a program state satisfying /po¢s) that could
never arise by executing § from an initial state. For example,

{(x=0Ay=0} §,: skip {x=0) §,: skip {x=0A4y=0}

is not valid since execution of S5 in a program state satisfying a#(S§5), x=0, and
y=15 falsifies the proof outline invariant because x=0Ay=0 will not hold when
after(S ;) becomes true.

Equating proof outline validity with invariance of /pg(s) leads to technical
complications when a proof outline PO(S) maps the entry control point of § to
multiple assertions. To illustrate, consider the following concurrent program to
increment x and y.

(54) §: cobegin T: x:=x+1 Il T y:=y+1 coend

According to the control predicate axioms for (5.4), aiS)=aiT) and
ai(S) = at(T”) are theorems. Thus, the proof outline of Fig. 5.3 associates pre(S),
pre(T), and pre(T”) with the entry control point for §. This means, however, that
pre(PO(S)) does not characterize states in which § could be started and have
Ipo(g) hold: at(§8) A pre(PO (S)) does not imply IPO(S)'

We avoid problems caused by associating multiple assertions with an entry
control point if we also require that pre(PO(S)) implies Ipgs) in order for PO(S)
to be considered valid. Define a proof outline PO(S) to be self consistent if and
only if at(S) A pre(PO(S)) = Iposy is valid. The proof outline of Fig. 5.3 is not
self consistent.

We can now formalize the requirements for validity of a proof outline in
terms of #g-validity of temporal logic formulas.

(5.5) Valid Proof Outline. A proof outline PO(S) is valid if and only if:
Self Consistency: HsF(at(S) A pre(PO(S)) = Ipos))

Invariance: HyE(Ipocs) = Olpos)) H

{true)
§: cobegin
(x=X} T:x=x+1 {x=X+1)}
I
{y=Y) T:y:=y+1 {y=Y+1}
coend
[(x=X+1Ay=Y+1)

Figure 5.3. Incrementing x and y
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From this definition of proof outline validity, we infer that rigid variables in
proof outlines allow us to relate the values of program variables from one state to
the next. This is because Ipo(sy => Olpo(sy is a Hs-valid temporal logic formula if
and only if for any assignment of values to the proof outline’s rigid variables, exe-
cution of § (i) starts in a state that does not satisfy Ipg(s or (ii) results in a
sequence of states that each satisfy Ipo(s)-

From Proof Outlines to Safety Properties

To prove HFInit = OEtern, it suffices to find a Predicate Logic formula I for
which the following are Hs-valid:

(5.6) Init=1
G.7 I=01
(5.8) I = Etern

Thus, / is an invariant and is satisfied whenever execution cannot lead to the "bad
thing" (i.e. — Etern) being proscribed. Because not all anchored sequences satis-
fying Etern are ones from which Etern will continue to hold, / is typically stronger
than Etern.

. The Hs-validity of (5.6), (5.7) and (5.8) suffices for proving
Hsi=Init = O Etern because we can use ordinary Temporal Logic (which is sound
for Hs-validity) as follows.

Init
= «(5.6)»
I
= «(5.7)»
or P=0
=
= «(5.8) and rule OF =00 »
ClEtern

Predicate Logic (as extended above with program variable axioms, control
predicate axioms, and axioms for © and defg ) can be used 1o prove Hs-validity of
(5.6) and (5.8). This is because Init, I, and Etern are formulas of that logic, and
the logic is complete.

Showing that / is invariant, as required to establish that (5.7) is Hy-valid, is
not as simple. It involves reasoning about program execution. Proof Outline
Logic was designed for just this type of reasoning. According to Valid Proof Out-
line (5.5), if PO(S) is a theorem of Proof Outline Logic, then Ipo(s) = Olpogs) is
H{g-valid. Thus, demonstrating that / = O is #;-valid is equivalent to proving a
theorem of Proof Outline Logic, and we have the following rule for verifying that
a program § satisfies a safety property.
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@ PO(S),

(59)  Safety Rute: (b) Init = Ipp,,
(C) [PO(S) = Etern

Init = OEtern

A variant of this rule involves showing that states satisfying — Etern cannot
arise during execution,

@ PO(S),

(5.10) Exclusion of Configurations Rule: (b) Init =» Trogs),
(c) —Etern A Ipo(sy = false

Init = OEtern

Soundness of this variant is established by proving that jts hypothesis (c) implies
hypothesis (c) of Safety Rule (5.9), since hypotheses (a) and (b) of Exclusion of
Configurations Rule (5.10) are identical to hypotheses (a) and (b) of Safety Rule
(5.9). Here is that proof,

—Etern A Iposy = false

= «Law of Implication»
Etern v — ro(s) V false

= «Law of Or-simplification»
Etern v — IPO(S)

= «Commutative Law»
—Ipo(sy v Etern

= «Law of Implication»
IPO(S) = Etern

statement-independent inference rules. The resulting logic is sound and complete
relative to our Predicate Logic.

6.1. Axiomatizing Sequential Statements
The first axiom of Proof Outline Logic is for skip.
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The next axiom is for an assignment X := ¢ where X is a list xy, X2, ..., X, of
identifiers (i.e. not elements of records or arrays) and ¢ is a list ey, €, ..., €, Of
expressions.

(6.2) Assignment Axiom: For a primitive assertion P: (P%) X :=¢ (P}

A proof outline for the juxtaposition of two statements can be derived from
proof outlines for each of its components.

(6.3) Statement Juxtaposition Rule: (P} PO(51) (@], (@] PO(S>) (R}
(P} PO(Sy) (Q) PO(S,) (R}

The guard evaluation action for an if ensures that the appropriate statlement
is selected for execution. This is reflected in the following axiom.

(6.4) GEval y(S) Axiom: For an if statement
S: if B] —}Sl [] Bz-—)Sz | T B,‘—)S,‘ fi
and a primitive assertion P:
[P} GEval ((S) (P A ((at(S1) =B 1) A ... A (al(S,) = B,))}

The inference rule for if permits a valid proof outline to be inferred from
valid proof outlines for its components.

(6.5) if Rule: (a) (P} GEval(S) (R},
® RAraS))=Py, ..., RraS,)=P,,
(© (P} PO(S,) (@), ... [Py} PO(S,)(Q]
{P)
S: inf By — {P{} PO(S)) (Q)
E B, — (P,) PO(S,) (2]

(2]

The guard evaluation action for do selects a statement §; for which
corresponding guard B; holds, and if no guard is true then the control point fol-
lowing the do becomes active.

4See [10] for the extensions necessary to handle elements of records and arrays.
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(6.6) GEval 4,(S) Axiom: For a do statement
S: do Bl_)Sl I] Bz_)Sz D
and a primitive assertion P:

[P} GEval 4,(S) (P A(at(S)=B ) A ... A(at(S,)=>B,)
A (after(S)= (=B A ... A=B,))}

N B,—S, od

The inference rule for do is based on a loop invariant, an assertion / that
holds before and after every iteration of a loop and, therefore, is guaranteed to
hold when do terminates—no matter how many iterations occur.

(6.7) doRule: (a) (I} GEval 4(S) (R},
®) RAat(S)=Py, ..., Raar(S,)=P,,
) {P1}PO(S)) I}, ... {P,)PO(S,) I}
(d) (R Aafter(8)) = (I A—BA ... A B,)
{r)
S: do Bl —){PI}PO(SI) {I]
I] P
[l B, = [P} PO(S,) (1}
od
[[A_LB] F ) Q. A—an}

6.2. Axiomatizing Concurrent Statements

The inference rule for cobegin is based on proving interference-freedom—that
execution of no atomic action invalidates an assertion in another process. Define
pre'(o) to be the predicate that, according to the assertions in the proof outline
containing o, is satisfied just before o executes:

(6.8) Precondition of an Action. If o is a skip, assignment, or atomic state-
ment with label S, or o is guard evaluation action GEval i(§) for an if with
label §, then:

pre’(a): pre(S)
If o is guard evaluation action GEval 4,(S) for a do

S: do B; =8, 1 Bz—)Sz 1}
then:

pre’(0): pre(S) v ( v _ post(S)) -

0 B,—S, od

The condition that o does not invalidate an assertion A is then implied by the vali-
dity of the interference freedom triple:

NI(o, A): {pre'(a) AA) o [A)

Generalizing, we conclude that
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(6.9) Interference Freedom
interference free by estab

Foralli,
Foralla
For all

Constructing proof outlines for
these are interference free suffict
gin constructed using these proce

(6.10) cobegin Rule:

@@ PO(S,.
(b) P=pi
(c) post(Pt
(d) PO,
{P] cobegin F

In addition, we know exe
control predicate associated with

(6.11) Process Independence Ax
cobegin and cp(B) denc
after(B), or its negation, tl

Atomic Statements

If P and Q are primitive assertior
is also valid. The following infer

(6.12) (S) Rule: For primitive as

Second, by definition, an :
any state satisfying —enbl(0).
starts in a state satisfying P doe:
Proof Outline Logic rule.




0 - 0 B,>S, od

Bi)a ... Alal(S,)=B,)
5)= (=B A .. A=B,)))

loop invariant, an assertion J that
p and, therefore, is guaranteed to
iterations occur.

Raai(S,) = P,
»1 PO(S,) (I}

A A—|Bn)

'Sy (1)
(S») (1}
J

wing interference-freedom—that
ertion in another process. Define
ie assertions in the proof outline

tp, _assignmem, or atomic state-
1action GEval y(S) for an if with

) for ado
0 - 0 B,->S, od

)
O

ion A is then implied by the vali-

371

Generalizing, we conclude that no atomic action o from one process can interfere
with the proof outline invariant for any other process provided:

(6.9) Interference Freedom Condition. PO(S;), .., PO(S,) are proved
interference free by establishing:
Foralli, j,1<i<n,1<j<n,i#j:
For all atomic actions o. € A(S;) :
For all assertions A in PO(S;): NI(a, A) Od

Constructing proof outlines for the processes in a cobegin and establishing that
these are interference free suffices to ensure validity of proof outline for the cobe-
gin constructed using these processes.

(6.10) cobegin Rule:
@ PO(Sy), ... PO(S,),
(b) P = pre(PO(S)) A ... Apre(PO(S))),
(c) post(PO(S1)) A ... Apost(PO(S,)) = 0,
(d) PO(S,), ..., PO(S,) are interference free.
(P} cobegin PO(S,) Il --- Il PO(S,) coend {Q)

In addition, we know execution of no process can change the value of a
control predicate associated with another. This gives rise to:

(6.11) Process Independence Axiom: If o and B are from different processes of a
cobegin and cp(B) denotes one of the control predicates at(B), in(B),
after(B), or its negation, then:

{epB)) a {cp(B))

Atomic Statements

If P and Q are primitive assertions and {P} PO(S) {Q} is valid, then {P} (S) (@)
is also valid. The following inference rule is based on this observation.

(6.12) {(S) Rule: For primitive assertions P and Q:

{P} PO(S) {2}
(P} (5) (@}

Second, by definition, an atomic action o cannot execute to completion in
any state satisfying —enbl(c). Since {P) o {Q} is valid if execution of o that
starts in a state satisfying P does not terminate, we have the following (derived)
Proof Outline Logic rule.
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(6.13) Blocked Atomic Action Rule: For any assertion Q and any atomic action or
atomic statement o

{—enbl()) o {Q)

6.3. Program-independent Rules

We now turn to the statement-independent inference rules of Proof Outline Logic.
Rule of Consequence (6.14) allows the precondition of a proof outline to be
strengthened and the postcondition to be weakened, based on deductions possible
in Predicate Logic.

(6.14) Rule of Consequence: P’=P, (P} PO(S) (0}, Q =0’
(P} PO(S) (Q')

The presence of Predicate Logic formulas in the hypothesis of this rule and the
next one forces the completeness of Proof Outline Logic to be relative to Predicate
Logic.

Rule of Equivalence (6.15) allows assertions anywhere in a proof outline to
be modified. In particular, the rule allows a proof outline PO’(S) for a program §
to be inferred from another proof outline PO(S) for that program when /pgs, and
Ipors) are equivalent and PO’(S) is self consistent.

(6.15) Rule of Equivalence: (a) PO(S),

(b) IPO(S) = JrF'O’(.s'),
(c) pre(PO’(S)) A at(S) = pre(PO(S))

PO'(S)

Control-Predicate Deletion is a derived rule that allows certain control
predicates in assertions to be deleted. It is easily derived from Rule of

Equivalence (6.15).

(6.16) Control-Predicate Deletion: {P A at($)} PO(S) {Q v ~after(S)}
(P} POS) (@)

Control-Point Identity allows control predicates to be added to assertions. This
rule, too, can be derived from Rule of Equivalence (6.15).

(6.17) Control-Point Identity: {P} POCS) (O]
(P Aat(S)) PO(S) (Q Aafter(S)}

The Rigid Variable Rule allows a rigid variable to be renamed or replaced
by a specific value. We write PO(S )%,P in the conclusion of the rule to denote a
proof outline in which rigid variable X in every assertion is replaced by Exp, an
expression only involving constants and rigid variables.

(6.18) Rigid Variable Rule:
7%
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(6.18) Rigid Variable Rule: (P} PO(S) (0}
(PEp ) POS)Esp (OFsp)

The Conjunction and Disjunction Rules allow two proof outlines for the
same program to be combined. Given proof outlines PO4(S) and POg(S) for S,
let A;, be the assertion that PO,(S) associates with control predicate ¢p and let
B, be the assertion that POg(S) associates with cp. Define PO, (S) @ PO3(S) to
be a proof outline that associates assertion A., AB_, with each control predicate
cp. The following Conjunction Rule states that PO, (S)@ PO (S) can be inferred
from PO, (S) and POg(S).

(6.19) Conjunction Rule: PO4(S), POp(S)
POA(S)@PO(S)

Define PO4(S)Q PO(S) to be a proof outline that associates assertion
A,V B, with each control predicate cp. The Disjunction Rule allows
PO4(S)Q POg(S) to be inferred from PO4(S) and POgz(S).

(6.20) Disjunction Rule: POa(S), POp(S)
PO, (S)OP0,()

Terms and predicates involving © or defg can be introduced into assertions
with the following rule. Observe that Rule of Consequence (6.14) alone would
not be sufficient, as illustrated by {x=0} skip {©x=0}, which is valid but cannot
be proved without a rule like the following.

(6.21) ©'-Introduction Rule: For an atomic action o, non-negative integer i, past
term ©*!7; rigid variable X, and primitive assertions P and Q:
(Pl a {0}
(P&T) o (Qnq A OPET) A defo )

©'-Introduction Rule (6.21) is sound because a rigid variable in a proof out-
line denotes the same value in all assertions. Thus, rigid variable X in the pre- and
postconditions of hypothesis {P] o {Q} can be uniformly replaced by the value
of ©'7. The value of @7 before o is executed is the same as the value of @' T
after o has completed. So, if X in precondition P is replaced by ©'7 then X in
postcondition Q can be replaced by ©"'7. The remaining two conjuncts,
O(P& ) and defg , in the postcondition are satisfied if o. terminates, because exe-
cuting o adds one more state to a sequence that is known to have been satisfied by
precondition PEiq.

7. Developing Programs for Safety Properties

It is not unusual to be asked to design a program that satisfies some given safety
properties. Proof Outline Logic obviously has application in determining whether
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this job has been completed. Perhaps not so obvious is how the logic has applica-
tion in the development of programs: By keeping in mind during construction of a
program how we intend to prove that it satisfies the safety properties of interest,
possible refinements can be restricted to those furthering our goal. Moreover,
constructing proof and program together virtually ensures success in ultimately
verifying that the final program satisfies desired safety properties.

7.1. Mutual Exclusion Protocol

We illustrate this approach to program design by deriving a solution to the
mutual exclusion problem, a classical concurrent programming exercise. A
mutual exclusion protocol ensures that execution of selected statements, called
critical sections, exclude each other.

The mutual exclusion problem is usually posed in terms of two processes,
cach of which executes a critical section and a non-critical section. This situation
is illustrated in Fig.7.1. For each process §;, we must design an entry protocol
entry; and an exit protocol exit; to ensure that execution of critical sections satisfy:

(7.1) Mutual Exclusion. In no history satisfying Inifg is there a state in which
control is inside both CS, and CS,.

(7.2) Entry Non Blocking. In no history satisfying Inits is there a state where
both processes are blocked executing their entry protocols.

(7.3) NCS Non Blocking. In no history satisfying Inits is there a state where a
process becomes blocked executing its entry protocol when the other is
executing outside of its entry protocol, critical section, and exit protocol.

§: cobegin
S1: dotrue — entry,
CS,y
exity
NCS,
od
Il
So: do true — entry,
S2
exito
NCS,
od
coend

Fig. 7.1. Mutual Exclusion Problem
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{true)
§: cobegin
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{in
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ent
{in
exii
=
od (false)
coend
{false}

Fig. 7.2. Initial Proof (
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(7.4) Exit Non Blocking. In no history satisfying Inits is there a state where a
process becomes blocked executing its exit protocol.

Ensuring Mutual Exclusion

It is impossible to formalize non-blocking properties (7.2), (7.3), and (7.4) without
first knowing what conditional atomic actions are in the entry and exit protocols.
Therefore, we start out by constructing entry and exit protocols to ensure Mutual
Exclusion (7.1), which is formalized as:

(1.5) Initg = O (n(CSy) A in(CS2))

Once candidate protocols have been developed, we return to the three non-
blocking properties.

We begin by devising a proof outline for the program of Fig. 7.1 with an
eye towards proving (7.5). In this initial proof outline, the entry and exit protocols
are skip statements since there is no reason to choose otherwise. A failure to
prove (7.5) will then identify assertions that must be strengthened for the proof of
Mutual Exclusion (7.1) to succeed. These assertions are strengthened by modify-
ing the entry and exit protocols.

Fig. 7.2 gives an initial proof outline for the program of Fig. 7.1. PO(S) of

{true}
S: cobegin
{(—in(CS1))
S]C do true — [-—-m(CSl)}
entry,: skip
(in(CS1)} PO(CSy) (—in(CS1)}
exit;: skip
(—in(CS,)) PONCS,) {—in(CS,))
od {false)
|
{(—in(CS,))
S,: do true = [—in(CS»))
entry,: skip
{in(CS4)} PO(CS3) {—in(CSy))
exity: skip
[—in(CS,)) POWNCS,) {—in(CS2)}
od {false}
coend
{false)

Fig. 7.2. Initial Proof Outline for Mutual Exclusion Problem
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Fig. 7.2 is a Proof Outline Logic theorem. Hypothesis (a) of Safety Rule (5.9) is
therefore satisfied for proving (7.5). To discharge hypothesis (b), it suffices that
at(S) be Initg. And, to prove hypothesis (c), we must show

(7.6) loc(A) AA = —(in(CS ) Ain(CS,))

for each assertion A that is associated by the proof outline with control predicate
loc(A). Unfortunately, (7.6) is not valid for assertions in PO(CS,) and PO(CS,).
However, from this failure to prove (7.5), we have learned that assertions in
PO(CS;) must be strengthened so that each implies —in(CS,) and assertions in
PO(CS,) must be strengthened so that each implies —in(CS§,).

To accomplish this strengthening, we alter the entry protocols. We find
predicates B and B, such that

V & (Bl=>—|m(CSg)) A (B;g:b—nm(CSl))

holds throughout execution. An if with guard B, now can be used to strengthen
pre(PO(CS)) with B, and anything I A B, implies—in particular, by —in(CS ;).
We can similarly strengthen pre(PO(CS,)) with B, and anything / A B, implies.

Next, this stronger assertion is propagated to strengthen the other assertions
in PO(CS ) and PO(CS,) with these same conjuncts. These strengthenings result
in the following modifications to the proof outline of Fig. 7.2, where PO(S)®@ P
denotes the proof outline in which every assertion of PO(S) is strengthened by
conjunct P.

S|: [IA—un(CSl)}
entry,: ifB; > {IAB;) T,: skip (I AB,} fi
(I AB,}
PO(CS)@QU AB,)

I

Sy: ... (I A=in(CS,))
entry,: ifBy — (I ABy) Ty: skip (I AB,) fi
{I AB,)
PO(CS,)@(I AB,)

Unfortunately, this new proof outline is not interference free. Executing T',
invalidates / AB, (in particular, —in(CS,)) in the proof outline of §;. This is
because when T, terminates, after(T,) holds and, due to the following proof,
—in(CS§,) cannot hold as well.

after(T5)
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in(CS,)

Symmetrically, T, interferes with
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after(entry,)
= «Statement Juxtaposition Control Axiom (4.7c)»

al(CSz)
= «In Axiom (4.4a)»
in(CS5)

Symmetrically, T, interferes with I A B in the assertions of PO(S2).

We can eliminate interference of T, with I AB, by strengthening both
pre(T5) and I so that pre(T;) Al AB; equals false, making NI(T'3, I AB ) valid.
To accomplish this, we strengthen pre(T,) with the conjunct a#(T) and modify /
so that I AB{ = —at(T,). Making symmetric modifications to eliminate interfer-
ence of T, with I AB, results in the following new definition for [

I: (B, =—(in(CSy) vanT,))) A (By=—(in(CSy) vauT,)))

and the following revised proof outline.

S]: {IA—ll."!(CSI)]
entry,: if By = (I nal(T,) AB,) T,: skip {I AB,} fi
(I AB,)
PO(CS))@U ABy)

I

S2: ... (I A=in(CSy))
entry,: if By = (I Aa(Ty) ABy) Tyt skip {I AB,) i
(I AB))

While NI(T,,I AB) and NI(Ty,I AB ) are valid in this new proof outline,
it is now possible for GEval(entry,) to interfere with / AB, by invalidating
—at(T,); similarly, GEval,(entry,) can interfere with IAB;. One more
strengthening of 1 solves this problem.

I: (B = —(in(CS,) v in(entry,)))
A (B = = (in(CSy) v in(entry,)))

Finally, we must ensure that execution of the atomic action preceding
entry, does not invalidate / in making at(entry;) hold (and that execution of the
atomic action preceding entry; does not similarly invalidate ). We solve this
problem by postulating that pre(entry,)=>—B, and pre(entry;)=>—B, ar¢
valid. Thus, we have:
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Sl: {1r A_hin(CSl)A_l.le
entry,: ifBy = (I Ana(T\) AB,} Ty: skip (I AB,} fi
{I AB,}
PO(CS)@(I AB;)

Sz: [1 Aﬁiﬂ(CSg)AﬂBl}
entrys: ifBy — (I Aal(T3) ABjy) Ty: skip (I AB5) fi
{I AB,}
PO(CS,)@ (I AB>3)

Our next task is to define B, and B, in terms of program variables, since
guards may not mention control predicates. We introduce boolean program vari-
ables inl and in2 and add assignments to the entry and exit protocols so that we
can replace [ by:

I: (win2 = = (in(CS,) v in(entry,)))
A (=inl == (n(CS,) v in(entry,)))

Then, —in2 can replace B, and —in/ can replace B,. We have only to identify
assignment statements that ensure I holds throughout execution and that ensure
pre(entry,) and pre(entry,) hold when they are reached.

Execution of either entry; or CS§; causes — (in(CS;) v in(entry;)) to become
false. Therefore, maintaining the truth of / requires that inl be true before entry,
executes and that in2 be true before entry, executes. We accomplish this by
adding inl := true before entry, and in2 := true before entry,. Since these state-
ments are part of the entry protocol, we redefine entry; to include the assignment
(labeled door;) and the if (labeled gate;). The result is shown in the following
proof outline. Notice the revised definition of / to account for the renaming of
statements,

f & (—1 in2=-— (Iﬂ(CSg) N
A (=inl = =(in(CS,

81 .. I A=in(CSy))
entry,: doory: i1
gateq: if

(I Ainl A—in2)
PO(CS)@( A

Il
S2t .. (I A=in(CS3))
entry,: doory: i
gate,: if

{I Ain2 A=inl}
PO(CS,)@(I Al
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Iz (_I in2=r— (II’!(CS 2) v iﬂ(gﬂle 2)))
A (=ind == (in(CSy) v in(gate,)))

S]: e [I A—|IM(CS1)]
entryy: doory: inl :=true (I A—in(CS,) Ainl)
gate: if —in2 — (I AaT ) Aind A—in2}
Ty: skip {I Ainl A—in2) fi
(I Ainl A—in2)
PO(CS)@( Ainl A—in2)

Il
Szl o [1 A—Jﬂ(CSz)]
entry,: door,: in2 :=true {I A—in(CS,) Ain2)
gatey: if —inl = (I Aal(Ty) Ain2 A —inl}
Ty: skip {I Ain2 A—inl}) fi
(I Ain2 A—inl}
PO(CS,)@( Ain2 A—inl)

Unfortunately, these new assignments cause interference. Execution of
inl :=true invalidates —inl in assertions of §,, and execution of in2 :=true
invalidates —in2 in assertions of §,. However, this interference can be removed
by replacing —inl in assertions of S, with —inl v after(door,) and replacing
—in2 in assertions of §, with —in2 v after(door,). The result is shown in the
proof outline of Fig. 7.3, which is interference-frec. Moreover, because

(I A (—in2 v after(doors)) = —in(CS )
(I A (—inl v after(doory)) = —in(CS4)

are valid, we conclude that (7.6) is valid for each assertion A in the proof outline,
so Mutual Exclusion (7.1) is satisfied.

Non Blocking

Having a candidate entry protocol, we can now check whether Entry Non Block-
ing (7.2) is satisfied. For our protocol, this property is formalized as

(7.7) an§) = O—(at(gate,) A —enbl(GEval {(gate))
A at(gate;) A —enbl(GEval [{(gate3))),

because the only conditional atomic actions in the entry protocols are
GEval{gate ) and GEval{(gate ).

We select Exclusion of Configurations Rule (5.10) for proving (7.7).
Hypothesis (a) is satisfied by the (valid) proof outline of Fig. 7.3. Hypothesis (b)
is satisfied because at(§) equals Initg. Hypothesis () requires that
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{true)
8: inl,in2 = ..
(I: (—in2 = = (in(CS,) v in(gate,)))
A (=inl = = (in(CSy) v in(gate)))}
cobegin
[1 A —IHI(CS])}
§,: dotrue — {I A—=in(CS,)}
entry,: doory: inl :=true (I A—in(CSy) Ainl}
gate: if —in2 — (I A at(T) Aninl A (—in2 v after(door)))
¥ Skip
{I Ainl A (—in2 v after(door,))} fi
(I Ainl A (—in2 v after(door,)))
PO(CS QU Ainl A (—in2 v after(door,)))
{I A=in(CS,)]
exity: skip
(I A=in(CS;)} PONNCS,)@(I A—=in(CS,)) (I A=in(CSy))}
od (false}
Il
{I A—in(CS5)}
8, dotrue = (I A—=in(CS5))
entryq: doory: in2 :=true {I An—in(CS;) A in2)
gatey: if —inl — {I A al(T5) Ain2 A (—inl v after(door,))}
T,: skip
{I Ain2 A (—inl v after(door))) fi
{I Ain2 A (—inl v after(door,))}
PO(CS,)@(U A in2 A (—inl v after(door,)))
{I A=in(CS,)}
exit,: skip
{I A=in(CS,)) PONCS,)@ (I A—in(CS,)) (I A—=in(CS2)}
od {false}
coend

{false)

Fig. 73. Protocol for Mutual Exclusion (7.1)

(7.8) at(gate,) Ain2 A at(gate;) Ainl Alpog)

implies false, because enbl(GEval [{gate,)) is —in2 and enbl(GEval y(gate3)) is
—inl. Unfortunately, (7.8) does not imply false; it implies gtz

(7.9) at(gate,) Ain2 A at(gate;) A inl Al A—=in(CS1) A—in(CS3).

_ Either ﬂ?e proof guﬂine of Fig. 7.3 is not strong enough to prove (7.7) or
this property is not satisfied by our protocol. Working backwards from a state
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satisfying (7.9), we find that execution of door, followed by door, results in a
state where S, is blocked at gate, and S, is blocked at gate,. The entry protocol
we have developed simply does not satisfy Entry Non Blocking (7.2).

To eliminate this deadlock, we use weaker guards in gate, and gate,—
weaker guards mean fewer states will cause blocking. Constraints on these guards
can be determined by using an as yet unspecified disjunct X; to accomplish the
weakening for gate;. The proof outline for §; with such a weaker guard would
be:

{I A=in(CS1)]
entry,: doory: inl = true {I A—=in(CS,) ninl}
gate: if=in2vX, >

(I Anat(T) ~ind A (—in2 v X v after(door,)))
T;: skip
(I Ainl A (—in2 v Xy v after(door,))) fi

{I Ainl A(=in2 v X, v after(door,)))

PO(CS,)@(I Ainl A (—in2 v X, v after(door,)))

Constraints on X; and X, that ensure Entry Non Blocking (7.2) is satisfied
are now obtained by using the proof outline with weaker guards and repeating the
above proof for (7.7). Notice thatif =X ; A =X, = false is valid, then so is

at(gate ) A—(—in2 v X ) anat(gate,) A—(—inl v X;)
Al A=In(CSy) Ainl A=in(CSy) Ain2 = false,

and hypothesis (c) of Exclusion of Configurations Rule (5.10) is satisfied. There-
fore, if X, and X, are predicates that cannot simultaneously be false then Entry
Non Blocking (7.2) will hold.

An obvious choice is to define a single variable, say . Strengthening / to be
7 i (—l in2=- (IH(CSQ_) v in(gale 2)))

A (=inl == (in(CSy) v in(gate)))
A (1=1vt=2),

allows us to use t=1 for X, and use t=2 for X,. We make the substitution into
the proof outlines to get:
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(I A=in(CS )}
entry,: door,: inl :=true (I A—in(CSy)Ainl)
gate,: if—in2 vi=1—- (I nalT) Ainl
A (=in2 v t=1 v after(door,)))
Tl: Skip
{I Ainl A (—in2 v =1 v after(door,))} fi
(I Ainl A (—in2 v t=1v gfter(door,))}
PO(CS )@ Ainl A (—in2 v t=1v after(door,)))

Il

{I A=in(CS,)}
entry,: door,: in2:=true (I A—in(CS3) A in2}
gate,: if—inl vi=2— (I Ana(T3) Ain2
A (—inl v t=2 v after(door)))
T,: skip
{I Ain2 A (=inl v t=2 v after(door))) fi
{I A in2 A (winl v t=2 v after(door)))
PO(CS,)Q@U A in2 A (—inl v t=2v after(door)))

This proof outline is not interference free. Executing GEval y(gate) invali-
dates after(door,) (because dafter(door,)=at(GEval {gate;))) without causing
—in2vit=1 to become frue. We solve this problem by inserting a statement,
step,, between door, and gate,. This statement causes after(door;) and
at(gate,) to refer to different control points and makes it impossible for gate, to
be executed when after(door,) holds.

To ensure that step, itself does not invalidate —in2 v t=1v after(door3),
we implement step, by the assignment ¢ := 1. (The assignment in2 := false, which
also does not interfere with —in2 v t=1 v after(door,), cannot be used because it
invalidates —in2 = —(in(CS,) v at(T;)) in 1) Similarly, executing gate,; can
invalidate after(door), and this interference is eliminated by adding a statement
step.

The proof outline that results when step, is added to S, and step, is added
to §, is given in Fig. 7.4. It is interference free and is strong enough to establish
Mutual Exclusion (7.1) and Entry Non Blocking (7.2).

We next check whether NCS Non Blocking (7.3) is satisfied by the entry
and exit protocols of Fig. 7.4. For our program, this property is formalized by:

at(S) = O—(at(gate,) A —enbl(GEval g(gate,))
A (at(GEval 4,(8,)) v in(NCS ;) v after(NCS,)))

at(§) = O—(at(gate,) A —~enbl(GEval (gate,))
A (at(GEval 4,(S,)) v in(NCS ) v after(NCS )))

{true)
S: tinl,in2 :=..
{I: (=in2==(@n(CS,) vinl
A (t1=1v1=2))
cobegin
{I A—=in(CS,)}
Sy: do true —> {I A=in(CS,
entry,: doory: inl =1
stepy: t=2 |
gatey: if —in2

{I Ainl A(=in2 vi=1
PO(CS))@U ~inl A(
[I A—HTJ(CS[)]
exity: skip
{I A=in(CS,)) PONN
od {false)
Il
{I A=in(CS,))
S, dotrue — (I A=in(CS,
entry,: door,: in2 =
stepy: t:=1 |
gatey: if —inl

(I Ain2 A (=inl vi=!
PO(CS,)@ Ain2 Al
(I A=in(CS,)}
exit,: skip
{I A=in(CS4)} PON
od {false)
coend

{false}

Fig. 7.4. Mutual Exclu
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{true}

S:

t,inl,in2 == ...
(I: (—in2=>=(in(CS,) v in(gate))) A (—inl = (in(CS,) vin(gate,)))
A (t=1vit=2)}
cobegin
{I A=in(CS )}
S,: dotrue — (I A=in(CSy)}
entry,: doory: inl :=true (I A—in(CS) Ainl)
stepy: 1:=2 (I A—in(CSy) Ainl)
gatey: if—in2vi=1— (I nalTy) ninl
A (—in2 v t=1 v after(door ,)))
T,: skip
(I Ainl A (—in2 v t=1v after(door,))) fi
(I ainl A (—in2 v t=1 v after(door,)))
PO(CS)@( Ainl A (—in2 v t=1v after(door,)))
{I A=in(CS 1)}
exit,: skip
(I A=in(CS,)} PONCS)@(I A—in(CS,)) {I A—in(CS1)}
od ({false)
Il
{I A=in(CS5))
§,: do true — (I A=in(CS5))
entry,: doory: in2 = true {I A—in(CS3) A in2)
stepq: 1:=1 (I A=in(CS2) A in2}
gatey: if—inl vi=2— (I Aal(T3) Ain2
A (=inl v t=2 v after(door,)))
T,: skip
(I Ain2 A (=inl v =2 v gfter(door))} fi
(I Ain2 A (—inl v t=2 v after(door )))
PO(CS,)@ I A in2 A (winl v t=2 v after(door)))
{1 A—nlﬂ(CSz)}
exit,: skip
{I A—in(CS4)} PONCS)@U A—in(CS3)) (I A—in(CS2)}
od (false)
coend

{false)
Fig. 7.4. Mutual Exclusion (7.1) and Entry Non Blocking (7.2)
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We again use Exclusion of Configurations Rule (5.10), this time with the
proof outline of Fig. 7.4. Hypothesis (c) would be satisfied by showing that

(7.10) at(gate ) An—enbl(GEval /(gate,))
A (at(GEval 4,(S,)) v in(NCS3) v after(NCS,)) Alpoisy = false

(7.11) at(gate ;) A —enbl(GEval ({(gate;))
A (at(GEval 4,(5 1)) v in(NCS ) v after(NCS,)) Alpgsy = false

are valid.

Unfortunately, neither is. This should not be surprising, because currently
no program variable is changed when a process exits its critical section. Thus, the
program variables provide no way for an entry protocol to determine whether a
process is executing in its critical section or merely was executing in its critical
section.

The obvious way to remedy this problem is for the exit protocol to change
some program variable(s). Deciding exactly which variable to change is guided
by unfulfilled obligations (7.10) and (7.11). In the antecedent of (7.10),
(at(GEval 4,(S)) v in(NCS ) v after(NCS ;) Alpos) effectively selects asser-
tions associated with control points at, in, and after NCS,. Thus, if each of these
assertions implied a predicate P such that P A —enbl(GEval /(gate,)) = false,
then obligation (7.10) would be satisfied.

Two obvious candidates for P are —inZ and ¢=1 because
—enbl(GEval {(gate,)) is in2 At#1. Of the two candidates, we reject =1
because it would be invalidated by executing step;. This leaves —in2 as our
choice for P. It is not invalidated by executing §;. Thus, to make (7.10) valid, we
have only to modify exit, so that assertions in and after NC§, can be strengthened
by —in2 and modify the initialization so that the assertion before entry, can be so
strengthened.  Assignment statement in2 := false in the exit protocol does the job.

Using symmetric reasoning for process §,, we obtain the proof outline of
Fig. 7.5. Variable ¢ can be initialized to either 1 or 2. The proof outline is valid
and makes (7.10) and (7.11) valid, which means our protocol now satisfies NCS
Non Blocking (7.3). It is wise to check that Mutual Exclusion (7.1) and Entry
Non Blocking (7.2) are still satisfied as well. They are.

Finally, we check that Exit Non Blocking (7.4) is satisfied by the program
of Fig. 7.5. To do so, we must verify that § satisfies:

(7.12) at(S) = O—((at(exit ) A —enbl(exit,)) v (at(exity) A —enbl(exit,)))

Because each exit; is implemented by a single unconditional atomic action, from
definition (3.7) of enbl we have

enbl(exit|)=true
enbl(exit|)=true

and therefore, by Temporal Logic, (7.12) holds.

{true)
S: t,inl,in2 =1, false, false
(t=1 A=inl A=in2 A
I: (-1 in2=- (IH(CSQ) \'
A (t=1vi=2)}
cobegin
{I A=in(CS,) A—inl})
S1: dotrue = (I A=in(C
entry: doory: inl:
stepy: t=12
gatey: if =i

(I ainl A(=in2vi
PO(CS)@(I Aind
{I A=in(CS)}
exity: inl = false {
PO(NCS)@(I A
(I A —|IH(CS1) A=
od {false}
Il
{1 A—ﬁiﬂ(CSI) A—|Iﬂ2]
So: do true — {I A—in((
entry,: doorj: in2
stepa: ="
gate,: if—

{I Ain2 A(—inl vi
PO(CS)@(I Ain2
(I A=in(CS5))
exity: in2 = false |
PONCS)@(I A=
{I A —JI’I(CSz) A=
od {false}
coend

{false}

Fig.7.5. Exit
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(true)
S: tinl,in2 =1, false, false
[t=1 A—inl A—in2 A ' '
I (—=in2 == (in(CS,) vin(gate,))) A (—inl =—(in(CS,) v in(gate,)))
A (t=1vi=2))
cobegin
{I A—|in(CS1) /\ﬁiﬂ]}
Sq: do true — [IA—1m(CS1) A—inl)
entry,: doory: inl :=true (I A—in(CS,) A inl}
stepy: t =2 (I A—in(CS1) Ainl)
gate: if —in2vit=1— (I nal(Ty) Ainl
A (=in2 v t=1 v after(door,)))
T,: skip
{I Ainl A (—in2 v t=1v gafter(doory))} fi
{{ Ainl A(=in2 v i=1 v after(door,)))
PO(CS)@(I Ainl A (—in2 v t=1 v after(door,)))
{f A—=in(CS )}
exity: inl == false {I A—in(CS1) A—inl}
POWNCS )@ A—in(CS,) A—inl)
{I A—:Iﬂ(csl) A —liflI]
od ({false)
Il
[] A ﬂlﬂ(CSz) A —an]
S2.' do true — {I A —:IH(CSZ) /\—|1ﬂ2}
entry,: doory: in2 :=true (I A—in(CS3) A in2}
stepy: t =1 (I A—=in(CS;) A in2}
gatey: if—inl vit=2— (I nat(T) Ain2
A (=inl v t=2 v after(door))}
T,: skip
{I Ain2 A (—inl v 1=2 v after(door,))) fi
(I Ain2 A(=inl v t=2 v after(door,))}
PO(CS2)@ (I Ain2 A (—inl v t=2 v gfter(door,)))
[I A—IH’I(CS2)}
exity: in2 =false {I A—in(CS;) A—in2)
PONCS,)@ I A—in(CS3) A—in2)
{I A=in(CS,) A —in2)
od {false}
coend

{false)

Fig. 7.5. Exit Protocol for NCS Non Blocking (7.3)
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This completes the derivation of the solution to the mutual exclusion prob-
lem. Fig. 7.5 contains a protocol that satisfies Mutual Exclusion (7.1), Entry Non
Blocking (7.2), NCS Non Blocking (7.3), and Exit Non Blocking (7.4).

Reviewing the Method

The derivation described above is based on repeated application of what is really a
simple method:

(7.13) Safety Property Methodology. If a program does not satisfy
Init = OEtern:

(1)  Construct a valid proof outline for that program.

(2) Identify assertions that must be strengthened in order to prove that
Init = O Etern is satisfied.

(3) Modify the program and proof outline so that those assertions are
strengthened. a

Of course, step (3) requires creativity—especially since stronger assertions are
more likely to be interfered with. Therefore, strengthening an assertion in some
process S; is typically a two-phase process. First, S; is modified ignoring other
processes. This results in a proof outline that is valid in isolation and has the
stronger assertions. Then, that proof outline is considered in the context of the
concurrent program and any interference is eliminated.

For the mutual exclusion problem, we were given a program skeleton con-
taining some unspecified operations and asked to refine those operations to make
certain safety properties hold. The skeleton imposed constraints on the solution,
and these constraints simplified our task by restricting possible design choices.
Additional constraints accumulated as the derivation proceeded. Each safety pro-
perty, once satisfied, imposed constraints on subsequent modifications to the entry
and exit protocols. For example, maintaining a valid proof outline from which
Mutual Exclusion (7.1) could be proved constrained modifications to the entry
protocol so that Entry Non Blocking (7.2) could be proved.

7.2. Concurrent Reading While Writing

We next attack a problem that arises when shared variables are used for communi-
cation in a concurrent program. Suppose one process reads from these variables
by executing a non-atomic operation READ; the other writes to them by executing
a non-atomic operation WRITE. Desired is a protocol to synchronize READ and
WRITE so that values seen by reader reflect the state of the shared variables either
before a concurrent write has started or after it has completed.

We derive a statement R to control each READ operation and a statement W
to control each WRITE operations. The problem description requires that R not
terminate with values reflecting an in-progress WRITE. This is a safety property
and is specified in Temporal Logic as

(7.14) Init = O(after(R)=—BD

where derived term BD (abbreviati
started overlapped with execution «
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(7.14) Init = O(after(R) =—BD)

where derived term BD (abbreviating "Bad Data") is satisfied if the last READ that
started overlapped with execution of WRITE:

false if atREAD)
BD: < in(READ) A in(WRITE) if mat(READ) A —defg
(in(READ) A in(WRITE)) v ©BD  if ~at(READ) A defe

Any valid proof outline having a precondition implied by /nit and in which
post(R) implies — BD is sufficient for proving that (7.14) is satisfied, due to Safety
Rule (5.9). Thus, ensuring satisfaction of (7.14) is equivalent to filling out the
bodies of R and W in the following proof outline. Note that assertions not pertain-
ing to the proof of (7.14) are being ignored and have been omitted.

(7.15) {Init)

cobegin
R: .. READ ..
{—BD}
e
W: ... WRITE ...
Coen.ll.'i

One way to ensure that —BD holds when R terminates is to prevent execu-
tion of READ while WRITE is executing, and vice versa. This, however, can
cause execution of WRITE to be delayed—something that is not always desirable.
For example, suppose the digits of a multi-digit clock are each implemented by a
separate shared variable, If the clock is advanced by a process that periodically
executes WRITE to store new values in these variables, then the clock’s correct-
ness depends not only on what values are written but on when those values are
written. Delaying WRITE compromises the clock’s accuracy.

WRITE will never be delayed if W contains no conditional atomic actions or
loops. We therefore adopt this additional constraint, ruling out exclusion-based
readers/writers protocols.

In order to proceed with the development of (7.15), we first construct a
valid proof outline for R in isolation. The body of R is simply READ—there is no
justification for including anything else. Moreover, because —BD holds when
at(R) does, it is easy to construct a proof outline with the desired postcondition.
PO(READ) is a proof outline for READ having true for every assertion.
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(1.16) {—BD)
R: PO(READ)@—BD
(—~BD)

To include this proof outline in a cobegin, however, requires that W not interfere
with (7.16). Unfortunately, it does. Execution of atomic actions in WRITE invali-
date conjunct — BD in all assertions except pre(READ).

To eliminate this interference, we postulate a predicate p such that for every
atomic action o € A(WRITE), the following holds:

(7.17) pre(w) = p

We then weaken those assertions that formerly were invalidated. The result is the
following modification of (7.16).

(—BD)
R: PO(READ)®,(p v —BD)

A problem with this proof outline is that post(R) is now weaker than
desired. Moreover, once —BD has been invalidated, waiting can never make
—BD hold again (due to the third clause in the definition of BD), so blocking the
process containing R cannot be used to strengthen post(R).

A loop can also be used to strengthen an assertion, because do Rule (6.7)
has as its postcondition the conjunction of its precondition and another predicate,
the guards negated. This suggests that READ be made the body of a loop with
p v —BD the loop invariant and p the guard, thereby allowing the postcondition
of the loop to be —BD because it is implied by (p v ~BD) A ~p. We allow con-
current reading while writing, but prevent data read during a WRITE from becom-
ing visible outside of R.

(7.18) (I: p v—BD)
R: do p— (I A-BD}
PO(READ)@T
{7}
od
{(=~BD)

An casy way to discharge obligation (7.17) is by introducing a program
variable p and bracketing WRITE with assignments to p. This is done in the fol-
lowing proof outline fragment, where PO(WRITE) has true for each of its asser-
tions.

W: p :=true
PO(WRITE)@p
p =false

Unfortunately, when embedde:
p = false interferes with I in all asse
this problem, we postulate a predicatc

pre(p =false) = q,

and use g to weaken those assertion:
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{I: pvgqv—BD)
R:dopvg— {IA-BD
PO(READ
i)
od
(—BD)
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W: p =true
PO(WRITE)@p
p =false

Unfortunately, when embedded in the cobegin of (7.15), final assignment
p :=false interferes with / in all assertions of (7.18) except pre(READ). To solve
this problem, we postulate a predicate g satisfying

pre(p = false) = q,

and use ¢ to weaken those assertions in PO(R) that could be invalidated by exe-
cuting p :=false. The revised proof outline for R follows. In it, the weaker loop
guard, p v g, is needed in order to be able to infer —BD when the loop terminates,
given the weaker loop invariant.

{I: pvgv—BD)
R:dopvg— {IA=BD}
PO(READ)Q@I
{7}
od
{(—~BD)

The revised protocol for W is:

W: p :=true
PO(WRITE)@p
q :=true (q}
p =false

We have succeeded in constructing proof outlines for R and W that are
interference free, satisfy the constraints in (7.15), and satisfy the constraints that
ensure WRITE is not delayed. However, our protocol for synchronizing READ
has two problems:

(i) Once q is set to true in W, the do in R loops forever. Useful computation by
the process containing R then becomes impossible.

(ii) A suitable initialization must be devised so that loop invariant p v g v —BD
will hold at the start of the do.

Although infinite looping of the do in R cannot cause (7.14) to be violated,
it can be a problem when proving termination and other liveness properties.
Non-terminating loops can prevent a "bad thing" from happening, but in so doing
might also prevent "good things" from happening. Thus, when liveness properties
may be of interest, use of such non-terminating loops is rarely a good practice.

The loop in R will terminate if —(p v ¢) holds when its guard evaluation
action is executed. W establishes — p before exiting, but cannot also establish — ¢
without causing interference with /. Therefore, in order make —(p v ¢) hold, we
investigate possible places in R to add an assignment that will establish —¢.
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q :=false establishes at(READ), which implies —BD, and executing p := false in
a state satisfying —BD does not invalidate —BD (hence /). Here is the revised
proof outline for W:

The assignment must occur in the body of the do or else it will not be exe- {Init}
cuted after the loop has started (and when it would be needed). Also, looking at cobegin
the assertions in the body of the do, we see that the new assignment must leave / ‘
true. Thus, execution of g :=false must occur in a state where p v —BD holds, R: qg:=mn
since p v —BD implies /. By definition, — BD holds when at(READ) docs, so we dopv
place the assignment immediately before READ, obtaining the following valid
proof outline.
{I: pvgwv—-BD) od
R:dopvg— (I} {~BD}
q =false {I A—BD)
PO(READ)®1I Il
{7}
od W:p=r
{—=BD} | POW
Now, however, q := false in R interferes with pre(p := false) (which is g) in ; - ;}:
the proof outline for W. Recall, having ¢ be a conjunct of pre(p :=false) elim- ! P
inated interference by p :=false with I in assertions of the proof outline for R. { coen-a
Thus, provided pre(p := false) remains strong enough for NI(p :=false,I) to be i
valid, we can use disjunct —BD 1o weaken pre(p = false), because executing i Fig. 7.6. Cor
!
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Finally, we devise an initialization that establishes loop invariant
pvqv—BD. Assigning true to either p or g will establish /. We choose an
assignment 1o g, so that execution of R can terminate without W executing. The
final protocol appears as Fig. 7.6.

.

Hoare was also the first to address the design of a programming logic for
concurrent programs. In [13], he extended the logic of [12] with inference rules
for parallel composition of processes that synchronize using conditional critical
regions.
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{Init})
cobegin

R q:=true {I: pvqv—BD)
do pvg— {I}
q =false {I A—BD}

PO(READ)Y®@1
{7}
od
(=BD}
N
W p =true
PO(WRITE)@p
q :=true {g v—BD]}
p = false

coend

Fig. 7.6. Concurrent Reading While Writing

Interference freedom and the first complete programming logic for partial
correctness was developed by Owicki in a Ph.D. thesis [20] supervised by Gries
[21]. The work extends Hoare’s logic of triples to handle concurrent programs
that synchronize and communicate using shared variables. Lamport, working
independently, developed an idea (monotone assertions) similar to interference
freedom as part of a more general method for proving both safety and liveness
properties of concurrent programs [16]. Unfortunately, the method of [16] is
described in terms of the flowchart representation of a concurrent program, and
this probably accounted for its failure to attract the attention it deserved.

Lamport’s Generalized Hoare Logic (GHL) is a Hoare-style programming
logic for reasoning about concurrent programs, motivated by the success of the
Owicki-Gries logic [17]. In contrasting the logic of [21] and GHL, the first
significant difference concerns the role of proof outlines. The Owicki-Gries logic
appears to be based on triples rather than proof outlines. However, this is decep-
tive. Had interference freedom been formalized in the logic, the need for treating
proof outlines (in addition to triples) as formulas would probably have become
apparent. GHL is based on proof outlines, making formulas a bit more complex
but allowing a simple inference rule for cobegin.

The second significant difference between the Owicki-Gries logic and GHL
is the use of control predicates. Instead of control predicates, the Owicki-Gries
logic sometimes requires that additional variables, called auxiliary variables, be
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added to a program when constructing a proof. (These variables can be thought of
as derived terms whose value is computed by the program rather than by a
definition.)

The final distinction between the Owicki-Gries logic and GHL concerns the
class of properties that can be proved. The Owicki-Gries logic was intended for
proving three types of properties: partial correctness, mutual exclusion, and
deadlock freedom. The logic could have been extended for proving safety proper-
ties, although doing so is subtle. GHL was originally intended for proving safety
propertics, even for programs where all of the atomic actions have not been
specified.

Proof Outline Logic is based on GHL. The programming notation axioma-
tized by Proof Outline Logic has additional control structures but less flexibility
about atomicity. Second, GHL cannot be used to prove safety properties defined
in terms of sequences of past states; Proof Outline Logic can, because © can
appear in its assertions. Finally, while the notation used for proof outlines in GHL
is more expressive than the notation our Proof Outline Logic employs, our nota-
tion is closer to conventional annotated programs.

Our assignment statement and Assignment Axiom (6.2) are based on [10];
the if and do statements are from [6]. The angle bracket notation for specifying
synchronization was invented by Lamport and formalized in [17]. However, the
notation was popularized by Dijkstra, with the earliest published use in [8]. The
idea that an if statement with no true guard should delay until some guard
becomes true originated with [7].

Most methods that use Hoare-style programming logics for verifying safety
properties involving past states employ variables to record relevant aspects of a
computation’s history. One approach is to allow such variables to appear in asser-
tions, but not to permit them in program statements [26, 27]. A more popular
approach is to augment the program with assignments to auxiliary variables that
encode whatever history information is of interest. The auxiliary variables are
used in a formal statement of the property as well as in a proof outline to establish
that the augmented program satisfies that property. To infer that the original pro-
gram also satisfies the property in question, it is asserted that the auxiliary vari-
ables can be deleted because they have no affect on program execution. Knowing
just when such auxiliary variables can be deleted is rather a subtle question, how-
ever.

Although many who have written about programming logics use proof out-
lines, few have formalized them and even fewer have done so correctly. One of
the earlier (correct) formalizations appears in [2]; a natural deduction program-
ming logic of proof outlines is presented in [4].

Pnucli was the first to use a temporal logic for reasoning about concurrent
programs [23]. Interpretations like the anchored sequences used here were first
introduced in [18] and later used used in [19].

Safety properties were first defined by Lamport in [16]. The method given
in [16] for proving that a program satisfies such a property is based on finding a
suitable invariant. This use of invariants, however, did not originate with
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Lamport. For safety properties concerning the control state (e.g. mutual exclu-
sion, readers/writers), proofs that use invariants appear in [3, 5, 11]. For safety
properties involving relationships among the control state and program variables,
proof methods based on finding an invariant are discussed in [1] and [15].

Safety Rule (5.9) is based on a meta-theorem of Lamport’s Generalized
Hoare Logic [17]. Exclusion of Configurations Rule (5.10) is a generalization of a
method that is used in [21] for proving that a program is free from deadlock and in
[7] for proving mutual exclusion.

There is an extensive literature on the mutual exclusion problem. See [24]
for a summary of various protocols and their properties. The solution developed
in §7.1 is based on [22]. The protocol is usually presented operationally; the
derivation in §7.1 is new. The reading while writing protocol in §7.2 is a variation
of one developed by Jayanti [14]. Our variant is a bit simpler; we discovered it
while attempting to provide an assertional derivation (and proof) of Jayanti’s pro-
tocol.
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