TOWARDS FAULT TOLERANT PROCESS CONTROL SOFTWARE*

Fred B.

Schneider
Richard D. Schlichting

Department of Computer Science
Cornell University
Ithaca, New York 14853

Abstract

The construction -of fault tolerant software
for a multiprocessor consisting of N processors,
each of which has access to its own local memory
and to an N-port shared memory is considered.
Software fault tolerance is achieved by
structuring a program as a collection of cyclic
processes with well defined communications
channels and by using a simple protocol involving
checkpoints. ’

Introduction
The use of computing systems to control

complex devices or physical processes is becoming
increasingly important. LSI and VLSI technology

have made such systems inexpensive and small.,
Furthermore, such computing systems can respond
very quickly to the events they monitor -- orders

of magnitude faster than a human controller. This
permits the control of complex, time-critical,
physical processes, such an nuclear fission and
air traffic,

Software intended to monitor and comntrol such
physical processes is called process gcontrol
software. Sensors are used to determine the state
of the physical process by reporting values of key
parameters and/or by detecting events -- state
changes in the physical process. Actuators are
used to control the physical process.

In addition to implementing a specified
relation between input and output, process control
software must also satisfy real-time response
constraints or the ability to control the physical
process may be lost. For example, altering the
course of an airplane to avert a mid-air collision
must be done promptly if disaster is to be
avoided. For similar reasons, process control
software must be fault tolerant.

Duplication of hardware is not sufficient to
realize fault tolerance. Software protocols must
also be devised so that after a failure, the
system can be reconfigured and restarted in an
orderly fashion. If a program is structured as a
collection of cyclic processes with well-defined
inter-process communications channels -- and most

*This work is supported by NSF Grant MCS-76-
22360.

CH1600-6/81/0000/0048$00.75 © 1981 IEEE

48

process control programs are -- then simple
protocols can be used to achieve fault tolerance.
The design of such a protocol is the subject of
this paper.

An Abstract Machipne

A convenient abstract model of a computing
system consists of N processors, each of which has
access to its own local memory and a single N-port
shared memory, as shown below:

VOLATILE STORAGE
Processors
STABLE STORAGE
Implementation of this abstraction will be
discussed later. Here, we merely enumerate the
pertinent properties of the components.
First, we assume that the 1local memory
connected to each processor is yolatile. That is,

following a processor failure, the contents of its
local memory are lost. On the other hand, the
shared memory is assumed to be implemented as
stable storage -- it never fails and its contents
are unaffected by any failures in the computing
system. Although it is impossible to implement
such a storage device, storage systems that
approximate stable storage to any desired degree
can be built.

Secondly, we assume the system interacts with
any physical processes it monitors or centrols
solely through sensors and actuators. These are
accessible to all processors. It is convenient to
view these I1/0 devices as being memory mapped.
Since it makes no sense to write to a sensor,
memory locations that correspond to sensors are
read-only with respect to processors. Even so, the
value of such a memory location can change -- it
does so as the quantity being measured by the
sensor changes. Similarly, an actuator can be
viewed as a write-only memory location. Clearly,
the effect of writing a given value to such a

the
that

nature of
require

location 1is dependent on the
associated actuator. However, we
actuators satisfy two properties:

Al: It is a change of value that initiates
action by the actuator.

Hence, writing the same value successively to a

given actuator memory location will cause no
change to the state or operation of the
corresponding actuator., Secondly,
A2: The length of time that an actuator
remains at a given value does not affect
the physical process.
Actuators that do not exhibit these

properties make designing fault tolerant programs
a hopelessly difficult task, since it 1is
impossible to predict how long an actuator will
remain at a given value if failures can occur. So
an actuator found om a rocket that fires the
thruster as long as its associated location has
value 1 does not satisfy A2, since the length of
time a thruster is fired presumably affects the
velocity of the rocket.

Failures in a computing system can be viewed
as events that must be detected and acted upon. As
such, we assume the existence of a set of sensors
that reveal the status of the remainder of the
computing system. Thus, all failures of interest
are detected. These sensors are merely a
convenient way of viewing the fault-detection
schemes employed in the computing system. We also
assume that after a processor failure is detected,

. . *
the offending processor is stopped .

The literature offers many techniques for
handling hardware failures -- both transient and
permanent -- in a manner that is transparent to an
executing program. For example, if a failure is
detected while accessing memory, hardware might
automatically retry the operation. Often, disk
storage devices contain extra space intended
specifically for wuse if a portion of the disk

surface becomes wunusable for some reason. The
view taken above -- that failures are detected by
sensors -- does not preclude use of such

techniques. Rather, our model assumes that it is
only when the hardware is unable to cope with a
failure that the software is notified.

Ihe Protocol

Much process control software is composed of

communicating cyclic processes. This stems from
the nature of process control applications,
repeatedly: read from some sensors, do a

computation, and write to some actuators. In the

sequel, then, all processes are assumed to be of
the form:
P;: Process
<initialization>;

do true + LB od

where LB is an arbitrary program called the loop

* . . .
A failure in a local memory is treated as a
failure in the corresponding processor.

49

body. (Where convenient, we use the guarded
command notation of Dijkstra [Di76].) We seek a
protocol to restart such processes after failures.

The system state is characterized by a
collection of variables. Each variable is gwned
by one process. A process can read or write vari-
ables it owns, but only read variables owned by
other processes. Thus, interprocess communication
is possible, although in a somewhat disciplined
manner. Sensors and actuators are not considered
variables; hence they are owned by no process.

Variables are classified as being either
history wvariables or temporary yariables. A
variable v is a history variable if:

Hl: v is read by a process other than the

one that owns it, or

H2: v is read in LB before it is written
(i.e., it must retain its value across
loop iterations).

Otherwise, v 1is a temporary yariable. It is
fairly simple to determine at compile time how to
classify a wvariable by wusing standard flow
analysis techniques [H77].

After the failure of a processor P, a
reconfiguration rule is used to assign processes

that were running on P to working processors, and
a restarxt protocol is used to ensure that at no
time do history variables or actuator memory
locations have values they could not have had if
the failure had not occurred. Thus, processor
failures are made transparent to processes, except
for possibly increased execution times due to the

time required to reconfigure and restart the
system. Determining a suitable reconfiguration
rule is usually application dependent, 80
discussion of such matters is deferred until

later. A restart protocol for cyclic processes is
developed below.

After failure of a processor P, some state
information concerning processes running on P
might be lost because local memory is volatile.
This suggests that processes be restarted at some
well-defined point in their execution =-- a pdint
where sufficient information about the process
state is available. Such points have been called
checkpoints [De76]. The beginning of LB can be
used as a restart point, provided Pl - P3, below,
are satisfied:

Pl: The history variables of a process
are stored in the shared memory.

The contents of local memory will never be
required at the beginning of a loop iteratiom if
only temporary variables are stored there.
Therefore, loss of the contents of local memory
prior to an execution of LB is not catastrophic *--
the relevant information 1is available in the
shared memory.

Restarting a partial execution of LB shoud#l
not change the number of modifications an actuates
memory location undergoes. Thus,

P2: No actuator is written to more than
once per loop iteration.

This is sufficient because the length of time an

actuator remains at a particular value is
irrelevant; only the number of transitions made by
the actuator can have an effect on the physical

*
process being controlled .

Lastly, to ensure that LB can be restarted
without adversely affecting its subsequent
execution, the values of all history variables
must reflect a complete execution of the loop, not
a partial execution that was abnormally
terminated. Furthermore, history variables can be
updated only after changes have been made to
actuator memory locations. Then, restarting LB
will not cause actuator memory locatioms to
undergo additional tramsitioms. Hence, we require

P3: History variables modified in LB are
changed:

(a) once per loop iteration,

(b) all at once as an atomic action,

(c) after all actuator memory locations.

Below, we describe the implementation of such an
atomic write operation based on a variation of the
intentions list scheme of [LS78]. It ensures that
either all of the values are written or none are,
irrespective of the occurrence or timing of
processor failures.

Let the history variables of process Pig be
Vis Vys o eees Voo and the other wvariables

referenced by Pig be X)s Xy eers X o Then, a
variable named switch., and the 2-element arrays
v1[0:l]. V2[0:1]. «ees v [0:1] are allocated in
shared memory. The loop body of process P.g is
changed as follows:

1B: for i := 1 to n do
vi[(swltchid+l) mod 2] := vi[sthchid]
end;
LB';
switch.
i

:= (switchi +1) mod 2

d d
where LB' is obtained from LB by changing:

(1) "™v." to "v.[(switchid+1) mod 2]".
(2) "xi" to "xi[switch] for each
variable x; owned by process p, pxpid.
Notice that changing the value of switchid
causes assignments made to the history variables
during this 1loop iteration to take effect.
Presumably, storing in a single memory word is an
atomic operation, and therefore the desired
multiple-value atomic write results. The for-loop
prefix ensures that variables unaltered during a
particular execution of LB' retain their values
after such an atomic write. If all history
variables are always sssigned new values in LB',
this loop can be omitted.

Processes communicate by using shared
variables. We assume these variables are
partitioned into resources, where a resource is a

* . .
That is, the number of times the value of the
corresponding actuator memory location is changed.

collection of variables that are related by some
consistency constraints. Accesses to variables in
resources are controlled to ensure that one
process does not change the wvariables of a
resource while another process is reading them,
Otherwise, a process could read a set of values
that does not satisfy the consistency constraints
-~ values that correspond to a partially completed
update operation on the resource. Semaphores
[Di68] can be used to guarantee the necessary
mutually exclusive access to the shared variables
comprising a resource.

In order to preserve the consistency of a
resource, each resource R will have associated
with it a semaphore Sp that is initialized to 1.

Further, all references to variables in R will be
bracketed by P(sR) and V(sR) such that the V-

operation is done only if the shared variables

comprising the resource are in a consistent state.

A section of code so bracketed is known as a
itical on.

The possibility of failures complicates
things somewhat because a process might then be
halted while executing in a critical section.
Assume p has been halted while executing in the
critical section protected by semaphore Sp* Then,

no process (including p) will be able to enter a

critical section protected by sp since the 1last

process that entered never performed a V
operation. To circumvent this difficulty, we
define a synchronization mechanism that allows a
process to re-enter a critical section if it had
already entered that critical section, but never
done a V operation to exit. A restartable binarxy
semaphore rs is defined in terms of a non-negative
integer variable that is set to the name of the
process currently in the critical section, or 0 if
no such process exists. Discussion concerning im-
plementations of restartable semaphores is de-~
ferred until the discussion on implementing the
shared memory; the two are closely related.

If history variables are accessed by more
than one process, then these variables will be
members of resources, and references to these
variables must be from within critical sections.
Let TS;s TSys eees s be the restartable

semaphores used to protect the resources
containing variable(s) owned by process P;4- Then,

the body of the loop comprising process P4 should

be replaced by the Synchronizing Protocol shown
below:
1B: for i :=]1 to n do
vi[(swltchid+1) mod 2] := vi[sw1tchid]
end;
LB';
for i :=1 to m do
Pr(rsi)
end;
swltchid 3= (sw1tchid +1) mod 2;
for i :=m to 1 do
Vr(rsi)
end

where LB' is obtained from LB by changing:

(1) ®™." to "v.[(switchid+l) mod 21",

(2) "x." to "x.[switch_J" for each
variable "xi“ owned by a process p,
PP, 40

(3) and bracketing all references in LB'

to shared variables with Pr and
Vr operations on the semaphore
associated with the resource.

Note that the order in which Pr and Vr operations

are performed is critical if deadlock is to be
avoided.

Caveats

There are some assumptions implicit in the
above protocol. First, whether or not a process
control program satisfies its response time
constraints is contingent upon the existence of
sufficient processing power. Clearly, if enough
processors fail, there may no longer be enough
processor cycles available to meet these
constraints. Here we have assumed that this will
not occur; in reality it might.

Secondly, suppose some process p executes its
loop every t seconds. Thus, due to P2 and P3 p
will change its history variables and actuator
memory locations at most every t seconds. Let wc
be an upper bound on the time it takes to execute
the part of a loop iteration after LB'; that is,
the time it takes to change the value of "switch"
and do the necessary P_ and Vr operations.

Similarly, let rcr bound the time it takes to
invoke the reconfiguration rule and then transfer
p to a working processor after a failure. Then,
the time T between actuator state changes is

bounded by:*
rcr £ T < (N-1)(t+rcr-wc)

where N is the number of processors in the system.
Not only does this have implications with respect
to satisfying response time constraints, but it
means that assumptions about program execution
speed should not be made within a program. For
example, time should be read from a clock, mnot
computed based on the number of iterations a loop
is known to have completed and the expected
execution time of the loop body.

Impl . Stable S

We now turn attention to implementing the
shared memory, stable storage abstraction. Three
representative implementations are considered. The
first uses a single, highly reliable random access
memory. In contrast, the second and third do not
require any special type of storage device, but
instead employ replication of data on independent

storage devices to implement a highly reliable
storage system. The second approach requires a
reliable broadcast facility, while the third

approach requires only a reliable interprocessor
comnunications facility. All three approaches

* c .

We have pessimistically assumed that p has run
on a succession of processors, each of which has
failed.

51

implement only approximations of the stable
storage abstraction. It is not possible to
implement true stable storage using a finite

amount of hardware.

Since complete fault tolerance is impossible,
one usually attempts to construct systems that are
sufficiently fault tolerant for the application at
hand. Once such design goals are known,. the system
designer can select a cost effective design from
among various system organizations. Typically,
"distributed" system organizations are easier to
make fault tolerant than "centralized" ones,
because in a distributed system there are no
components on which the operation of the entire
system is dependent. However, distributed systems
are usually more difficult to design and program
than centralized ones, due to the additional
communication and synchronization required when no
single entity has a complete and accurate view of
the system state. Both centralized and distributed
organizations are considered in what follows.

Ihe Centralized Approach: Using a Single Rapdom
Access Memory
Hardware implementations of stable storage

approximations exist. Such a storage device is
usually constructed by using a non-volatile memory
technology and storing enough redundant
information with each memory word so that error
correcting codes can be used to reconstruct any
information that is lost due to hardware failures.
The result is a fully centralized storage system.
Consequently, among other things the physical
destruction of the storage device would result in
the loss of its contents. In addition, such
storage devices are usually more expensive and
slower than volatile storage devices.

In order for our protocol to work with such a
stable storage approximation, an implementation of
restartable binary semaphores is required. This
is simplified considerably given an instruction
that allows interlocked access to memory. On the
IBM System 370 architecture [IBM] the Compare-
and-Swap (CS) instruction is provided for this
purpose; it is used below. In other
architectures, similar instructions have been
defined. For example, on the DEC VAXIl machines
INSQHI, INSQTI, REMQHI can be used [DEC]. Note,
however, that not all memory interlock
instructions are powerful enough to implement
restartable binary semaphores when failures can
occur. For instance, we have been unable to
devise an implementation that uses the Test-and-
Set instruction, even though this instruction can
be used to comstruct binary semaphores.

The effect of executing a Compare-and-Swap
instruction is as follows:

Ccs(t,s,n): atomically
if t=s + s:= n
O t#s + t:= s
£i
end

Then, for each restartable semaphore rs, one word
of storage is allocated in the shared memory.
Associated with each process P, is a unique

integer name n., such that 1 511.5232-1 (assuming
32 bit words).

local memory,
process. Then,

Vr(rs) for process p, are:

Also, P has a variable, ti, in

that 1is accessed only by that
implementations for Pr(rs) and

Pr(s): L 0; CS(ti,s,ni);
do t.#0 A t.%n. ~»
i i i
t; = 0; Cs(ti’s’ni;)

od
V.(s): s :=0.
r
Ihe Distributed Approach: Replication of Data
Stable storage approximations can also be
realized by replicating data in independent

volatile memories. To accomplish this, a copy of
each item to be saved in stable storage is kept in
every processor's local memory. Them, in order to
support the "shared memory"™ abstraction, a
protocol is used to keep these copies identical.
Numerous protocols have been developed for this;
for example, most solutions to the multiple-copy
consistency problem for fully and partially
replicated distributed database systems will
suffice [B80]. Below, two additional protocols are
described. They exploit the fact that only the
owner of a data item can update it. Consequently,
our protocols are simpler than the usual
distributed database concurrency control schemes
where such assumptions cannot be made.

The first approach 1is based on a reliable
broadcast facility. A bus or ring structured
communications network [F73] can support this mode

of communications. Or, by use of a reliable
broadcast protocol 1like the one described in
[ss80al, a reliable point-to-point computer
communications network can support reliable
broadcasts. The second approach uses a reliable
point-to-point computer communications network,
but does not involve broadcasts. Techniques for
implementing reliable point-to-point computer

communications networks are not described here.

Such matters have received extensive treatment
elsewhere [D79].
Broadcast-Based Approach. Assume an

interprocessor communications facility with the

following properties:

CFl: A processor can perform a broadcast,
which is received by all functioning pro-
cessors or no functioning processor, re-
gardless of the timing or occurrence of
processor failures.

CF2: Messages broadcast are received in
the same order by all processors.

Property CF2 follows from use of a bus or ring for
communications, or by including timestamps on
messages. Presumably, CFl is a consequence of the
nature of the communications network and its
protocols.

Processes read variables in stable storage by
fetching the value of the copy in local memory.

Writes to stable storage are accomplished by

52

which
to change the value of

broadcasting an Mupdate y to z" message,
notifies all processors
variable y to z.

A distributed implementation of restartable
binary semaphores can be constructed as follows.
For each semaphore rs, a queue qP(rs) is allocated

in the 1local memory at each processor P, This
queue need only be as long as the number of
processors that perform Pr(rs) operations. Process

Pi4 running on processor P performs a Vr(rs)
operation by executing the following:

. e M "
Vr(rs). Broadcast: Vr(rs) by Pig"
To perform a Pr(rs) operation the following is
executed by Pigt

Pr(rs):
if "Pr(rs) by pid" not in qP(rs)
then Broadcast: "P (rs) by Pig"s
delay wmtil: first element of
qP(rs) = "Pr(rs) by pid";
In addition, associated with each processor P is a
stable storage mapager process:

ssm, 3

p do true -

receive message m;
if m = "Pr(rs) by px" -

put m at end of q (rs);
0m-= "Vr(rs) by px" -

delete all "Pr(rs) by px"

messages from qP(rs);
0 m = "™update y to z" +
y = z3
£i
od

All "Pr(rs) by px" messages are deleted from
qP(rs) when a "Vr(rs) by px“ message is received
because multiple copies of the message might have
been broadcast. This can happen if a failure
causes p_ to be moved to another processor after
Note also that qP(rs) must be

protected from concurrent access.

performing Pr(rs).

This implementation of restartable binary
semaphores is similar to the distributed
.semaphores described in [879]. The interested
reader is referred there to see how the
correctness of our implementation could be
verified.

As shown above, when an "update y to 2z"

message 1s received by the stable storage manager
process, it updates local memory. CFl and CF2
ensure that all copies of a variable in the
various processor's local memories appear to be
identical, provided the Synchronizing Protocol
given above 1is followed, where writes to stable
storage are replaced by broadcasts of the
appropriate update message.

The effects of write operatioms to history
variables owned by Piy do not actually become

until the value of
This allows the broadcast

visible to other processes

"switch, " is altered.
id

of update messages to be delayed until the end of
LB', Thus, p;4 can broadcast the values of all its

history variables in a few broadcasts immediately
before broadcasting "update switchi to ..M,

instead of broadcasting an update message every
time a history variable is changed in LB',
Depending on the logic of LB', this may or may not
be a significant optimization.

Approach Without Bxoadcasts. In order to

update a variable in stable storage without using
a broadcast facility, a message must be explicitly
sent to every processor. Since the processor
performing an update might fail in the middle of
this, a variant of the two-phase commit protocol
[G78] is wused to ensure that either all
processors, or no processors change their local
storage.

As before, the value of a variable in stable
storage is obtained by reading the copy of that
variable in 1local storage. Writes to history
variables involve two steps. First, an update
message is sent to each processor that is known to
be functioning. Then, when all of the history
variables for a given loop iteration have been
updated, the value of "switch™ is changed. To
change the value of Mswitch,,", process Pigq
executes the Change "switch"™ Protocol below, where
in steps (1) and (3) messages are sent to
processors in the same order as the order of
processors to which Pig would be transferred in

the event of failure:

(1) To all processors send:
change switchid“.

(2) Wait until a ™P prepared" or "P
failed™ message is received on behalf of
all processors P.

"Prepare to

(3) To all processors send: "Change
switch.. to x", where x = (switch. . +1) mod
id id
2.
Thus, this sequence of steps replaces the

assignment:
sthchid s= (sw1tchid+1) mod 2

in the Synchronizing Protocol. Note that in step
(2) some facility for detecting processor failures
and generating the necessary messages is assumed.
For example, functioning processors could send "P
failed"™ messages on behalf of those processors
known to be no longer functioning. Also, "all
processors™ in the above protocol includes the one
executing Piq*

Each processor P is assumed to have a stable
storage manager process for every process P4 that
owns variables in stable storage (including
processes presently running on P). Let TS)s TS,
be the restartable

guarding resources that contain variables owned by
Pige If it is assumed that messages are always
routed to the correct stable storage manager based
on the originating process, then the stable
storage manager process that runs on processor P
for P4 is:

sees IS binary semaphores

53

receive message m;

do m = "update y to z" + y:= 2

[0 m = "Prepare to change switch. " +
for i :=1 to n do; P(rsi); end;
reply: "P prepared";
receive message m;

if m = "Change switchi to x" »

i d
sthchid 1= x3
for i := 1 to n do; V(rsi); end;
receive message m;

Om # "Change switch,, to x" =+

for i := 1 to n do; V(rsi); end
f1
od

Notice that regular binary semaphores can be used,
because the processor to which a process is moved
after a failure will have its own semaphores. The
necessary system~wide synchronization achieved
previously by wusing distributed restartable
semaphores is realized here by two-phase
commit protocol.

the

If a processor failure occurs while a process
is in the midst of executing step (3) of the
Change "switch"™ Protocol, the value of "switch"
might not be changed at all processors., This is
clearly undesirable, since the values of all
copies of each variable must be kept identical for
the shared memory abstraction to be realized.
Therefore, whenever a process P.q is restarted on

another processor (after being moved due
failure) the following protocol is executed:

to a

(1) To all processors send: "Prepare to

change switchid".

(2) Wait until a message with text: "p
prepared" or "P failed" is received on
behalf of all processors P.

(3) To all processors
switchid to x", where x =

send: "Change

sw1tchid

As before, in steps (1) and (3) the order in which
messages are sent to processors is the same as the
order of processors to which Pi4 would be

transferred in the event of a failure. This is
because, otherwise, the restart protocol could
allow another process to observe pid's history

variables regress in time.

Restarting Repaired Processors
After a failed processor has
it must be re-integrated into the
centralized implementation of the stable storage
abstraction, this is quite simple., Some processes
are selected and moved to the repaired processor
at the beginning of their respective loop
iterations. Things are slightly more complex in
the distributed implementations of stable storage,
because the repaired processor's local memory must
be restored, as well. This can be dome in two
ways, The first involves a protocol that allows a
processor to request from other processors the
current contents of stable storage. However, there
is some subtlety in the design of such a protocol.
In particular, while memory downloading is taking

been repaired,
system. In the

place, other processes might be updating history

variables. So the protocol used must avoid
multiple-copy consistency problems. A second
approach to reinitializing a processor's local

memory, which can take longer, is for a newly
repaired processor to respond to update messages
as they are received. After the processor has
received two M"Change switch ..." messages from
each process that owns variables in stable
storage, restoration of local storage is complete
and processes can be moved to the repaired
processor,

Opt imi . for P ical § ial C
some interaction between the
processes tO pProcessors, the
reconfiguration rule, and implementing a stable
storage approximation. The various schemes
outlined above will work in conjunction with any
reconfiguration rule. However, for a given

reconfiguration rule, optimizations are usually
possible.

There 1is
assignment of

For example, sensors and actuators need only
be accessible (hence connected) to processors that
might actually run processes that reference these
devices. For a variety of reasoms, it may not be
desirable to connect every processor to all
sensors and actuators. Thus, the reconfiguration
rule is determined, in part, by such connectioms.

In many situations the system can be expected
to experience only a small number of processor
failures. Then, it is known a priori to which two
or three processors a given process might be
assigned. This, and knowledge of the interprocess
communications topology of the program can be used
to govern assignments of processes to processors
so that instead of replicating all variables at
all processors, a copy of a variable is maintained
at a processor only if some process that accesses
that variable could run there.

c lusi

Constructing a fault tolerant computing
system involves defining a reconfiguration rule,
so that after a failure the computing load can be
repartitioned over the remaining working
processors, and devising a restart protocol, so
that at no time do program variables or actuator
memory locations have values they could not have

had if the failure had not occurred. Thus, a
failure is made transparent to other processes in

the system, and can have no effect on the
environment being controlled by the computing
system.

For a program S, a restart protocol for S,
rp(S), is a program that can receive control at
any point during execution of S -- presumably
after a failure -- and establish the postcondition

of S. In [S580b], three conditions that ensure S!'
can serve as a restart protocol for S are
developed. They are:

(1) variables mentioned in the precondi-
tion of S' are always defined,

(2) the precondition of §' is universally
invariant over execution of S, and

54

(3) the precondition of S' is universally
invariant over execution of S'.

Condition (1) guarantees that the data required by
8! for successful execution is available after a
failure; (2) is necessary because a failure can
occur at any point during execution of §; and
condition (3) is similarly required because a
failure can occur at any point during execution of
st.

In this paper, a restart protocol for cyclic
programs was presented. It was obtained by
applying the theory described above, in the
following manner. Associated with every program
loop is a loop invariant, an assertion that is
true at the beginning and end of each execution of
the loop body. This loop invariant can be made
into a universal invariant by requiring that all
changes to variables in the loop invariant --
history variables -- be performed in a single
atomic action. Then, the loop body can serve as
its own restart protocol since conditions (2) and
(3) follow from the universal invariance of the
loop invariant, and condition (1) follows if
history variables are stored in stable storage.

Lastly, it is worthwhile to point out that in
our solution, we first postulated the existence of
a stable storage abstraction and then considered
its implementation. Of course, "separation of
concerns™ is not a new technique in constructing

software. Nevertheless, choice of a suitable
abstraction simplified things considerably.
Stable storage appears to be a very useful
abstraction in the context of fault tolerant
software. It is used in [G78] and [LS78] as well.
Acknowledgments

The problem addressed in this paper was first
suggested to us by J. Kemp, W. Comfort, and M,
Kushner. We would also like to thank G. Andrews,

R.W. Conway, and G, Levin for their comments on an
earlier draft of this paper.

References
[B80] Bernstein, P,A.,, N. Goodman, Fundamental
Algorithms for Concurrency Control in
Distributed Database Systems, CCA-80-05,

Computer Corporation of America, Mass,

Digital Equipment Corp., VAX1l Architecture
Handbook, Digital Equipment Corp, Maynard,
Mass, 1979.

Davies, D.W., et.al., Computer Networks and
Their Pxotocols, John Wiley and Sons, NY,
1979.

[De76] Denning, P.J., Fault Tolerant Operating
Systems, Computing Surveys 8:4, 359-389.
[Di68] Dijkstra, E.W., Cooperating
Processes in Programming Languages F.
Genuys (Ed.), Academic Press, NY, 1968,
[Di76] Dijkstra, E.W.» A
Programming, Prentice Hall, 1976.
[F73] Farber, D., et.al., The Distributed

Computing System, in Proc. CompCon 13, Feb.
1973. 31-340

[DEC]

[Dp79]

Sequential

of

[G78] Gray, J., Notes on Data Base Operating
Systems, IBM Research Report RJ 2188, (Feb.
1978).

[H77] Hecht, M., Flow Analysis of
Programs, Elsevier North-Holland, NY, 1977.

(IBM] IBM Corp., LBM System/370 Principles of
Operation, GA22-7000-3.

[1s78] Lampson, B., H. Sturgis, Crash Recovery in
a Distributed Data Storage System,
submitted to CACM.

[879]1 Schneider, F.B., Synchronization in
Distributed Programs, to appear in TOPLAS.

[s880al Schneider, F.B., R.D, Schlichting, Fast
Reliable Broadcasts, in preparation,
Cornell University Dept. of Comp. Sci.

[ss80b] Schlichting, R.D., F.B. Schneider,
Verification of Fault Tolerant Software,
TR 80-446, Cornell University Dept. of
Comp. Science, Nov. 1980,

55

