3/ .
-omputer Science

the use of a pro-
the goal being a
based on devel-
d-in-hand. The
the teaching of

nount of detaijl,
ly inherent com-
he judicious use
d an underlying
1g mathematics
some scientists,
erence rules are
is far from per-
thms have been
to develop new

tion of conven-
rover has been
,nguage Gypsy
ymmunications
uctive mathe-
:al proposition
programming.
il can extract
truction,

|
|
|
|

Computer Systems

Forest Baskett David Clark
A. Nico Habermann Barbara Liskov
Fred B. Schneider Burton Smith

Research in computing systems is concerned with developing principles and
tools to enhance the accessibility and power of computers. The goal is to
bridge the gap between the demand for computing imposed by applications
and the supply provided by extant technologies. Research is performed by
designing systems, analyzing systems, and—most importantly—abstracting
key problems and devising mechanisms to facilitate their solution. Thus, in
addition to producing systems, researchers make important contributions by
inventing new abstractions and devising ways to manipulate them.

The nature of computing systems research is diverse. As in more tra-
ditional sciences, there is an empirical element. Programs do not behave
in random ways, and knowledge of how they do behave allows the struc-
tures that execute them to be optimized. Unlike the natural sciences, how-
ever, the phenomena being studied are of our own making. Changing the
phenomena—that is, the hardware or software—is a perfectly acceptable way
to avoid a problem. Finally, computing systems research has a significant
engineering component. Computing systems tend to be complicated enough
that building them is the only way to evaluate certain ideas.

We cannot hope to survey research in computing systems in a short
space. The field is enormous, spanning aspects of hardware and software
design. However, it is possible to get a taste of computing systems research
by looking at a few of its scientific contributions. We do this as follows. The
examples selected are representative of the type and style of research in the
area, although they reflect our biases.

Operating Systems

Sharing is one way to make an expensive resource, like a computing system,
more accessible to a collection of users. To put this principle into practice,
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Sharing a computer among users involves more than just sharing pro-
cessor cycles among programs. To maintain the illusion that each user has
a private machine, memory usage must also be controlled. This is because
programs written in isolation might use identical names to designate (what
should be) different memory locations. One solution to this problem, devel-
oped by computing systems researchers, was virtual memory, an abstraction
that, like real memory, maps names to memory locations. Virtual memory
is managed by the operating system. Tables are maintained describing the
mapping in effect, and information (in units called pages) is moved from
relatively slow peripheral storage devices to main memory and back as it
is needed by executing programs. As a result, it is possible for each user’s
virtual machine to behave as if it has a private memory that is larger than
the one actually connected to the processor.

Virtual memory makes it possible to write programs without concern for
the actual memory size of a computer. It illustrates a pervasive theme in
computing systems research: defining and implementing abstractions that
package technology for easier use. As another example, file and data-base
systems implement abstractions that allow information to be saved and re-
trieved without concern for how or where the information is stored. In fact,
the success of many operating systems, including the popular UNIX system,
can be attributed directly to the clean, high-level abstractions they present
to their users. These abstractions allow programmers to devote more time to
their applications and less time to dealing with idiosyncrasies of the system.
Inventing clean, high-level abstractions is difficult, but then, designing tools
that will be used for as yet unimagined tasks is always hard.

Virtual memory illustrates another important aspect of computer sys-
tems research: controlling resource use to achieve high utilization. To load
a new page into main memory, we might have to move back an old page
to the peripheral storage device. The obvious question is which page to
evict. Empirical studies of program behavior reveal that page references
are not entirely random. Programs tend to exhibit locality: a recently ref-
erenced page is more likely to be referenced sooner than a page that has
not been referenced for some time. Locality can be exploited in designing a
page replacement algorithm, allowing a virtual memory system to perform
considerably better than if page-out decisions were made randomly. Here,
experimental evidence concerning program behavior allowed an aspect of the

system to be optimized.

Processor cycles and memory pages are just two examples from a diverse
collection of resources that an operating system must manage. To ensure
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adequate system performance, access to all of these resources must be con-
trolled. In early systems, scheduling policies drew heavily from previous
work in telephony. However, it soon became apparent that new policies
were required. Resource requests in computing systems (unlike telephone
systems) are characterized by high-variance distributions, as exemplified by
the rule that a large percentage of a resource will be required by a small
number of the requesters. To ensure high resource utilization with these
high-variance distributions, researchers derived new scheduling and alloca-
tion methods. Contributions to traditional job-shop scheduling theory were
also made. Problems in analyzing computing systems led to advances in
traditional operations research methods, including new methods for solving
queuing models.

One might think that today’s personal computers render much of this
work obsolete, since machines are no longer shared by users. Just the con-
trary is true. First, expensive resources, like high-resolution printers and
file storage systems, must still be shared. Second, most personal computers
allow a user to run several programs concurrently. Window facilities, for
example, allow the user to interact concurrently with a number of programs,
thereby supporting a synergism between these tools. Although the processor
is not being shared among users, it is being shared among these tasks, and

the theory and solutions developed for implementing multiuser time-sharing
systems still apply.

Computer Architecture

The needs of some applications are defined in terms of cost and raw com-
puting, communication, and storage capacity. Computer architecture is the
area of computing systems research concerned with designing computers to
satisfly those needs. The term architecture is particularly appropriate be-
cause design is done at a fairly high level of abstraction. At any given time,
current technology provides building blocks—arithmetic, logic, and storage
elements—with certain performance characteristics. The computer architect
attempts to combine these building blocks so that they cooperate harmo-
niously to implement a structure that satisfies performance and cost goals.
By intelligent choice of abstractions and/or their implementation, we can
exploit the latest technological breakthrough or overcome a technological
bottleneck.

One example of an innovation in the implementation of an abstraction
is the idea of instruction pipelining. The machine language programmer
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is told—that is, provided with the abstraction—that instruction execution
occurs as a sequence of five operations:

1. The instruction is fetched from memory.
The instruction is decoded.
Operands are fetched from memory.

The operands are combined as prescribed by the instruction.

oA @

. Results are stored in memory.

The naive implementation of this five-operation cycle would be to process
one instruction completely, then the next, and so on. For technological rea-
sons, accessing memory usually involves a significant delay. Measured in
units of memory-access delay, the elapsed time between completing each in-
struction would be at least 3 memory access times—one access time for each
of steps 1, 3, and 5. Notice, also, that the memory is left idle during steps
2 and 4. A pipelined implementation of instruction execution could com-
plete instructions at close to twice this rate. A pipeline works just like an
assembly line and exploits the empirically observed absence of dependencies
between adjacent instructions. In this case, while one instruction is being
decoded, the next is fetched, and so on. The result is that an instruction
can be completed every 3 memory-access delays. Moreover, memory is kept
busy all the time.

The idea of pipelining is not restricted to instruction processing. It can
be applied at various levels in the design of a computing system. Pipelined
arithmetic units enable time-consuming operations, like multiplication, to be
accomplished at a high rate. Pipelining can also be applied at the highest
level of the system. A class of computers, called systolic arrays, is able to
achieve extremely high throughput because these computers consist of a col-
lection of functional units connected into one large pipeline that implements
the data transformation described by a program.

Caching is another example of how computer architects are able to achieve
high performance by conceptual breakthroughs rather than relying on tech-
nological ones. High-speed memory tends to be expensive, and all memory
has limited bandwidth. Ideally, we desire cheap, high-speed, high-bandwidth
memory. The question is how to implement a memory abstraction with these
performance characteristics; caching provides the answer. A cache is a small,
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high-speed memory that serves as a front end to a larger, slow-speed mem-
ory. Information is moved into the cache when it is needed and moved out
when it is no longer needed. Because programs exhibit locality in memory
references, the cost of moving information into a cache can be amortized,
and most memory accesses will be to the high-speed cache. Caches that
are smaller than 1 percent of the total memory size are sufficient for dra-
matic performance improvements (i.e., over 95 percent memory accesses can
be satisfied by the cache). Thus, a relatively high-speed memory is imple-
mented by using a large amount of slow-speed memory, a small amount of
high-speed memory, and mechanisms to transfer information between them.

The issues in implementing a cache are similar to those associated with
implementing a virtual memory. It is not rare for both hardware and soft-
ware to involve the same abstractions. Consequently, both can benefit from
new abstractions and innovations in implementing old ones. In fact, the
computer architect often must choose between realizing an abstraction di-
rectly in hardware and choosing more primitive abstractions to implement,
leaving it to systems software to realize that abstraction. This also means,
however, that work in computer architecture can be responsible for new
research directions in programming languages, compiling, and algorithms.
For example, recent investigations into reduced instruction set computers
(RISC), which are based on the premise that small and simple instruction
sets are best, have stimulated research into compiler techniques.

Most agree that still more computing power will be needed to execute
applications programs that unravel new complexities in, for example, par-
ticle physics, quantum chemistry, and genetics and to handle engineering
applications such as computer-aided design and computer-controlled manu-
facturing. Future computers will meet these goals not only by innovation in
electronic component technology but also by an architectural revolution—
altering the instruction processing abstraction from the single-stream (one
instruction at a time) Von Neumann model to a model in which multiple
instruction streams are processed in parallel. The correct choice of parallel
processing abstraction, if indeed there is a correct choice, remains a hotly
debated topic. Past work from operating systems gives some insight into
parallel processing, but only for instruction execution abstractions that cor-
respond to parallel asynchronous processes. Other computational models
have also been proposed. Examples of such abstractions are the data-flow
and functional programming models. In both, a set of equations of a par-
ticular form, rather than a sequence of instructions, defines a computation.
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As a result, the instruction stream is not defined prior to execution but is
created as the computation proceeds.

Most of the problems associated with parallel architectures based on par-
allel processes are associated with the communications abstraction. Some
architectures employ a shared memory for communication. However, im-
plementing this abstraction requires an extremely high bandwidth mem-
ory because the memory must service many (fast) processors. New caching
schemes, in which each processor has its own cache and program variables
might reside concurrently in more than one cache, are currently being inves-
tigated as a way to solve this bandwidth problem. A second communication
abstraction under investigation is the use of message passing. Realizing this
abstraction requires communications channels that interconnect processors.
For the extremely large numbers of processors contemplated, it is techno-
logically infeasible to connect every pair with a direct link. Yet, restricting
the topology of interconnections makes an architecture poorly suited for
programs in which there is a clash between the processor interconnection
topology and the program’s communications topology.

Additional research will be required to resolve these problems. Abstrac-
tions will be proposed, and experiments will affirm or deny their viability.
The experiments will be costly because designing and engineering a large
computing system can require significant time and resources. Moreover, it
does not suffice to build just the hardware. For abstractions that differ
significantly from those with which we have experience, software must be
constructed and programming methods must be developed. And, although
computers are universal machines and therefore any new computing system
could be simulated, it is still necessary to build the hardware because sim-
ulation is just too slow to gain meaningful experience. However, the payoff
can be great. All the sciences can benefit from the tools that result.

Networks and Distributed Systems

Not all application requirements can be translated into access, capacity; and
cost. Sometimes, an application imposes constraints on the structure of a
system, usually in terms of physical placement of system components. For
example, an organization might need to share information that is located
on computers at various branch locations, requiring that the computers at
these locations be linked. Process control applications are another example
in which placement of computers is dictated by the application. Here, pro-
cessors must be located near the sensors and actuators that interact with
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the physical process being controlled. Finally, implementing the fault toler-
ance needed for high availability requires that when components fail, they
do so independently. Processors that are physically separated and linked by
a communications network exhibit this failure independence.

A distributed system is a collection of computers interconnected us-
ing a computer communications network that provides (relatively) narrow-
bandwidth, high-latency communications channels. At first, we might think
that an understanding of telephony would be sufficient to enable networks
to be implemented and that an understanding of parallel asynchronous pro-
cesses (from operating systems) would be sufficient to enable applications
to be designed for distributed systems. Unfortunately, computer commu-
nications demands are not well served by traditional telephone switching
technology. In addition, the use of narrow-bandwidth, high-latency com-
munications channels changes the coordination problems that can and must
be solved, in addition to changing the costs of various solutions. Comput-
ing systems research in networks and distributed systems has tackled these
problems, in some cases uncovering fundamental limitations and results in
fault tolerance and coordination of communicating processes.

The central proposition of modern data networking is that a useful com-
munications abstraction can be implemented using packet switching (as op-
posed to circuit switching). In packet switching, a communications channel
is multiplexed serially by sending small packets. Each packet contains rout-
ing information and a small element of data. Information to be transferred
between two sites is decomposed into packets, each of which independently
wends its way to the destination, perhaps even taking different routes. The

use of packets permits a higher rate of multiplexing, and hence a high degree -

of sharing of expensive communications bandwidth. Even telephone compa-
nies have now embraced packet switching to implement the circuit-switching
abstraction they present to their customers.

Packet switching does not itself prevent the offered load from exceeding
available bandwidth; nor does it prevent statistical fluctuations in load from
causing short-term overloads. These congestion problems have occupied net-
work designers for the last century. Algorithms designed to control conges-
tion are difficult to construct because congestion might arise and disperse
faster than the system can respond. A good analogy here is with air-traffic
control. Imagine the difficulty of managing the air-traffic control system if
controllers could only communicate by putting messages into airplanes and
flying them from airport to airport! Actual air-traffic controllers have access
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to Jow-delay communications paths (e.g., telephone and radio) for control; a
computer communications network must use its own data paths for control.

In addition, process execution speeds in a distributed system are high,
relative to the speed with which processes can change or sense the state of
the system. As a result, system processes can observe the same set of events
in different orders, unless those events are causally related. Researchers
have developed theories to reason about computing systems subject to this
phenomenon, resulting in new abstractions about computation, new appli-
cations for logics of knowledge and belief, and even new insight into the
nature of causality. Those familiar with special relativity are not surprised
to find that time-space diagrams have received application in these theories
and that anomalies predicted by special relativity are actually observable in
distributed systems.

Another major concern to networking researchers is the correct choice
for the communications abstraction provided to users of the network. Raw
packet delivery is unsatisfactory as an abstraction because the network may
lose or reorder packets. The virtual circuit abstraction ensures that packets
are delivered in the order sent; unfortunately, it is impossible to implement
this abstraction without admitting the possibility of unbounded delivery de-
lays. For this reason, both less powerful and more powerful abstractions have
been investigated. Devising suitable abstractions is particularly difficult be-
cause of the great variation that can be found in the channels composing a
network. Channels can vary in bapdwidth and end-to-end delay by as much
as six orders of magnitude.

One outgrowth of research in networks and distributed systems is an
increased understanding of fundamentals for achieving fault tolerance. In
most centralized systems, no serious attempt was made to keep the system
running if a component failed, and the whole system failed as one. In dis-
tributed systems, it became desirable to keep parts of the system running,
even if other parts failed. This has resulted in new methods for partitioning
function and responsibility and a new set of abstractions for thinking about
fault tolerance.

The traditional view of fault tolerance is in terms of stochastic mea-
sures, like MTBF (mean time between failures). A more recent view, t-fault
tolerance, characterizes fault tolerance in terms of the maximum number
t of failures that can occur before the system will violate its specification.
Clearly, stochastic measures can be derived from ¢ fault tolerance if given
stochastic characterizations for system component failures. The advantage
of ¢ fault tolerance is that it permits evaluation of fault tolerance that is
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achieved through design—independent of the reliability characteristics of
the components used to implement that design. Fault tolerance can now be
viewed in a technology-independent manner. This view of fault tolerance
has led to some surprising insights. One is that distributing an input or co-
ordinating the actions of the components in a replicated system can be very
expensive and sometimes impossible. Results associated with the so-called
Byzantine Generals problem give bounds on the costs. The results also give
insight into types of failure that less expensive implementations are unable
to tolerate. They show that TMR (triple-modular redundancy), a widely
used fault tolerance technique in computer engineering, is based on some
previously unstated assumptions that are not always valid.

Computer scientists have enjoyed the benefits of computer networking
and distributed computation since the 1960s, when the ARPANet was first
constructed. Initially developed as an experimental network connecting com-
puter science research facilities, the network is now widely used by computer
scientists (and others) for day-to-day communications activities, including
electronic mail, remote login, and file transfer and sharing. Electronic mail
has revolutionized communications patterns among users and has led to
commercial ventures and standards of use in all disciplines. Office automa-
tion and exploitation of personal computers are possible only because of our
understanding of computer communications networks and distributed sys-
tems. And, mundane as they are, these largely clerical uses, made possible
by computing systems research, are changing the way business is conducted,
financial resources are managed, and people conduct their daily lives.

Concluding Remarks

Computing systems research, like much of computer science, is about prop-
erties and implementation of abstractions. The ultimate utility of these ab-
stractions derives from the extent to which they make computing resources
available to applications. A reasonably small set of abstractions—concerned
with cooperation and sharing resources—finds utility over and over at various
levels of a computing system, leading one to believe that these abstractions
are, in some sense, fundamental. New breakthroughs in electronic compo-
nent technology can be exploited and new applications demands sated with
minimal disruption to users’ views of computing by virtue of these abstrac-
tions.

Although there is a large engineering component in computing systems
research—one builds systems in order to understand the utility of the ab-
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stractions they implement—it would be a mistake to view enginee.ring as tl:e
primary research activity. The main contribution of the I}atural sc1enc:15. ;S to
observe, predict, and explain phenomena, not -the .experlments t}.w,t validate
those explanations. Similarly, the main contrlbjutmn of computing systems
research is the abstractions and our understanding of why they work.



