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ABSTRACT

A distributed program is presented that ensures delivery of a message to the functioning
processors in a computer network, despite the fact that processors may fail at any time.
All processor failures are assumed to be detected and to result in halting the offending
processor. A reliable communications network is also assumed. Broadcast strategies
that minimize the time to completion for a broadcast are defined.
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1. Introduction

A reliable broadcast protocolis a distributed program that ensures delivery of a message to
the functioning processors in a computer network, despite the fact that processors may fail at any
time. Fast reliable broadcast protoccls have application in a wide variety of distributed program-
ming problems [S80] [S82].

Broadcast networks —e.g. contention networks such as Ethernet [M76| and ring networks like
DCS [F73|- would appear to implement reliable broadcast protocols directly in hardware, but do
not [LL79|. In these networks, each processor is connected to a nefwork interface unit. This unit
monitors the network and copies messages identified with its address code into a buffer memory,
which can be accessed by a connected processor. Unfortunately, there is no guarantee that a pro-

cessor will receive every message addressed to it. For example,

(1) the buffer memory might be full when a message is received by the interface unit,

(2) the interface unit might not be monitoring the network at the time the message is
delivered, or

(3) in a contention network, an undetected collision that affects only certain network
interface units could cause them to miss a message.

Thus, while broadcast networks allow messages to be broadcast, they do not directly support reli-
able broadcasts. This is not to say that hardware that directly implements a reliable broadcast

protocol cannot be constructed; merely that it has not been.

In point-to-point networks, in which a message sent can be received by only one processor,
there are other impediments to implementing reliable broadeast protocols. If each processor sends
al most one message per broadcast, then time linear in the number of processors is required, often
an unacceptable delay for the completion of o broadcast. If each processor sends more than one
message per broadcast, broadcasting is not 2n atomic action with respect to failures. Conse-
quently, such protocols require a scheme in which processor failure causes another processor to

assume its duties. Such a scheme, which can be subtle, is one of the contributions of this paper.

The paper is organized as follows. In Section 2, assumptions about the communications net-

work and processor [ailures are discussed and the notion of a broadcast strategy is formalized. In



Section 3, a reliable broadcast protocol that will work with any broadcast strategy is derived. In
Section 4, a way to generate broadcast strategies that minimize the length of time to complete a

broadeast is presented. Section 5 discusses some implications of our work.

2. The Environment

2.1. Communications
Consider a network containing N processors, named I, ..., N. We assume the

Reliable Communications Property: Each functioning processor can always communi-
cate, directly or indirectly, with every other functioning processor.

Clearly, to withstand up to & failures, there must be & independent paths between any two pro-
cessors. These paths may be direct or may involve relaying messages through other processors.
Although achieving the Reliable Communications Property is likely to be expensive, it is impossi-
ble to distribute a message to every functioning processor if there is no way to communicate with
some of them. Implementations that approximate the Reliable Communications Property do

exist: the ARPANET and many local-area networks [N79] exhibit it most of the time.

Assuming the Reliable Communications Property does not trivialize the problem of design-
ing a reliable broadcast protocol; it is still necessary to design the protocol so that failure of a pro-

cessor will result in some other processor assuming its message-forwarding duties.

Processors communicate by exchanging messages and acknowledgements. Each message m

contains the following information:

m.sender = the name of the processor that sent m.
m.info =  the information being broadcast.
m.seqno = a sequence number assigned to the message by the processor b that initiates

the broadcast. The first message broadcast has sequence number 1.

Execution of
pllmsg(ezpr, )

by processor ¢ sends a message m to processor p with m.sender = ¢, m.info = ezpr and
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m.seqno = s. If m is a message, execution of p!'msg(m) by g sends m to p with the same info

and seqno fields but with sender being ¢. In either case, execution of !! does not delay g.
Execution of
?2msg(m)
by a processor delays that processor until a message is delivered; then that message is stored in
variable m.

Execution of p!lack(m) and ??ack(m) are used to send and receive acknowledgements.
Their operation is similar to that of p!!msg(m) and ??msg(m), the only difference being the iden-
tifying ack instead of msg.

This notation is inspired by the input and output commands of CSP [H78]. Two shrieks (!!)
and queries (?7) are used, instead of one, to indicate that messages are buffered and therefore no
synchronization takes place. Also, in contrast to CSP, the sender names the receiver but the

receiver does not name the sender.

2.2. Processor Failures
We assume a restricted type of processor failure.

Processor Failure: A processor has failed if it has stopped executing. Messages delivered
to it may be lost.

The case where a processor continues executing, although not in a manner defined by its program,
is not considered here. However, as long as the erroneous operation does not cause transmission
of acknowledgments, the integrity of the protocol developed in Section 3 will not be affected —exe-

cution will merely be slowed until the failure is detected, at which time the protocol will continue.

Some mechanism for detecting processor failures is assumed, which is abstracted for use as a
predicate failed(p):
failed(p) = ‘‘processor p has failed”

This mechanism can be implemented using time-outs.
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2.3. Broadcast Strategies

A broadcast sirategy describes how a message being broadcast is to be disseminated to the
processors in the network. We represent a broadcast strategy by a rooted, ordered tree in which
the root corresponds to the processor originating the broadcast, other nodes correspond to the

other processors, and there is an edge from p to ¢ if processor p should forward to processor g
the message being broadcast.! When a node has more than one successor in the tree, the message
is forwarded to each of the successors in a predefined order, also specified by the broadcast stra-
tegy.
Given a broadcast strategy represented by graph (V, E'), we define the relation
p SUCC q = pqeE
SUCCT and SUCC® are the conventional transitive closure and reflexive transitive closure of rela-

tion SUCC. We use the name of a relation to denote a set: SUCC(P) is the set of successors of

the elements of the set P, and similarly for SUCC™ and SUCC®.

A broadcast strategy describes a preferred method of broadcasting: as long as no processors
fail, messages are disseminated as prescribed by the broadcast strategy. However, processor

failure may require deviation from the strategy.

The broadcast stra.;;eg to employ in a given situation depends on what is to be optimized.
For example, in Section 4 a broadcast strategy is given that minimizes the length of time it takes
until all processors receive the message. Use of broadcast strategies that can be represented by a
subgraph of the processor interconnection graph seems reasonable, since it minimizes message
relaying, but it is not required.

Two common broadcast strategies are the ‘“‘bush’ of Figure 2.1a and the ‘‘chain" of Figure
2.1b. In some sense, these are the limiting cases of the continuum of broadcast strategies. A

more complex broadcast strategy is shown in Figure 2.1c.

IR estriction to trees is not a limitation when considering broadcast strategies that ensure minimum time to comple-
tion. A broadcast strategy that cannot be represented as a tree must include a processor that receives the same message
more than once.



(a) (b) (c)

Figure 2.1 — Some Broadcast Strategies

3. Reliable Broadcasts with Unreliable Processors

We now present a reliable broadcast protocol for any broadcast strategy represented by an
ordered tree with root b. A copy of the protocol runs at each processor, the copy for processor b
being slightly different because broadcasts are initiated there.

The broadcast of message m originating at b is completed when every functioning processor

has received a copy of m. Thus, the distributed program establishes B(b,m) where:
B(j,m)= (VY p: peSUCC*({j}): failed(p) v rec(p,m))
and rec(p,m) = '‘processor p has received message m"

However, B(b,m) may not remain true once it has been established, if failed processors restart.

To avoid this problem, we postulate temporarily that once a processor has failed it remains in



that state forever. We return to this problem in Section 3.3, where we devise a processor restart

protocol.

3.1. Establishing B(i,m) at Processor i

We begin by assuming that b does not fail, but others may. When processor i receives a
message m, its duty is to establish B(i,m) -to make sure that all functioning members of its sub-
tree receive m— and then to acknowledge m. Upon receipt of m, ¢ relays m to every processor p
in SUCC({i}). Each of these establishes B(p,m) and then returns an acknowledgement to :.
When, (and if) all these acknowledgements are received by ¢, B(i,m) has been established and an

acknowledgement can be sent to m.sender.

When a processor p from which 1 is expecting an acknowledgement fails, there is no guaran-
tee that processors in p's subtree have received m. Therefore, upon detecting that p has failed, ¢
sends m to all processors in SUCC({p}) and waits for acknowledgements from these processors

instead of from p.
The protocol executed at processor i to establish B(i,m) uses two set-valued variables:

sendto = the set of processors to which m must be sent;

ackfrom = the set of processors from which acknowledgements for m are awaited.
B(i,m) is weakened to obtain the following invariant for a loop that will execute at processor i:
I = (Vp:peSUCCT({i}): peSUCC*(sendto u ackfrom) v B(p,m) v failed(p))
Note that if 7 has not failed thi;ﬂ
rec(i,m) A I A sendto =% A ackfrom=% = B(i,m)
Thus, a loop of the following form may suffice to establish B(i,m):

?7?2m; {rec(i,m)}

sendto, ackfrom:= SUCC({i}), ®;

{rec(i,m) A I}

do sendlo £ d — ... {rec(i,m)A I}
| ackfrom=& — ... {rec(i,m)A I}

od

(B(i,m)}



Filling in the bodies of the guarded commands is fairly simple. If sendto £ &, m is sent to

a processor dest in sendto, dest is deleted from sendto, and dest is added to ackfrom to reestab-
lish /.

If ackfrom £ &, at least one processor p has not yet returned an acknowledgement for m.
When such an acknowledgement is delivered to i it can be received and p deleted from ackfrom.
In order to do this and leave [ invariant, it is sufficient for p to establish B(p,m) prior to sending
such an acknowledgement, since

I ~ B(p,m) = wp(‘ackfrom:= ackfrom-{p}", I).
Thus, the following proof obligation must be satisfied by the protocol:

Acknowledgment Precondition Obligation: The precondition for processor p to send an
acknowledgement for message m is B(p,m).

Finally, since there is no point in waiting for an acknowledgement from a failed processor, such a

processor can be removed from ackfrom. However, in order to reestablish [, its successors in the

tree are added to sendto.
This results in the loop of Figure 3.1, where FAILFED is a set of processors with characteris-
tic function failed® and operation choose(sendto, dest) stores an arbitrary element of set sendto

into dest.?

3.2. Establishing B(b,m) When b May Fail

The protocol just described works correctly if processor b does not fail. We now investigate
the complications that arise when 5 may fail. We also discuss termination and absence of

deadlock, which were omitted in the simpler case.

Upon receiving a2 message m, processor ¢ operates as above, and, provided 5 does not fail,

B(b,m) will be established by 4. If b fails then some other processor that received m must estab-

*This use of set notation is for conciseness; an actual implementation would be in terms of fasled.

3The selection of the element depends on the ordering on the selection of the successor of a given node. This is
defined by the broadcast strategy being used.
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??msg(m);

{rec(i,m)}
sendto, ackfrom:= SUCC({i}),®; {I}

do sendto %= & — choose(sendto dest);
dest!!'msg(m);
sendto:= sendlo — {dest};
ackfrom:= ackfrom u {dest}

(| ackfrom 3£ & — if ?Pack(a) — ackfrom:= ackfrom - {a.sender};
| ackfromn FAILED #® — t:= ackfrom n FAILED;
sendto:= sendio U SUCC(t);

ackfrom:= ackfrom -t
()
(| otherwise — skip
fi
od

{I A sendlo =0 A ackto =® A rec(i,m)}
{Hence: B(i,m)}

Figure 3.1 — Protocol if b does not fail

lish B(b,m). (If every processor that received m has failed, then B(b,m) is trivially true.) Since
no harm is done if B(b,m) is established by more than one processor, we allow more than one to
attempt to establish it. However, this means that { may receive more than one copy of m, each
corresponding to a request for ¢ to establish B(i,m) and respond with an acknowledgement. In
order to be able to send these acknowledzements, processor ¢ maintains a set ackto of processors

to which acknowledgzements must be sent. Thus, three set-valued variables are used:

sendto = the set of processors to which m must be sent;
ackfrom = the set of processors from which acknowledgements for m are awaited;
ackto = the set of processors that sent m to ¢ for which acknowledgements must be returned.

After receiving m, process i must monitor b until failed(d) becomes true or B(b,m) is
known to be established. Therefore, some means must be found to notify processes that B(b,m)
has been established. But performing this notification is equivalent to performing a reliable
broadcast! The way out of this dilemma is to use the sequence number m.segno in each message

m and require the

ta



Broadcast Sequencing Restriction: Processor b does not initiate a broadcast until its pre-
vious broadcast has been completed.

Thus, receipt of a message m' with m' .segno > m.segno means that the broadeast of m is com-
pleted. Consequently, b can notify processes of completion of a broadcast simply by initiating the

next one,.

Upon receipt of a message m, processor i establishes B(i,m) and acknowledges m.
Thereafter, ¢ monitors b and, if b fails, i attempts to establish B(b,m). Variable r (for root)

contains either ¢ or b, depending on whether ¢ is attempting to establish B(:,m) or B(b,m).

With this initial discussion, we can now describe the invariant of the loop that makes up the
protocol, which is given in Figure 3.2. This invariant will be used to argue the partial correctness
of the protocol, that progress is made during execution of the protocol, and that no deadlock
occurs. As each part is given, the reader should verify that it is indeed an invariant, using the
accompanying discussion and the fact that previously discussed parts are already known to be
invariantly true. Note that, when necessary, a subscript on a variable is used to denote the pro-

cessor to which it belongs. For example, ackto, is the instance of ackto on processor p.

Initially, each processor sets m to an empty message with sequence number 0. We pretend
that this empty message has been sent by b so that PI, given below, is initially true at each pro-
cessor 1. Once true, rec(i,m) cannot be falsified, for receiving a new message m would keep it

true. Hence, P! is invariantly true:
PI: rec(i,m)

Next, consider the sets sendto and ackfrom. These are always subsets of the set of nodes of
the subtree rooted at r for which processor i is attempting to establish B(r,m). Initially r =1,
but after i establishes B(i,m) it may set r to b and attempt to establish B(b,m), if it detects

that & has failed. P2 is initially true because sendto and ackfrom are empty.

P2. ((r=1 A sendlo uackfrom C SUCC™ ({i})) v
(r =15 A sendto uackfrom < SUCC*({b})-SUCC™({i}))
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Invariant P8 describes even more about sendto and ackfrom: if a node p is in sendio or
ackfrom, then none of its descendants are. This follows from the nature of a tree and the opera-

tions performed on the two sets.

P3: no descendant or ancestor of a node in sendto Uackfrom 13 in sendio Uackfrom

P4 is initially true because no message has a sequence number less than 0. It remains true
because of the Broadcast Sequencing Restriction. Later, in describing the protocol at b, we must

be sure that B(b,m) is true before b broadcasts another message.

P4: (Ym' : m' broadecast by 6 A m' .seqno < m.segno: B(b,m'))

P5 indicates that any successor p of node ¢ is in one of four categories: m should be sent to
p by i, or m has been sent to p by ¢ but it has not returned an acknowledgement, or it has
received and acknowledged m and B(p,m) is true, or it has failed. PS5 is initially true because we
assume every processor has received the empty message with sequence number 0. Verifying that
each guarded command leaves PS5 true is fairly easy, except for the command with guard
??2ack(a). Here, the sender of the acknowledgement is deleted from ackfrom. In order to main-
tain the truth of P5, we require the previously given Acknowledgment Precondition Obligation:
B(p,m) must be a precondition for p to send an acknowledgement for m. Note that in Figure

3.2 B(i,m) is explicitly given as the precondition of each acknowledgement that i sends.

P5:. r=b v (Vp: pe SUCC* ({i}): p € SUCC*(sendto uackfrom) v B(p,m) v failed(p))

P6 is true initially because r = 1. It may be falsified by changing r (to ), but this is done
only when ackfrom =& A sendto = &, which together with P5 and the fact that i has not failed
implies B(i,m). It can be also falsified by falsifying B(i,m), but this is done only by setting m

to a new message, and when this i3 done r is changed to 1.

P6: r =1 v (B(i,m) A failed(}))

Whenever r 51, processor i must attempt to establish B(5,m). To do so, ¢ ensures that
every processor either (1) is in SUCC*(sendto), (2) is in SUCC*(ackfrom), (3) has established

B(p,m), or (4) has failed.
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P7:r=i v (Vp:peSUCC*({b}): p € SUCC*(sendto L ackfrom) v B(p,m) v failed(p))

7 is initially true because, by convention, all processes have received the empty message with
sequence number 0. The one tricky case concerns the first guarded command of the loop, where i
is deleted from sendto. This does not falsify P7, for if r 21 then by P6 B(i,m) holds, and thus

B(p,m) holds for all p in the subtree rooted by i.
Finally, we describe the set ackfrom a bit more precisely.

P& geackfromy, = m is in transit from p to ¢ v
p € ackto, v
an acknowledgement for m is in transit from ¢ to p

Note that ackto for processor b is always empty, because no processor ever sends a message to b.

Total Correctness

Suppose processor b sets its local variable m to a new message M to be broadcast and stores
SUCC({b}) in sendto. We want to argue that, after a finite amount of time, B(b,7) holds.
First, note that each processor p sends 7 to each other processor g at most once and receives at
most one acknowledgement from each processor for it. This is due to invariant PS and the way
sendto and ackfrom are changed: 7 is sent to g only if ¢ € sendto, and upon sending 7 to g it is

deleted from sendio, never to be placed there again. This places an upper bound of 2N(N-1) on

the number of messages and acknowledgements sent to accomplish the broadcast of 1.

Define,

Rmsg# (m) = total number of times m has been received;

Sackit(m) = total number of limes an acknowledgement for m has been sent;
Rack# (m) = total number of times an acknowledgement for m has been received:

and the following 8-tuple, whose values are always non-negative and bounded from above:

-11-



m:= (sender: b, info:'!, seqno:0);
ackto, sendto, ackfrom:= &, &, &;

ri=1,

do sendto#® — choose(sendto, dest);
sendto:= sendto - {dest};
if dest=1 — skip
| dests%i A failed(dest) — sendto:= sendto U SUCC({dest})
| dests£i A - failed(dest) — ackfrom:= ackfrom u {dest};

dest!!msg(m)
fl

| ackfromn FAILED#® — t:= ackfrom n FAILED,
sendto:= gendto U SUCC(t);
ackfrom:= ackfrom—t;

| ??ack(s) — if a.seqno=m.seqno — {B(a.sender,m)}

ackfrom:= ackfrom - {as.sender}
[ a.seqno <m.zeqgno — skip

fi

0 failed(b)Ars£b Aackfrom=® Asendlo=® — {B(i,m)}
r, sendto:= b, {b};

| ??2msg(new) — If new.segno=m.seqno — ackto:= ackto U {new:.sender}
| new.seqno <m.seqno — {B(i,new)} new.sender!lack(new)
| new.segno>m.seqgno — {B(b,m), hence B(i,m)}
(Vp: peackto: pllack(m));
m, ri= new, i;
ackto:= {m.sender};
sendto:= SUCC({i});
ackfrom:= &
fl

[ ackto#® A (r=bv(sendto=> A ackfrom=®)) — {B(i,m)}
(Vp: peackto: pllack(m));

ackto:= ¢
od

For processor b, the guarded command beginning with failed(d) is replaced by the following
guarded command: '

ackfrom =& A sendto =& — {B(b,m)}
Delay until a new message is ready to be broadcast;
Initiate a new broadcast:

m:= (sender: b, seqno: nezt sequence number, info: new message);

sendto:= SUCC({b})

Figure 3.2 — Reliable Broadcast Protocol



<3N(N-1)(.seqno-1) - (Sm: m.seqgno < M.seqno: Rmsg# (m)+ Sack# (m)+ Rack# (m)),
(Np: ~/failed(p)),
(Np: =fatled(p): ~rec(p,m)),
(Np: =failed(p): ~rec(p, M)V (rec(p, M)A r,=0p),
(Sp: ~fatled(p) A rec(p, m): | SUCC(sendto,)u SUCC™ (ackfrom,)|),
(Sp: ~failed(p) A rec(p, m): | SUCC*(ackfrom,)|),
(Nm: m.segno=7m.segno: m a message in transit),
(Sp: —failed(p): | ackto, |) >

Consider the value of this 8-tuple just after b has set its local variables m and sendtfo to m and
SUCC({b}), respectively. By inspection, one can see that, with one exception, each processor
failure and each iteration of the loop by any processor lexicographically decreases the 8-tuple.
For example, receipt of 7 by p leaves the first two components the same but decreases either the

third or sixth component.

The one exception to decreasing the 8-tuple is initiation of a new broadcast by b, which will
occur only when B(b,7) is true. Assume that b performs no broadcast after 7. Then, since the
8-tuple is bounded below and decreases with each iteration, after a finite amount of time no
further iteration can occur and each processor is delayed. We will show that this delay implies
that sendto =& and ackfrom = & for each processor, which with PI implies that B(:i,m) holds
for each processor i. Hence, all processors have received T and are waiting for another broad-

cast.

Assuming that all messages in transit have reached their destination, that no further failure
occurs, and that all processors are delayed, inspection of the guards of the loop of the protocol

vields the following for each functioning processor:

(1) sendto =&

(2) ackfromn FAILED =&

(3) no acknowledgement is in transit
(4) —~fasled(b) v r =05 v ackfrom#P
(5) no message is in transit

(6) ackto =% v (r # b A ackfrom £ $)

Suppose some processor p has ackfrom = ®, ie. some ¢ is in ackfrom,. By PS8, (3) and (5),
p € acklo,. Since ackto, 7 &, this means that ¢ £ b, and from (6) we conclude that r, 3£ b and

ackfrom, 7 &. Further, by P2 we conclude that
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r,=4¢ and &£ ackfrom, C SUCC™ ({q})

Repeating this argument, we find that some descendent g1 of g also satisfies
£ ackfrom,; SSUCC™ ({g}), some descendant ¢2 of g1 will satisfly the same property, and so
forth, indefinitely. This leads to a contradiction because the broadcast strategy is a finite tree.

Hence, all processors have empty ackfrom sets and B(¢,7) holds at every processor.

An Optimization

As it now stands, each processor monitors 5. However, if b fails before a broadcast that it
initiated has completed then either (1) no functioning processor has received the message or (2)

some running processor has received the message from a processor that has failed. Thus,
fatled(b) = B(b,m) v (3p: ~failed(p) A rec(p,m): failed(sender{m)))

This allows *“failed(s)" to be replaced by “failed(m.sender)” in the protocol above. Now, every
processor need not monitor b; each need only monitor a processor it is communicating with (e.g.
its father). However, it is now possible that more than one processor will attempt to establish

B(b,m), even if b does not fail.

3.3. Processor Restarts

The restriction that a failed processor remains halted can now be relaxed. A processor is
restarted after the cause of its failure has been identified and corrected. Once a processor ¢ has
been restarted, it executes a restart protocol, during which B(b,m) is reestablished for each mes-

sage m broadcast by b.
The restart protocol establishes
(V m: m broadcast by b: B(b,m))
which is equivalent to
(V m: m broadcast by b A ~rec(i,m): B(b,m)) A (V m:m broadcast by b A rec(i,m): B(b,m)) .

This suggests that the protocol involve two steps:
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(1) The first conjunct is established by having some functioning processor p send to ¢ a copy of
every message that was broadcast by b that p received. Naturally, this requires that these

messages be stored someplace.

2)  Then, the second conjunct is established. To do this, processor i initiates a broadcast of
each message m it has received that was broadcast by 4 and not forwarded to 1 during step
(1) of the restart protocol. This is necessary because all the processors that had received m
might have failed; if 7 is the first of these to be restarted, it must broadcast m.

Optimization of step (1) is possible if information about messages received is retained across pro-

cessor failures.

4, Minimum Time Broadcasts

We now turn attention to development of a broadcast strategy that minimizes the time
required to complete a broadcast provided no processor fails. When used in conjunction with the
reliable broadcast protocol developed in the preceding section, fast reliable broadcasts are

achieved, although if processors fail then broadcast completion time is not necessarily minimized.
The broadcast strategy we develop is based on the following assumptions:

(1) All processors execute at approximately the same speed.

(2) The delay involved in sending a message between every pair of processors is equal
and constant.

(3) The communications network has sufficient buffer capacity.*

These assumptions are approximated by local computer networks made up of 2 homogeneous col-
lection of processors.
In order to develop a minimum-time broadcast strategy, the relationship between processor

execution speed and communications network delay must be quantified. We therefore define

D: the delay associated with delivery of a message between two processors, and

E: the time that must elapse after a message is sent by a given processor as part of the
broadcast, before that processor can send another message as part of the same broadcast.

D is determined by the performance characteristics of the communications network; £ is related
to processor execution speed, the processing allocated for dealing with broadcasts, and the number

of broadcasts in which the processor can participate at any given time. Without loss of general-

4The required buffer capacity is derived below.
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ity, assume F and D are integers.
The following is a broadcast strategy that minimizes completion time:

S: A processor relays message m immediately upon receiving it and every E seconds
therealter, as long as some processor has not been sent the message.

Depending on the values of D and E, this strategy can lead to different broadcast strategy trees.
For given values of D and E, let Rpg(¢) be the number of processors that receive m at time ¢.
Assuming that the broadcast is initiated at time 0 and (for the moment) that there is an infinite
number of processors, then no processor will have received m prior to time 0; one processor (the
root) receives the m at time 0; and the number of processors that receive m at time { depends on
D, when other processors received the message, and how quickly they relay it according to §

above. Thus,

( 0 ift<o,
(4.1) Rpe(t) = 1 ift=0,
ceil|(t=-D)/E|

RDE(t—D—jE) if ¢ >0,
j=0

which simplifies to

RDE(f)=RDE(f—D)+ RDE“—E) fort > E.

Let Tpe(t) be the number of processors that receive the message as of time ¢{. Clearly,

Tpe(t) = Zt: Rpe(1) .

i=0
Given a network with N processors, tg, the elapsed time to perform a broadcast, is the smallest
integer such that Tpg(tg) > N. (This means that {g is O(logV), where the base of the logarithm
depends on D and E.) The required buffer capacity at any given time is determined by the
number of messages in transit, i.e. the number of messages that will be delivered up to D time
units in the future. Because Rpg(!) is monotonic, the heaviest demands for buffering are always
made towards the end of a broadcast. Consequently, the maximum buffer capacity C required for

that broadcast is computed as follows.
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D-1 .
C = ) Rpeltsg-1)

=0

For given D and E and root b, it is possible to precompute the broadcast strategy tree for
the strategy described by S. A more desirable approach, however, is for each processor to com-
pute as needed the names of processors to which it must send messages. Then, it is unnecessary

for a processor to store numerous broadcast strategy trees. Such a scheme is outline below.

Each processor is assumed to have a unique name. For each broadcast strategy in which a
processor participates, a (possibly different) unique relative name is assigned to it, such that the
relative name of b is 1. In addition, each processor is assigned a two-component [ogical name of
the form <t,,id >, which is computed based on that processor’s role in the broadcast. The first
component ¢, partitions processors into equivalence classes based on when they received the mes-
sage, hence it groups together processors that will transmit messages at the same time. The
second components of the logical names form a consecutive numbering of all processors that have
the same first component. In the following, computation of processor names for a single broadcast
that originates at time 0 is described. Also, for the time being we assume that processors do not

fail.

The logical name of a processor p is determined from the logical name of the processor that
sent p the message and the time the message was received by p. Once a processor knows its logi-
cal name, it can determine the relative names of those processors to which it must relay the mes-

sage. The following scheme is used to generate logical names.

The logical names of the processor that originates the broadecast is: <0, 1>

At time ¢, { > {,, a processor with logical name <t{,, id > constructs the logical name
<(t,+ D)mod E, App((t,+ D)mod E, t+ D-1)+ id >

for the processor with relative name Tpg(i+ D-1)+ id and then sends the message
there.

Ape(v,w) is the number of processors as of time w with v as first component of its logical

name. Such processors must have received the message at time ¢, where { mod E=v, and so:



Joor{ (w-v)/E| ’
Apelv.w) = 2 Rpg(v + iE)
=0

The consecutive numbering within an equivalence class is preserved by adding i{d to the number

of elements in the class when forming new logical names.

The possibility of processor failures complicates matters only to the extent that unantici-
pated delays might be incurred. Messages may not be received “in time” and therefore processors
might be assigned to the wrong equivalence class (first component of logical name). This can be
circumvented if, instead of using wall-clock time in the logical name computations, logical clocks
are used [L78|. Processor failures would not be considered “‘events”, so they would not affect the

“time”’ (according to the logical clock) that messages are received.

4.1. Chains and Bushes

If the message-delivery delay D and processor execution speed E satisfy D > (N-1)E then
a bush broadcast strategy (Figure 2.1a) minimizes the length of time necessary to complete a
broadcast. On the other hand, if E > (N-1)D then the chain broadcast strategy (Figure 2.1b) is
optimal. This corresponds to our intuition that in practice the bush strategy results in faster
brozdcasts —a processor is usually faster than the communications network, so D > (N-1)E is a

closer approximation to reality than E > (N-1)D.

Recall that in the optimized version of our reliable broadcast protocol, a processor failure
can result in B(b,m) being established by each processor that has directly received a message
from a failed processor. If there are f of these processors, then /~1 of these attempts are unneces-
sary. It would seem, then, that to minimize the duplication of work resulting from a processor
_ failure, the number of direct successors of each node in the broadcast strategy tree should be
small. The chain broadcast strategy has just this property. But, surprisingly, if each processor
has the same probability of failure, then the amount of duplication of work that could result from
a processor failure is about the same in both the chain and bush broadcast strategies. This is
because in a bush, the failure of only one processor —the root— could cause duplication of effort,

while in the chain, failure of any of V-2 processors (the internal nodes of the chain) could result
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in this undesirable duplication of effort. With knowledge of the probabilities of failure for each
processor, it is possible to construct a tree that minimizes the amount of duplication of work

resulting from processor failures.

4.2. Slow Networks/Fast Processors

In most networks, delivery of a message is a relatively slow operation when compared to
execution of an instruction on a processor. Consider the above scheme when D = Er, for some
integer r. The first component of all logical names will be 0 because

(tt+D)mod E = ({,+ Er)mod E = ¢, mod E.

Secondly, computation of the second component of a logical name will be simplified, because
Ape(0,n) = Tpg(n).
Therefore, a processor with logical name <0,id > at time ¢ constructs the logical name
<0, Apg(0,t+ D-1)+ id> = <O, Tpg(t+D-1)+ id>

for the processor with relative name Tpg(t+ D-1)+ id and sends the message there. Note that
the logical and relative names are the same. Note also that when r = 2, computation of Rpg(t) is

equivalent to computing Fibonacei numbers.

4.3. Synchronous Message Passing

Synchronous message passing primitives have been proposed for use in implementing distri-
buted systems [H78]. When such primitives are used, a processor executing a send. instruction is
delayed until the message is received. This can be modeled by setting D = E. Then, a processor
cannot send a message until the last one it sent has been received. For simplicity, assume

D =FE=1. From equation (4.1) we get

r

0 if t <0,
Rpp(t) = 1 if ¢ =0,

2l it >o.

.‘\.

Therefore, Tpg(t)=2'. This clearly simplifies broadcast strategy computations. Computing
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powers of 2 can be done easily by shifting.

5. Discussion

Much of the work concerning the development of reiiable broadcast protocols has been done
in connection with designing fault-tolerant distributed systems and computer networks. There, it
is often necessary to communicate state information to all sites and to be certain that the states
of these sites converge; i.e. either all functioning sites receive the new state information or none
do. SAFETALK is an example of such a protocol [MPM80|. It employs a bush-like broadcast
strategy (Figure 2.1a), but unlike our protocol, a broadcast may not complete if the originating

site fails. This is sufficient for the applications for which the protocol was intended.

Ellis develops a chain-like (Figure 2.1b) reliable broadcast protocol and proves it correct
using L-Systems [E77]. The protocol is intended for use in updating redundantly stored entities
in a distributed database system. Unfortunately, the linear time delay of the protocol makes its

use impractical in many situations. In [AD76] another chain-like protocol is proposed.

[PL79| describes “‘best-effort-to-deliver’” and ‘“‘guarantee-to-deliver” protocols. These proto-
cols are based on broadcast strategies that do not allow minimum-time broadcasts; the stratezies

do not fully exploit parallelism inherent in a network.

Byzantine Generals Protocols [LSP80| and their variants (interactive consistency [PSL79),
Crusaders Agreement [D82] and Weak Byzantine Generals [L81]) support broadcasts in networks
in which no assumptions are made about processor failures or the communications network. The
cost of broadcasting in such a harsh environment is very high: a total of {4+ 1 rounds of message
exchange are required to withstand up to ¢ failures and the number of bits exchacged is bounded
by a polynomial [DS81].

Broadcast protocols that are not robust with respect to processor failures are described in
[DM78] and [W80]. They can be viewed as broadcast strategies and used in conjunction with the

protocol developed in Section 3 to implement reliable broadcasts.
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