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Trace properties, which have long been used for reasoning about systems, are sets of execution traces.
Hyperproperties, introduced here, are sets of trace properties. Hyperproperties can express security poli-
cies, such as secure information flow and service level agreements, that trace properties cannot. Safety
and liveness are generalized to hyperproperties, and every hyperproperty is shown to be the intersection
of a safety hyperproperty and a liveness hyperproperty. A verification technique for safety hyperproperties
is given and is shown to generalize prior techniques for verifying secure information flow. Refinement is
shown to be applicable with safety hyperproperties. A topological characterization of hyperproperties is
given.
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1. Introduction

Important security policies cannot be expressed as properties of individual execu-
tion traces of a system [2,22,42,52,60,62,64]. For example, noninterference [23] is
a confidentiality policy that stipulates commands executed on behalf of users hold-
ing high clearances have no effect on system behavior observed by users holding
low clearances. It is not a property of individual traces, because whether a trace is
allowed by the policy depends on whether another trace (obtained by deleting com-
mand executions by high users) is also allowed. For another example, stipulating a
bound on mean response time over all executions is an availability policy that cannot
be specified as a property of individual traces, because the acceptability of delays in
a trace depends on the magnitude of delays in all other traces. However, both exam-
ple policies are properties of systems, because a system (viewed as a whole, not as
individual executions) either does or does not satisfy each policy.

A property either holds or does not hold (i.e., is a Boolean function) of an object,
and the extension of a property is the set of objects for which the property holds.
The extension of a property of individual traces – that is, a set of traces – sometimes
is termed “property”, too [4,35]. But for clarity, trace property here denotes a set of
traces.

The theory of trace properties is well understood [36,37,54]. Every trace property
is the intersection of a safety property and a liveness property, where:

*Corresponding author.

0926-227X/10/$27.50 © 2010 – IOS Press and the authors. All rights reserved



1158 M.R. Clarkson and F.B. Schneider / Hyperproperties

• a safety property is a trace property that proscribes “bad things” and can be
proved using an invariance argument, and

• a liveness property is a trace property that prescribes “good things” and can be
proved using a well-foundedness argument.1

This classification forms an intuitively appealing basis from which all trace proper-
ties can be constructed. Moreover, safety and liveness properties are affiliated with
specific verification methods.

An analogous theory for security policies would be appealing. The fact that se-
curity policies, like trace properties, proscribe and prescribe behaviors of systems
suggested that such a theory might exist. This paper develops that theory by formal-
izing security policies as properties of systems, or system properties.2 If systems are
modeled as sets of execution traces [35], then the extension of a system property is
a set of sets of traces or, equivalently, a set of trace properties. We name this type of
set a hyperproperty.

Every property of system behavior (for systems modeled as trace sets) can be
specified as a hyperproperty, by definition. Thus, hyperproperties can describe trace
properties and moreover can describe security policies, such as noninterference and
mean response time, that trace properties cannot. Deterministic, nondeterministic,
probabilistic, and transition-system models all can be encoded as trace sets and han-
dled using hyperproperties.

This paper shows that results similar to those from the theory of trace properties
hold for hyperproperties:

• Every hyperproperty is the intersection of a safety hyperproperty and a live-
ness hyperproperty. (Henceforth, we shorten these terms to hypersafety and hy-
perliveness.) Hypersafety and hyperliveness thus form a basis from which all
hyperproperties can be constructed.

• Hyperproperties from a class that we introduce, called k-safety, can be verified
by using invariance arguments. Our verification methodology generalizes prior
work on using invariance arguments to verify information-flow policies [8,60].

However, we have not obtained complete verification methods for hypersafety or for
hyperliveness.

The theory of hyperproperties also sheds light on the problematic status of re-
finement for security policies. Refinement never invalidates a trace property but can
invalidate a hyperproperty:

1Lamport [33] gave the first informal definitions of safety and liveness properties, appropriating the
names from Petri net theory, and he also gave the first formal definition of safety [35]. Alpern and Schnei-
der [4] gave the first formal definition of liveness and the proof that all trace properties are the intersection
of safety and liveness properties; they later established the correspondence of safety to invariance and of
liveness to well-foundedness [5].

2McLean [42] gave the first formalization of security policies as properties of trace sets.
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Consider a system π that nondeterministically chooses to output 0, 1 or the value
of a secret bit h. System π satisfies the security policy “The possible output
values are independent of the values of secrets”. But one refinement of π is the
system that always outputs h, and this system does not satisfy the security policy.

We characterize in this paper the entire set of hyperproperties for which refinement
is valid; this set includes the safety hyperproperties.

Safety and liveness not only form a basis for trace properties and hyperproper-
ties, but they also have a surprisingly deep mathematical characterization in terms of
topology. In the Plotkin topology on trace properties, safety and liveness are known
to correspond to closed and dense sets, respectively [4]. We generalize this topolog-
ical characterization to hyperproperties by showing that hypersafety and hyperlive-
ness also correspond to closed and dense sets in a new topology, which turns out to
be equivalent to the lower Vietoris construction applied to the Plotkin topology [57].
This correspondence could be used to bring results from topology to bear on hyper-
properties.

We proceed as follows. Hyperproperties, hypersafety, k-safety, and hyperliveness
are defined and explored in Sections 2–5. Section 6 gives a topological account
of hyperproperties. Section 7 presents the hyperproperty intersection theorem and
discusses hyperproperties of system representations other than trace sets (relational
systems, labeled transition systems, state machines, and probabilistic systems). Sec-
tion 8 concludes. Appendix A gives a guide to our notation, Appendix B presents
formal details of our longer examples of hyperproperties, Appendix C states formal
results about system representations, and all proofs appear in Appendix D.

This paper revises and expands a CSF’08 paper [15], adding (i) new results about
system representations, and (ii) proofs, which were absent from the earlier paper.
Several of the proofs have been verified [12] using the Isabelle/HOL proof assis-
tant [46].

2. Hyperproperties

We model system execution with traces, where a trace is a sequence of states; by
employing rich enough notions of state, this model can encode other representations
of execution.3 For example, Section 7 discusses how to model a labeled transition
system as a set of traces by including transition labels in states, thereby preserving
information about the nondeterministic branching structure of the system. Section 7
also uses this encoding to model state machines and probabilistic systems.

The structure of a state is not important in the following definitions, so we leave
set Σ of states abstract. However, the structure of a state is important for real exam-
ples, and we introduce predicates and functions, on states and on traces, as needed
to model events, timing, probability, etc.

3We have not investigated analogues to hyperproperties for representations of system execution that
cannot be encoded as trace sets.
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Traces may be finite or infinite sequences, which we categorize into sets:

Ψfin � Σ∗,

Ψinf � Σω ,

Ψ � Ψfin ∪ Ψinf,

where Σ∗ denotes the set of all finite sequences over Σ, and Σω denotes the set of
all infinite sequences over Σ. For trace t = s0s1 · · · and index i ∈ N, we define the
following indexing notation:

t[i] � si,

t[..i] � s0s1 · · · si,

t[i..] � sisi+1 · · · .

We denote concatenation of finite trace t and (finite or infinite) trace t′ as tt′, and we
denote the empty trace as ε.

A system is modeled by a non-empty set of infinite traces, called its executions. If
an execution terminates (and thus could be represented by a finite trace), we represent
it as an infinite trace by infinitely stuttering the final state in the finite trace.

2.1. Trace properties

A trace property is a set of infinite traces [4,35]. The set of all trace properties is

Prop � P (Ψinf),

where P denotes powerset. A set T of traces satisfies a trace property P , denoted
T |= P , iff all the traces of T are in P :

T |= P � T ⊆ P.

Some security policies are expressible as trace properties. For example, consider
the policy “The system may not write to the network after reading from a file”.
Formally, this is the set of traces

NRW �
{
t ∈ Ψinf | ¬

(
∃i, j ∈ N: i < j ∧ isFileRead(t[i])

∧ isNetworkWrite(t[j])
)}

, (2.1)

where isFileRead and isNetworkWrite are state predicates.
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Similarly, access control is a trace property requiring every operation to be con-
sistent with its requestor’s rights:

AC �
{
t ∈ Ψinf |

(
∀i ∈ N: rightsReq(t[i])

⊆ acm(t[i − 1])[subj(t[i]), obj(t[i])]
)}

. (2.2)

Function acm(s) yields the access control matrix in state s. Function subj(s) yields
the subject who requested the operation that led to state s, function obj(s) yields the
object involved in that operation, and function rightsReq(s) yields the rights required
for the operation to be allowed.

As another example, guaranteed service is a trace property requiring that every
request for service is eventually satisfied:

GS �
{
t ∈ Ψinf |

(
∀i ∈ N: isReq(t[i])

=⇒ (∃j > i: isRespToReq(t[j], t[i])
)}

. (2.3)

Predicate isReq(s) identifies whether a request is initiated in state s, and predicate
isRespToReq(s′, s) identifies whether state s′ completes the response to the request
initiated in state s.

2.2. Hyperproperties

A hyperproperty is a set of sets of infinite traces, or equivalently a set of trace
properties. The set of all hyperproperties is

HP � P (P (Ψinf)) = P (Prop).

The interpretation of a hyperproperty as a security policy is that the hyperproperty
is the set of systems allowed by that policy.4 Each trace property in a hyperproperty
is an allowed system, specifying exactly which executions must be possible for that
system. Thus a set T of traces satisfies hyperproperty H, denoted T |= H, iff T is
in H:

T |= H � T ∈ H.

Note the use of bold face to denote hyperproperties (e.g., H) and sans serif to de-
note sets of trace properties (e.g., Prop). Although a hyperproperty and a set of trace
properties are mathematically the same kind of object (a set of sets of traces), they

4The hyperproperty might also contain the empty set of traces, although this set does not correspond to
a system.



1162 M.R. Clarkson and F.B. Schneider / Hyperproperties

are used differently in formulas, hence the different typography. Sets of hyperprop-
erties are simultaneously bold face and sans serif (e.g., HP). See Appendix A for a
guide to other typographical conventions and notation.

Given a trace property P , there is a unique hyperproperty denoted [P ] that ex-
presses the same policy as P . We call this hyperproperty the lift of P . For P and [P ]
to express the same policy, they must be satisfied by the same sets of traces. Thus we
can derive a definition of [P ]:

(∀T ∈ Prop: T |= P ⇐⇒ T |= [P ])

= (∀T ∈ Prop: T ⊆ P ⇐⇒ T ∈ [P ])

= [P ] = {T ∈ Prop | T ⊆ P}

= [P ] = P (P ).

Consequently, the lift of P is the powerset of P :

[P ] � P (P ).

2.3. Hyperproperties in action

Trace properties are satisfied by traces, whereas hyperproperties are satisfied by
sets of traces. This additional level of sets means that hyperproperties can be more
expressive than trace properties. We explore this added expressivity with some ex-
amples.

Secure information flow. Information-flow security policies express restrictions on
what information may be learned by users of a system. Users interact with systems
by providing inputs and observing outputs. To model this interaction, define ev(s)
as the input or output event, if any, that occurs when a system transitions to state s.
Assume that at most one event, input or output, can occur at each transition. For a
trace t, extend this notation to ev(t), denoting the sequence of events resulting from
application of ev(·) to each state in trace t.5 Further assume that each user of a system
is cleared either at confidentiality level L, representing low (public) information, or
H , representing high (secret) information, and that each event is labeled with one
of these confidentiality levels. Define evL(t) to be the subsequence of low input and
output events contained within ev(t), and evHin(t) to be the subsequence of high input
events contained within ev(t).

Noninterference, as defined by Goguen and Meseguer [23], requires that com-
mands issued by users holding high clearances be removable without affecting ob-
servations of users holding low clearances. Treating commands as inputs and ob-
servations as outputs, we model this security policy as a hyperproperty requiring a

5Depending on the nature of events in the particular system that is being modeled, it might be appro-
priate for ev(t) to eliminate stuttering of events.
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system to contain, for any trace t, a corresponding trace t′ with no high inputs yet
with the same low events as t:

GMNI �
{
T ∈ Prop | T ∈ SM ∧

(
∀t ∈ T : (∃t′ ∈ T : evHin(t′) = ε

∧ evL(t) = evL(t′))
)}

. (2.4)

Conjunct T ∈ SM expresses the requirement, made by Goguen and Meseguer’s
formalization, that systems are deterministic state machines; Section 7.2.3 defines
SM formally. GMNI is not a trace property, as argued in Section 1, because trace t

is allowed only if corresponding trace t′ is also allowed.
Generalized noninterference [40] extends Goguen and Meseguer’s definition of

noninterference to handle nondeterministic systems, which are the systems modeled
by Prop. McLean [42] reformulates generalized noninterference as a policy requiring
a system to contain, for any traces t1 and t2, an interleaved trace t3 whose high inputs
are the same as t1 and whose low events are the same as t2. This is a hyperproperty:

GNI �
{
T ∈ Prop |

(
∀t1, t2 ∈ T : (∃t3 ∈ T : evHin(t3) = evHin(t1)

∧ evL(t3) = evL(t2))
)}

. (2.5)

GNI is not a trace property because the presence of any two traces t1 and t2 in a
system necessitates the presence of a third trace t3.

Observational determinism [41,51] requires a system to appear deterministic to a
low user. Zdancewic and Myers’s [65] definition of observational determinism can
be formulated as a hyperproperty:

OD � {T ∈ Prop | (∀t, t′ ∈ T : t[0] =L t′[0] =⇒ t ≈L t′)}. (2.6)

State equivalence relation s =L s′ holds whenever states s and s′ are indistinguish-
able to a low user, and trace equivalence relation t ≈L t′ holds whenever traces t

and t′ are indistinguishable to a low user. Zdancewic and Myers define trace equiva-
lence in terms of state equivalence, requiring the sequence of states in each trace to
be equivalent up to both stuttering and prefix; equivalence up to prefix makes their
definition termination insensitive – that is, systems are allowed to leak information
via termination channels.6 OD is not a trace property because whether some trace is
allowed in a system depends on all the other traces of the system.

6Zdancewic and Myers also require systems to be race free, hence they weaken trace equivalence to
hold for each memory location in a state in isolation, not over all memory locations simultaneously. We
omit this requirement for simplicity.
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Bisimulation-based definitions of information-flow security policies can also be
formulated as hyperproperties,7 which we demonstrate with Focardi and Gorri-
eri’s [22] bisimulation nondeducibility on compositions (BNDC) in Section 7.2.2,
and with Boudol and Castellani’s [11] definition of noninterference in Appendix B.

All information-flow security policies we investigated turned out to be hyperprop-
erties, not trace properties. This is suggestive, but any stronger statement about the
connection between information flow and hyperproperties would require a formal
definition of information-flow policies, and none is universally accepted. Nonethe-
less, we believe that information flow is intrinsically tied to correlations between
(not within) executions. And hyperproperties are sufficiently expressive to formulate
such correlations, whereas trace properties are not.

Service level agreements. A service level agreement (SLA) specifies acceptable
performance of a system. Such specifications commonly use statistics such as:

• mean response time, the mean time that elapses between a request and a re-
sponse;

• time service factor, the percentage of requests that are serviced within a speci-
fied time; and

• percentage uptime, the percentage of time during which the system is available
to accept and service requests.

These statistics can be used to define policies with respect to individual executions
of a system or across all executions of a system. In the former case, the SLA would be
a trace property. For example, the policy “The mean response time in each execution
is less than 1 second” might not be satisfied by a system if there are executions in
which some response times are much greater than 1 second. Yet if these executions
are rare, then the system might still satisfy the policy “The mean response time over
all executions is less than 1 second”. This latter SLA is not a trace property, but it is
a hyperproperty:

RT �
{

T ∈ Prop
∣∣∣ mean

( ⋃
t∈T

respTimes(t)

)
� 1

}
. (2.7)

Function mean(X) denotes the mean8 of a set X of real numbers, and respTimes(t)
denotes the set of response times (in seconds) from request/response events in trace t.

7Since hyperproperties are trace-based, this might at first seem to contradict results, such as Focardi
and Gorrieri’s [22], stating that bisimulation-based definitions are more expressive than trace-based defin-
itions. However, by employing a richer notion of state [54, Section 1.3] in traces than Focardi and Gorrieri,
hyperproperties are able to express bisimulations.

8Since X might have infinite cardinality, RT requires a definition of the mean of an infinite set (and,
for some sets, this mean does not exist). We omit formalizing such a definition here; one possibility is to
use the Cesàro mean [27].
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Policies derived from the other SLA statistics above can similarly be expressed as
hyperproperties.

2.4. Beyond hyperproperties?

Hyperproperties are able to express security policies that trace properties cannot.
So it is natural to ask whether there are security policies that hyperproperties cannot
express. In Section 1, we equated security policies with system properties, and we
chose to model systems as trace sets. Every property of trace sets is a hyperproperty,
so by definition hyperproperties are expressively complete for our formulations of
“system” and “security policy”. To find security policies that hyperproperties can-
not express (if any exist), we would need to examine alternative notions of systems
and security policies. Section 7 discusses alternative formulations of systems, but
all the formulations considered there turn out to have encodings as trace sets – thus
hyperproperties are complete for those formulations. We do not know whether other
formulations exist that do not have such encodings.

One way to generalize the notion of a security policy is to consider policies on sets
of systems – for example, diversity [50], which requires the systems all to implement
the same functionality but to differ in their implementation details. Any such policy,
however, could be modeled as a hyperproperty on a single system that is a product9

of all the systems in the set. So hyperproperties again seem to be sufficient.

2.5. Logic and hyperproperties

We have not given a logic in which hyperproperties may be expressed. The exam-
ples in this paper require only second-order logic. Although higher-order logic might
also be useful to express hyperproperties, higher-order logic is reducible to second-
order logic [56, Section 6.2]. So we believe that second-order logic is sufficient to
express all hyperproperties. But we do not know whether the full power of second-
order logic is necessary to express hyperproperties of interest. This has ramifications
for verification of hyperproperties, because although full second-order logic cannot
be effectively and completely axiomatized, fragments of it can be [9, Section 2.3].10

9The product of systems T1 and T2 can be defined as system {(t1[0], t2[0])(t1[1], t1[2]) · · · | t1 ∈
T1 ∧ t2 ∈ T2}, comprising traces over pairs of states. Generalizing, the product of a set of n systems
comprises traces over n-tuples of states.

10It is natural to ask whether we could further reduce second-order logic to first-order. Such a re-
duction is possible, but only with the Henkin, rather than standard, semantics of second-order logic [9,
Section 4.2]. We do not know which of these semantics should be preferred for hyperproperties. However,
there are trace properties, and thus hyperproperties, that we conjecture cannot be expressed in first-order
logic – for example, the trace property containing the single trace pqppqqpppqqq . . . , where p and q are
states. This suggests that the standard semantics is appropriate.
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2.6. Refinement and hyperproperties

Programmers use stepwise refinement [1,7,18,20,36,63] to develop, in a series of
steps, a program that implements a specification. The programmer starts from the
specification. Each successive step creates a more concrete specification, ultimately
culminating in a specification sufficiently concrete that a computer can execute it.
To prove that the final concrete specification correctly implements the original spec-
ification, the programmer argues at each step that the new concrete specification
refines the previous specification. Specification S1 refines specification S2, denoted
S1 REF S2, iff every behavior permitted by S1 is also permitted by S2 – that is, the
set of behaviors of S1 is a subset of the set of behaviors of S2.

Specifications might describe behaviors at different levels of abstraction. For ex-
ample, a specification might describe behaviors of a queue, but a refinement of that
specification might use an array to implement this behavior. Or a specification might
describe behaviors using critical sections, but a refinement might implement criti-
cal sections with semaphores. So programmers need techniques to relate the behav-
iors described by specifications. Abstraction functions [28,29] and refinement map-
pings [1] have been developed for this purpose; both interpret concrete behaviors as
abstract behaviors.

Generalizing from these two techniques, let an interpretation function be a func-
tion of type Ψ → Ψ. Let IF be any class of interpretation functions that (like abstrac-
tion functions and refinement mappings) is closed under composition and contains
the identity function id.11 An interpretation function α can be lifted to Prop → Prop
by applying α to each trace in a set:

α(T ) � {α(t) | t ∈ T}.

System S α-satisfies trace property P , denoted S |=α P , iff α(S) |= P . Notation
S |= P , as we have used it so far, thus means that S |=id P .

Trace property P1 refines P2 under interpretation α, denoted P1 REFα P2, iff
α(P1) ⊆ P2. So for trace properties, satisfaction is the same relation as refinement,
and subset implies refinement – that is, if C is a subset of A, then C refines A (under
interpretation id). This implication is desirable, because it permits refinements that
resolve nondeterminism by removing traces from a system. But it is well known that
this kind of refinement does not generally work for security policies.12 For example,
recall system π (Section 1), which nondeterministically chooses to output 0, 1 or
the value of a secret bit h. System π satisfies the specification “The possible output

11Abstraction functions must also preserve data type operations, and refinement mappings must pre-
serve externally visible components up to stuttering. But these restrictions are not relevant to our discus-
sion.

12Previous work has identified refinement techniques that are valid for use with certain information-
flow security policies [10,39,42].
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values are independent of the values of secrets”, which can be formulated as a hyper-
property. But consider a system π′ that always outputs h. System π′ does not satisfy
the specification and therefore cannot refine π, yet π′ ⊆ π. So subset does not imply
refinement for hyperproperties as it does for trace properties.

Hyperproperty H1 refines H2 under interpretation α, denoted H1 HREFα H2, iff
α(H1) ⊆ H2, where α(H) is defined as {α(T ) | T ∈ H}. A natural relationship that
we would expect to hold is

(
∀S ∈ Prop, H ∈ HP: S |= H ⇐⇒ [S] HREFid H

)
, (2.8)

because satisfaction and refinement intuitively should agree (as they did for trace
properties). Straightforward application of definitions shows that (2.8) holds iff H is
subset closed.

Thus, perhaps unsurprisingly, the set of hyperproperties with which refinement
works is the set SSC of subset-closed hyperproperties:

SSC �
{

H ∈ HP |
(

∀T ∈ Prop: T ∈ H

=⇒ (∀T ′ ∈ Prop: T ′ ⊆ T =⇒ T ′ ∈ H)
)}

.

The lifted trace properties are, of course, members of SSC. But SSC contains more
than just the lifted trace properties. For example, observational determinism OD (2.6)
is subset closed and therefore a member of SSC, but OD is not a lifted trace property.

3. Hypersafety

According to Alpern and Schneider [4], the “bad thing” in a safety property must
be both:

• finitely observable, meaning its occurrence can be detected in finite time, and
• irremediable, so its occurrence can never be remediated by future events.

No-read-then-write NRW (2.1) and access control AC (2.2) are both safety. The bad
thing for NRW is a finite trace in which a network write occurs after a file read.
This bad thing is finitely observable, because the write can be detected in some finite
prefix of the trace, and irremediable, because the network write can never be undone.
For AC, the bad thing is similarly a finite trace in which an operation is performed
without appropriate rights.

For trace properties, a bad thing is a finite trace that cannot be a prefix of any
execution satisfying the safety property. A finite trace t is a prefix of a (finite or
infinite) trace t′, denoted t � t′, iff t′ = tt′ ′ for some t′ ′ ∈ Ψ.
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Definition. A trace property S is a safety property [4] iff

(
∀t ∈ Ψinf: t /∈ S =⇒

(
∃m ∈ Ψfin: m � t

∧ (∀t′ ∈ Ψinf: m � t′ =⇒ t′ /∈ S)
))

.

Define SP to be the set of all safety properties; note that SP is itself a hyperprop-
erty.

We generalize safety to hypersafety by generalizing the bad thing from a finite
trace to a finite13 set of finite traces. Define Obs to be the set of such observations:

Obs � P fin(Ψfin),

where P fin(X) denotes the set of all finite subsets of set X . Prefix � on sets of traces
is defined as follows:14

T � T ′ � (∀t ∈ T : (∃t′ ∈ T ′: t � t′)).

Note that this definition allows T ′ to contain traces that have no prefix in T .

Definition. A hyperproperty S is a safety hyperproperty (is hypersafety) iff

(
∀T ∈ Prop: T /∈ S =⇒

(
∃M ∈ Obs: M � T

∧ (∀T ′ ∈ Prop: M � T ′ =⇒ T ′ /∈ S)
))

.

The definition of hypersafety parallels the definition of safety, but the domains
involved now include an extra level of sets. Define SHP to be the set of all safety
hyperproperties.

Some consequences of the definition of hypersafety are:

• Observational determinism OD (2.6) is hypersafety. The bad thing is a pair of
traces that are not low-equivalent despite having low-equivalent initial states.

• Safety properties lift to safety hyperproperties.

Proposition 1. (∀S ∈ Prop: S ∈ SP ⇐⇒ [S] ∈ SHP).

• Set SP of all safety properties is not a safety hyperproperty: there is no bad
thing that prevents an arbitrary trace property from being extended to a safety
property.

13Infinite sets might seem to be an attractive alternative, and many of the results in the rest of this paper
would still hold. However, the topological characterization given in Section 6 (specifically, Propositions 4
and 5) would be sacrificed.

14Other definitions of trace set prefix are possible, but inconsistent with our notion of observation. We
discuss this in Section 6.
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Refinement of hypersafety. Stepwise refinement works with all safety hyperproper-
ties, because safety hyperproperties are subset closed (cf. Section 2.6), as stated by
the following theorem.

Theorem 1. SHP ⊂ SSC.

A consequence of Theorem 1 is that any hyperproperty that is not subset closed
cannot be hypersafety. For example, generalized noninterference GNI (2.5) is not
subset closed: a system containing traces t1 and t2 and interleaved trace t3 might
satisfy GNI, but the subset containing only t1 and t2 would not satisfy GNI. Thus
GNI cannot be hypersafety.

4. Beyond 2-safety

Safety properties enjoy a relatively complete verification methodology based on
invariance arguments [5]. Although we have not obtained such a methodology for
hypersafety, we can use invariance arguments to verify a class of safety hyperprop-
erties by generalizing recent work on verification of secure information flow.

Recall that secure information flow is a hyperproperty but not a trace property.
Recent work gives system transformations that reduce verifying secure information
flow15 to verifying a safety property of some transformed system: Pottier and Si-
monet [49] develop a type system for verifying secure information flow based on
simultaneous reasoning about two executions of a program. Darvas et al. [19] show
that secure information flow can be expressed in dynamic logic. Barthe et al. [8]
give an equivalent formulation for Hoare logic and temporal logic, based on a self-
composition construction.

Define the sequential self-composition of P as the program P ; P ′, where P ′ de-
notes program P , but with every variable renamed to a fresh, primed variable –
for example, variable x is renamed to x′. One way to verify that P exhibits se-
cure information flow is to establish the following trace property of transformed
program P ; P ′:

If for every low variable l, before execution l = l′ holds, then when execution
terminates l = l′ still holds, no matter what the values of high variables were.

Barthe et al. generalize the self-composition operator from sequential composition to
any operator that satisfies certain conditions, and they note that parallel composition
satisfies these conditions. They also relax the equality constraints in the above trace
property to partial equivalence relations. Terauchi and Aiken [60] further generalize

15These reductions are possible because the particular formulations of secure information flow used in
each work are actually hypersafety. A formulation that is hyperliveness – which would include all possi-
bilistic information-flow policies, as discussed in Section 5 – would not be amenable to these reductions.



1170 M.R. Clarkson and F.B. Schneider / Hyperproperties

the applicability of self-composition by showing that it can be used to verify any
2-safety property, which they define informally as a “property that can be refuted by
observing two finite traces”.

Using hyperproperties, we can show that the above results are special cases of a
more general theorem. Define a k-safety hyperproperty as a safety hyperproperty in
which the bad thing never involves more than k traces:

Definition. A hyperproperty S is a k-safety hyperproperty (is k-safety) iff

(
∀T ∈ Prop: T /∈ S =⇒

(
∃M ∈ Obs: M � T ∧ |M | � k

∧ (∀T ′ ∈ Prop: M � T ′ =⇒ T ′ /∈ S)
))

.

This is just the definition of hypersafety with an added conjunct “|M | � k”. For a
particular k, define KSHP(k) to be the set of all k-safety hyperproperties.

As an example of a k-safety hyperproperty for any k, consider a system that stores
a secret by splitting it into k shares. Suppose that an action of the system is to output
a share. Then a hyperproperty of interest might be that the system cannot, across all
of its executions, output all k shares (thereby outputting sufficient information for
the secret to be reconstructed). We denote this k-safety hyperproperty as SecSk.

The 1-safety hyperproperties are the lifted safety properties – that is,

KSHP(1) = {[S] | S ∈ SP}

– since the bad thing for a safety property is a single trace. Thus “1-safety” and
“safety” are synonymous.

The Terauchi and Aiken definition of 2-safety properties is limited to determin-
istic programs that are expressed in a relational model of execution (which we ad-
dress further in Section 7.2.1), and it ignores nonterminating traces. So their 2-safety
properties are a strict subset of the 2-safety hyperproperties, KSHP(2). For example,
observational determinism OD (2.6) is not a 2-safety property, but it is a 2-safety
hyperproperty.

Define the parallel self-composition of system S as the product system S × S
consisting of traces over Σ × Σ:

S × S � {(t[0], t′[0])(t[1], t′[1]) · · · | t ∈ S ∧ t′ ∈ S}.

Define the k-product of S, denoted Sk, to be the k-fold parallel self-composi-
tion of S, comprising traces over Σk. Self-composition S × S is equivalent to
2-product S2.

Previous work has shown how to reduce a particular formulation of noninterfer-
ence of S to a related safety property of S2 [8], and how to reduce any 2-safety
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hyperproperty of system S to a related safety property of S; S′ [60]. The following
theorem generalizes those results. Let Sys be the set of all systems. For any system S,
any k-safety hyperproperty K of S can be reduced to a safety property K of Sk, and
the proof of the theorem (in Appendix D) shows how to construct K from K:

Theorem 2. (∀S ∈ Sys, K ∈ KSHP(k): (∃K ∈ SP: S |= K ⇐⇒ Sk |= K)).

Theorem 2 provides a verification technique for k-safety: reduce a k-safety hyper-
property to a safety property, then verify that the safety property is satisfied by Sk

using an invariance argument. Since invariance arguments are relatively complete for
safety properties [5], this methodology is relatively complete for k-safety.

However, Theorem 2 does not provide the relatively complete verification proce-
dure we seek for hypersafety, because there are safety hyperproperties that are not
k-safety for any k. For example, consider the hyperproperty “for any k, a system
cannot output all k shares of a secret from a k-secret sharing”:

SecS �
⋃
k

SecSk. (4.1)

SecS is not k-safety for any k. Yet it is hypersafety, since any trace property not
contained in it violates some SecSk.

5. Hyperliveness

Alpern and Schneider [4] characterize the “good thing” in a liveness property as:

• always possible, no matter what has occurred so far, and
• possibly infinite, so it need not be a discrete event.

For example, guaranteed service GS (2.3) is a liveness property in which the good
thing is the eventual response to a request. This good thing is always possible, be-
cause a state in which a response is produced can always be appended to any finite
trace containing a request. And this good thing is not infinite because the response
is a discrete event, but starvation freedom, which stipulates that a system makes
progress infinitely often, is an example of a liveness property with an infinite good
thing.

Formally, a good thing is an infinite suffix of a finite trace:

Definition. Trace property L is a liveness property [4] iff

(
∀t ∈ Ψfin: (∃t′ ∈ Ψinf: t � t′ ∧ t′ ∈ L)

)
.

Define LP to be the set of all liveness properties. Not surprisingly, LP is a hyper-
property.
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Just as with hypersafety, we generalize liveness to hyperliveness by generalizing a
finite trace to a finite set of finite traces. The definition of hyperliveness is essentially
the same as the definition of liveness, except for an additional level of sets:

Definition. Hyperproperty L is a liveness hyperproperty (is hyperliveness) iff

(
∀T ∈ Obs: (∃T ′ ∈ Prop: T � T ′ ∧ T ′ ∈ L)

)
.

Define LHP to be the set of all liveness hyperproperties.
Mean response time RT (2.7) is not liveness but it is hyperliveness: the good thing

is that the mean response time is low enough. Given any observation T with any
mean response time, it is always possible to extend T , such that the resulting sys-
tem has a low enough mean response time, by adding a trace that has many quick
responses. Note that if this policy were approximated by limiting the maximum re-
sponse time in each execution, then the resulting hyperproperty would be a lifted
safety property.

Some additional consequences of the definition of hyperliveness are:

• The only hyperproperty that is both hypersafety and hyperliveness is true, de-
fined as Prop. The hyperproperty false, defined as {∅}, is hypersafety but not
hyperliveness.16

• Liveness properties lift to liveness hyperproperties.

Proposition 2. (∀L ∈ Prop: L ∈ LP ⇐⇒ [L] ∈ LHP).

• Set LP of all liveness properties is a liveness hyperproperty: every observation
can be extended to any liveness property.

• Similarly, set SP of all safety properties is a liveness hyperproperty: every ob-
servation can be extended to a safety property (whose bad thing is “not begin-
ning execution with one of the finite traces in the observation”).

Possibilistic information flow. Some information-flow security policies, such as
observational determinism OD (2.6), restrict nondeterminism of a system from be-
ing publicly observable. However, observable nondeterminism might be useful, for
a couple of reasons. First, systems might exhibit nondeterminism due to schedul-
ing. If the scheduler cannot be influenced by secret information (i.e., the scheduler
does not serve as a covert timing channel), then it is reasonable to allow the sched-
uler to behave nondeterministically. Second, nondeterminism is a useful modeling
abstraction when dealing with probabilistic systems (which we consider in more de-
tail in Section 7.2.4). When the exact probabilities for a system are unknown, they

16The false property is the empty set of traces, so it might seem reasonable to define false as the empty
set of trace sets. But then the lift of the false property would not equal false. Note that false is not satisfied
by any system because, by definition, ∅ is not a system.
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can be abstracted by nondeterminism. For at least these reasons, there is a history
of research on possibilistic information-flow security policies, beginning with nond-
educibility [59] and generalized noninterference [40]. Such policies are founded on
the intuition that low observers of a system should gain little from their observations.
Typically, these policies require that every low observation is consistent with some
large set of possible high behaviors.

McLean [42] shows that possibilistic information-flow policies can be expressed
as trace sets that are closed with respect to selective interleaving functions. Such
functions, given two executions of a system, specify another trace that must also
be an execution of the system – as did the definition of generalized noninterference
GNI (2.5). Mantel [38] generalizes from these functions to closure operators, which
extend a set S of executions to a set S′ such that S ⊆ S′. Mantel argues that every
possibilistic information-flow policy can be expressed as a closure operator.

Given a closure operator Cl that expresses a possibilistic information-flow policy,
the hyperproperty PCl induced by Cl is

PCl � {Cl(T ) | T ∈ Prop}.

Define the set PIF of all such hyperproperties to be
⋃

Cl PCl. It is now easy to see that
these are liveness hyperproperties: any observation T can be extended to its closure.

Theorem 3. PIF ⊂ LHP.

Possibilistic information-flow policies are therefore never hypersafety.17

Temporal logics. Consider the hyperproperty “For every initial state, there is some
terminating trace, but not all traces must terminate”, denoted as NNT. In branching-
time temporal logic, NNT could be expressed as

� terminates, (5.1)

where terminates is a state predicate and � is the “not never” operator.18 There is
no linear-time temporal predicate that expresses NNT, nor is there a liveness prop-
erty equivalent to NNT [34]; an approximation would be a linear-time predicate, or
a liveness property, that requires every trace to terminate. However, NNT is hyper-
liveness because any finite trace can be extended to a set of executions such that at
least one execution terminates.

This example suggests a relationship between hyperproperties and branching-time
temporal predicates, and between trace properties and linear-time temporal predi-
cates. We can make this relationship precise by examining the semantics of temporal

17Another way to reach this conclusion is to observe that closure operators need not yield hyperprop-
erties that are subset closed – yet, by Theorem 1, every safety hyperproperty is subset closed.

18Temporal logic CTL [13] would express this formula as EF terminates.
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logic. In both branching time and linear time, a semantic model contains a set of
states and a valuation function assigning a Boolean value to each atomic proposi-
tion in each state. Additionally, a branching-time model requires a current state and
a set of traces, whereas a linear-time model requires a single trace [21]. These re-
quirements differ because a linear-time predicate is a property of a trace, whereas a
branching-time predicate is a property of a state and all the future traces that could
proceed from that state. Thus, trace properties model linear-time predicates, and hy-
perproperties model branching-time predicates for a given state.

Moreover, hyperproperties can express policies that branching-time predicates
cannot. Consider the trace property “Every trace must end with an infinite number of
good states”, denoted SAG, where good is a state predicate. In linear-time temporal
logic, SAG could be expressed as

� � good, (5.2)

where � is the “sometime” operator and � is the “always” operator. SAG is live-
ness and thus hyperliveness, but there is no branching-time predicate that expresses
it [34].

6. Topology

Topology enables an elegant characterization of the structure of hyperproperties,
just as it did for trace properties. We begin by summarizing the topology of trace
properties [58].

Consider an observer of an execution of a system, who is permitted to see each
new state as it is produced by the system; otherwise, the system is a black box to
the observer. The observer attempts to determine whether trace property P holds of
the system. At any point in time, the observer has seen only a finite prefix of the
(infinite) execution. Thus, the observer should declare that the system satisfies P ,
after observing finite trace t, only if all possible extensions of t will also satisfy P .
Abramsky names such properties observable [3].

Like the bad thing for a safety property, a observable property must be detectable
in finite time; and once detected, hold thereafter. Formally, O is a observable property
iff

(
∀t ∈ Ψinf: t ∈ O =⇒

(
∃m ∈ Ψfin: m � t

∧ (∀t′ ∈ Ψinf: m � t′ =⇒ t′ ∈ O)
))

.

Define O to be the set of observable properties. This set satisfies two closure condi-
tions. First, if O1, . . . , On are observable, then

⋂n
i=1 Oi is also observable. Second,

if O is a (potentially infinite) set of observable properties, then
⋃

O∈O O is also ob-
servable. Thus O is closed under finite intersections and infinite unions.
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A topology on a set S is a set T ⊆ P (S) such that T is closed under finite intersec-
tions and infinite unions. Because O is so closed, it is a topology on Ψinf. We name
O the Plotkin topology, because Plotkin proposed its use in characterizing safety and
liveness [4].19

The elements of a topology T are called its open sets. A convenient way to char-
acterize the open sets of a topology is in terms of a base or a subbase. A base of
topology T is a set B ⊆ T such that every open set is a (potentially infinite) union
of elements of B. A subbase is a set A ⊆ T such that the collection of finite inter-
sections of A is a base for T . The set

OB � {↑t | t ∈ Ψfin}

is a base (and a subbase) of the Plotkin topology, where

↑t � {t′ ∈ Ψinf | t � t′}

is the completion of a finite trace t. When t � t′ we say that t′ extends t. The com-
pletion of t is thus the set of all infinite extensions of t.

Alpern and Schneider [4] noted that, in the Plotkin topology, safety properties
correspond to closed sets and liveness properties correspond to dense sets. A closed
set is the complement (with respect to S) of an open set. If a trace t is not a member
of a closed set C, then there is some bad thing (specifically, the prefix m of t in the
definition of observable as instantiated on open set C, the complement of C) that is
to blame; the existence of such bad things makes C a safety property. Likewise, a set
that is dense intersects every nonempty open set in T . So for any finite trace t and
dense set D, the intersection of ↑t (which is open because it is a member of OB) and
D is nonempty. Since any finite trace can be extended to be in D, it holds that D is
a liveness property.

We want to construct a topology on sets of traces that extends this correspon-
dence to hyperproperties. The most important step is generalizing the notion of finite
observability from trace properties to hyperproperties. Section 3 already did this in
generalizing a finite trace to a finite set of finite traces – that is, an observation.
The observer, as before, sees the system produce each new state in the execution.
However, the observer may now reset the system at any time, causing it to begin a
new execution. At any finite point in time, the observer has now collected a finite
set of finite (thus partial) executions. An observation is thus an element of Obs, as
defined in Section 3.

An extension of an observation should allow the observer to perform additional
resets of the system, yielding a larger set of traces. An extension should also allow
each execution to proceed longer, yielding longer traces. So extension corresponds

19Topology O is also the Scott topology on the ω-algebraic CPO of traces ordered by � [58].
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to trace set prefix � (cf. Section 3). The completion of observation M is

↑M � {T ∈ Prop | M � T}.

We can now define our topology on sets of traces in terms of its subbase:

OSB � {↑M | M ∈ Obs}.

The base OB of our topology is then OSB closed under finite intersections. The base
and subbase turn out to be the same sets.

Proposition 3. OB = OSB.

Finally, our topology O is OB closed under infinite unions.
Define C to be the closed sets in our topology and D to be the dense sets. Just as

safety and liveness correspond to closed and dense sets in the Plotkin topology, hy-
persafety and hyperliveness correspond to closed and dense sets in our generalization
of that topology.

Proposition 4. SHP = C.

Proposition 5. LHP = D.

Our topology O is actually equivalent to well-known topology, as stated by the
following theorem. The Vietoris (or finite or convex Vietoris) topology is a standard
construction of a topology on sets out of an underlying topology [43,61]. Our un-
derlying topology was on traces, and we constructed a topology on sets of traces.
The Vietoris construction can be decomposed into the lower Vietoris and upper Vi-
etoris constructions [57], which also yield topologies. Let VL(T ) denote the lower
Vietoris construction, which given underlying topology T on space X produces the
topology on P (X ) induced by subbase VSB

L (T ):

VSB
L (T ) � {〈O〉 | O ∈ T },

where 〈T 〉 is defined20 as follows:

〈T 〉 � {U ∈ P (X ) | U ∩ T �= ∅}.

The following theorem states that our topology is equivalent to the lower Vietoris
construction applied to the Plotkin topology.

20Operators [·] (from Section 2) and 〈 · 〉 are similar to modal logic operators � (necessity) and � (pos-
sibility): For trace property T , lift [T ] denotes the set of all refinements of T – that is, the hyperproperty
in which T is necessary. Similarly, 〈T 〉 denotes the set of all trace properties that share a trace with T –
that is, the hyperproperty in which T is always possible.
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Theorem 4. O = VL(O).

Smyth [57] established that the lower Vietoris topology is equivalent to the lower
(or Hoare) powerdomain, which is a construction used to model the semantics of
nondeterminism [48]. So our topology embodies the same intuition about nondeter-
minism as the lower powerdomain does.

The proof of Theorem 4 yields another topological characterization of safety hy-
perproperties: the set of lifted safety properties, closed under infinite intersections
and finite unions (denoted as closure operator ClC , because these closure conditions
characterize a topology of Closed sets), is the set of safety hyperproperties.

Proposition 6. SHP = ClC ({[S] | S ∈ SP}).

Defining trace set prefix. Recall that trace set prefix � is defined as follows:

T � T ′ � (∀t ∈ T : (∃t′ ∈ T ′: t � t′)).

For clarity, we use �L instead of � to refer to that definition throughout the rest of
this section (L stands for Lower Vietoris).

Two natural alternatives to �L are

T �U T ′ � (∀t′ ∈ T ′: (∃t ∈ T : t � t′)),

T �C T ′ � T �L T ′ ∧ T �U T ′.

(U and C stand for Upper and Convex Vietoris. These prefix relations correspond to
the eponymous topologies.) However, both alternatives turn out to be unsuitable for
our purposes, because they do not correspond to our intuition about finite observabil-
ity – as we now explain.

Hyperproperty O is observable iff

(
∀T ∈ Prop: T ∈ O =⇒ (∃M ∈ Obs: M � T

∧ (∀T ′ ∈ Prop: M � T ′ =⇒ T ′ ∈ O))
)
.

Consider using �U for trace set prefix �. For a concrete example, suppose that
Σ = {a, b, c}, O is observable, T ∈ O, and M = {a, b}. Any T ′ such that M �U T ′

must be a member of O. Every trace t′ in T ′ must begin with either a or b and cannot
begin with c. In particular, T ′ might contain traces beginning only with b, never
with a. Observation M therefore characterizes a system in which a nondeterministic
choice to produce c as the first state is not possible. So with �U , an observation
records what nondeterminism is denied, and all future extensions of that observation
are also required to deny that nondeterminism.
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In contrast, with �L (i.e., our topology), an observation records what nondeter-
minism has so far been permitted, and all future extensions of that observation are
required also to permit that nondeterminism. Our intuition is that observers of a
black-box system can observe permitted nondeterminism (by observing states pro-
duced by the system) but not denied nondeterminism. The definition of �U does not
correspond to that intuition, but the definition of �L does. Similarly, using �C for
trace set prefix leads to observations that record both permitted and denied nondeter-
minism (because �C is the conjunction of �L and �U ), and therefore �C does not
correspond to our intuition, either.

So neither the upper nor the convex Vietoris topology enjoys open sets that are the
observable hyperproperties; consequently, the equivalence of closed sets and hyper-
safety is lost. Nonetheless, these topologies might be useful for other purposes – for
example, in refusal semantics for CSP [30].

7. Beyond hypersafety and hyperliveness

7.1. Intersections

Security policies can exhibit features of both safety and liveness. For example,
consider a policy on a medical information system that must maintain the confi-
dentiality of patient records and must also eventually notify patients whenever their
records are accessed [6]. If the confidentiality requirement is interpreted as obser-
vational determinism OD (2.6), then this system must both prevent bad things (OD,
which is hypersafety) as well as guarantee good things (eventual notification, which
can be formulated as liveness). As another example, consider an asynchronous proac-
tive secret-sharing system [67] that must maintain and periodically refresh a secret.
Each share refresh must complete during a given time interval with high probabil-
ity. Maintaining the confidentiality of the secret can be formulated as SecS (4.1),
which is hypersafety. The eventual refresh of the secret shares can be formulated as
liveness: every execution eventually completes the refresh if enough servers remain
uncompromised. And the high probability that the refresh succeeds within a given
time interval is hyperliveness – similar to mean response time RT (2.7). Both of
these examples illustrate hyperproperties that are intersections of (hyper)safety and
(hyper)liveness.

In fact, as stated by the following theorem, every hyperproperty is the intersection
of a safety hyperproperty with a liveness hyperproperty. This theorem generalizes
the result of Alpern and Schneider [4] that every trace property is the intersection of
a safety property and a liveness property.

Theorem 5.
(

∀P ∈ HP:
(

∃S ∈ SHP, L ∈ LHP: P = S ∩ L
))

.
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7.2. System representations

Recall that hyperproperties are system properties in which system execution is
modeled with trace sets. Some models of system execution are expressed with other
mathematical formalisms – for example, Goguen and Meseguer’s noninterference
GMNI (2.4) models systems as deterministic state machines.

We have not yet classified GMNI as hypersafety or hyperliveness. Recall that our
formalization of GMNI included the conjunct “T ∈ SM”, where hyperproperty SM
is the set of all trace sets that encode deterministic state machines. Therefore GMNI
excludes all trace sets that do not encode a deterministic state machine. It is rea-
sonable to expect that GMNI is hypersafety; the bad thing is a set {t, t′} of finite
traces where t′ contains no high inputs and contains the same low inputs as t, yet
t and t′ have different low outputs. But GMNI fails to be hypersafety because of a
technicality – a system T might fail to satisfy GMNI only because T is nondeter-
ministic, in which case a deterministic, noninterfering observation of T would be
remediable hence GMNI would not be hypersafety.21 The problem is that the def-
inition of hypersafety, by quantifying over Prop, assumed that systems are allowed
to be nondeterministic. Now that we are interested in a restricted system represen-
tation, we need to restrict the definition of hypersafety and quantify over a smaller
set of systems. Let Rep be a set of trace sets denoting a system representation –
that is, a subset of Prop containing those trace sets that represent systems of interest.
And let Obs(Rep) denote the subset of Obs containing observations of Rep, where
Obs(Rep) = {M ∈ Obs | (∃T ∈ Rep: M � T )}. Now we can define hypersafety
and hyperliveness for a given system representation.

Definition. A hyperproperty S is a safety hyperproperty for system representation
Rep (is hypersafety for Rep) iff

(
∀T ∈ Rep: T /∈ S =⇒

(
∃M ∈ Obs(Rep): M � T

∧ (∀T ′ ∈ Rep: M � T ′ =⇒ T ′ /∈ S)
))

.

Definition. A hyperproperty L is a liveness hyperproperty for system representation
Rep (is hyperliveness for Rep) iff

(
∀T ∈ Obs(Rep): (∃T ′ ∈ Rep: T � T ′ ∧ T ′ ∈ L)

)
.

GMNI indeed is hypersafety for SM, fulfilling our expectation.

21A similar problem would occur even if we used implication instead of conjunction to formalize the
requirement that systems be deterministic state machines: any observation could be remediated by adding
traces that represent nondeterministic transitions of the state machine.



1180 M.R. Clarkson and F.B. Schneider / Hyperproperties

The results proved in this paper about hypersafety and hyperliveness generalize
naturally to system representation besides Prop. Informally, the generalizations are
as follows:22

• If P is safety (liveness) for Rep, then [P ] is hypersafety (hyperliveness) for Rep
(generalizing Propositions 1 and 2).

• If P is hypersafety for Rep, then P is subset closed for Rep, but not necessar-
ily subset closed for Prop (generalizing Theorem 1). Consequently, stepwise
refinement does not necessarily work with hyperproperties that are hypersafety
for Rep.

• If P is a possibilistic information-flow policy for Rep, then P is hyperliveness
for Rep (generalizing Theorem 3).

• k-hypersafety for Rep can be reduced to safety for Repk (generalizing Theo-
rem 2).

• Every hyperproperty for Rep is the intersection of a safety hyperproperty for
Rep with a liveness hyperproperty for Rep (generalizing Theorem 5).

Appendix C gives formal statements of these results. The proofs of these results are
all straightforward corollaries of the original results, although some proofs require
additional assumptions about Rep.

We now explore system properties in various system representations – relational
systems, labeled transition systems, state machines, and probabilistic systems – by
encoding each into trace sets, thus into hyperproperties.

7.2.1. Relational systems
In language-based information-flow security [53], a program P is sometimes mod-

eled (e.g., with large-step operational semantics) as a relation ⇓ such that 〈P , s〉 ⇓ s′

if P begun in initial state s terminates in final state s′. Using this relation, noninter-
ference can be stated as

s1 =L s2 ∧ 〈P , s1 〉 ⇓ s′
1 ∧ 〈P , s2 〉 ⇓ s′

2 =⇒ s′
1 =L s′

2,

where relation =L (cf. observational determinism OD (2.6)) determines which states
are low-equivalent. This statement of noninterference is termination insensitive be-
cause it allows information to leak through termination channels.

To model a program P as set T of traces, intuitively, imagine that an observer
of the program periodically checks to see in what state the program is. If P begun
in initial state s never terminates, then the observer will see an infinite sequence
containing only s. If P does terminate in final state s′, then the observer will see a
finite sequence of s followed by an infinite sequence of s′. Let T be the set of all

22We leave generalizing the topological results as future work. However, since the intersection theorem
generalizes, we believe that the topological results could also be generalized.
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such traces. Formally, T is defined as follows:

T = {t ∈ Ψinf | 〈P , s〉 ⇓ s′ ∧ t ∈ s+(s′)ω}

∪ {t ∈ Ψinf | ¬(∃s′: 〈P , s〉 ⇓ s′) ∧ t = sω}.

Let Rel, the set of all relational systems, be the set of all trace sets so constructed for
any P .

Define termination-insensitive relational noninterference as a hyperproperty:

TIRNI �
{
T ∈ Prop | T ∈ Rel

∧
(

∀t1, t2 ∈ T : t1[0] =L t2[0]

=⇒ diverges(t1) ∨ diverges(t2)

∨ (∃s1, s2 ∈ Σ: terminates(t1, s1)

∧ terminates(t2, s2) ∧ s1 =L s2)
)}

. (7.1)

Predicate diverges(t) holds whenever t is a trace of a program P such that P does
not terminate when begun in initial state t[0], so t = (t[0])ω . Similarly, predicate
terminates(t, s) holds whenever P terminates in final state s when begun in initial
state t[0], so t = (t[0])+sω . We assume without loss of generality that final states are
distinguishable from initial states (e.g., by having a special flag set), so that diverges
and terminates can distinguish between nontermination and termination in a final
state that otherwise is identical to an initial state. TIRNI is hypersafety for Rel:
the bad thing is a pair of traces that begin in low-equivalent initial states but terminate
in final states that are not low-equivalent.

Termination-sensitive noninterference is the same as termination insensitive, ex-
cept that it forbids one trace to diverge and the other to terminate. So define
termination-sensitive relational noninterference as follows:

TSRNI �
{
T ∈ Prop | T ∈ Rel

∧
(

∀t1, t2 ∈ T : t1[0] =L t2[0]

=⇒ (diverges(t1) ∧ diverges(t2))

∨ (∃s1, s2 ∈ Σ: terminates(t1, s1)

∧ terminates(t2, s2) ∧ s1 =L s2)
)}

. (7.2)

Note that the only change is that a disjunction became a conjunction. TSRNI is not
hypersafety for Rel: A system containing a pair {t, t′} of traces, where t diverges and
t′ does not, yet where t and t′ contain low-equivalent initial states, does not satisfy
TSRNI. But any finite prefix of this pair could be remediated by extending the prefix
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of t to terminate in the same final state as t′. Likewise, TSRNI is not hyperliveness
for Rel:23 Consider a finite observation containing a pair of terminating traces that
have low-equivalent initial states but not low-equivalent final states. This observation
cannot be extended to be in TSRNI.

7.2.2. Labeled transition systems
Definitions of noninterference are sometimes based on bisimulation, which is a

relation that specifies whether two systems are equivalent to an observer. Bisimula-
tions are often expressed over labeled transition systems, which are triples (S, L, →)
where S is a set of LTS-states,24 L is a set of labels, and → is a relation on

S × L × S [45]. Elements of relation → are usually notated s1
�→ s2 and are in-

terpreted to mean that the system has a transition labeled � from LTS-state s1 to
LTS-state s2.

A labeled transition system (S, L, →) can be encoded as a set of traces. Define the
state space Σ for the traces to be S × L.25 Given state s ∈ Σ, let st(s) denote the
LTS-state from s, and let lab(s) denote the label from s. Define traces(S, L, →) to
be

{
t |

(
∀i ∈ N: st(t[i])

lab(t[i])−−−−→ st(t[i + 1])
)}

.26

Let LTS be the set of all trace sets so constructed for any LTS.
We now demonstrate how to use this encoding by formalizing Focardi and Gorri-

eri’s [22] definition of bisimulation nondeducibility on compositions (BNDC), which
is a noninterference policy for nondeterministic LTSs. The intuition behind this pol-
icy is that a system should appear the same to a low observer no matter with what
other system it is composed (i.e., run in parallel). Assume that set L of labels can
be partitioned into three sets of actions (i.e., events): a set of low security actions,
a set H of high security actions, and {τ}, where τ is an unobservable internal ac-
tion. An LTS E = (S, L, →) satisfies BNDC, denoted BNDC(E), iff for all LTSs
F = (S, H ∪ {τ}, →F ) that take only high and internal actions,

E/H ≈ (E|F ) \ H ,

23Terauchi and Aiken [60] characterized termination-sensitive noninterference as “2-liveness”, where
they defined “2-liveness” as a “property which may observe up to two possibly infinite traces to refute
the property”. Although they are correct that TSRNI could be refuted by observing two infinite traces,
refutation is really about safety, not liveness – there is no good thing for TSRNI, but there is an infinitely-
observable bad thing. So “2-infinite-safety” would be a better term than “2-liveness”.

24We use the term LTS-state to distinguish these from the states defined in Section 2.
25This construction would not work with an impoverished notion of state, as observed by Focardi and

Gorrieri [22] for states that are elements only of L.
26We could replace lab(t[i]) with lab(t[i + 1]) in this definition; the choice of where to store the label

is arbitrary.
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with notations /, |, \ and ≈ informally defined as follows:27

• Hiding operator E/H relabels as τ all actions from H that occur during execu-
tion of E. System E/H thus represents the view of system E by a low observer,
since all the high actions are hidden.

• Parallel composition operator E|F denotes the interleaving of systems E and F .
The systems can synchronize on actions, causing the composed system to emit
internal action τ .

• Restriction operator E \ H prohibits the occurrence of any actions from H dur-
ing execution of E, meaning that no transition with a label from H is allowed.
System (E|F ) \ H thus represents a low observer’s view of E when all the high
actions that E takes are synchronized with F .

• Weak bisimulation relation E ≈ F intuitively means that E and F can simu-
late each other: if E can take a transition with label �, then there must exist a
transition of F that is also labeled �, and after taking those transitions E and F
must remain bisimilar. F is allowed to take any number of internal transitions
(labeled τ ) before or after the �-labeled transition. Further, the relation must be
symmetric, such that if E ≈ F then F ≈ E.

Thus, if E/H ≈ (E|F ) \ H , then a low observer’s view of E does not change when
E is composed with any high security system F . The hyperproperty corresponding
to Focardi and Gorrieri’s BNDC is

BNDC �
{
T ∈ Prop | T ∈ LTS

∧ (∃E ∈ LTS: T = traces(E) ∧ BNDC(E))
}
. (7.3)

BNDC is hyperliveness for LTS because of the existential in definition of ≈:
any observation can be remedied by adding additional transitions. This remedia-
tion corresponds to a closure operator because it only adds traces, thus BNDC is a
possibilistic-information flow policy.

Appendix B presents another bisimulation-based noninterference policy as a hy-
perproperty.

7.2.3. State machines
Goguen and Meseguer [23] define a state machine as a tuple (S, C, O, out, do, s0),

where S is a set of machine states, C is a set of commands, O is a set of outputs,
out is a function from S to O yielding what output the user of the machine observes
when the machine is in a given state, do is a function from S × C to S describing
how the machine transitions between states as a function of commands, and s0 is the
initial state of the machine.28 Such state machines are deterministic because do is a
function rather than a relation.

27The formal definitions (over LTSs) are standard and given by Focardi and Gorrieri [22]. It is straight-
forward to define them directly over trace sets.

28Our definition of state machines simplifies Goguen and Meseguer’s by omitting user clearances,
though the clearances still appear in the definition of GMNI.
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A state machine M = (S, C, O, out, do, s0) can be encoded as a set of traces.
The construction proceeds in two steps. First, M is encoded as a labeled transition
system (cf. Section 7.2.2) by treating the machine commands and outputs as labels:
Let the set Ŝ of LTS-states be set S of machine states. Let the set L̂ of labels be
product set C × O of commands and outputs. Let the transition relation → include
(s, (c, o), s′) whenever do(s, c) = s′ and out(s′) = o. We now have a labeled tran-
sition system L = (Ŝ, L̂, →). Second, the traces of M are the traces of L that start
with s0: let traces(M ) be traces(Ŝ, L, →) ∩ {t ∈ Ψinf | t[0] = s0}.

The set SM of all state machines is a hyperproperty:

SM � {T ∈ Prop | (∃M : T = traces(M ))}. (7.4)

As noted at the beginning of this section, GMNI is hypersafety for SM.

7.2.4. Probabilistic systems
A probabilistic system is equipped with a function p such that the system transi-

tions from a state s to state s′ with probability p(s, s′).29 This probability is Markov-
ian because it does not depend upon past or future states in an execution; nonetheless,
dependence upon the past or future can be modeled by allowing states to contain his-
tory or prophecy variables [1]. Function p can itself even be encoded into the state
in various ways. For example, state s could record p(s, s′) for all states s′. Or in a
trace t, state t[i] could record p(t[i], t[i + 1]). This latter encoding is an instantia-
tion of the construction in Section 7.2.2 for encoding labeled transition systems as
sets of traces; here, the labels are probabilities. Either way, probabilistic systems can
be modeled as sets of traces. Define PR to be the set of all trace sets that encode
probabilistic systems – that is, trace set T is in PR if T encodes a valid probability
function p(·, ·).

To obtain a probability measure on sets of traces, let Prs,S(T ) denote the probabil-
ity with which set T of finite traces is produced by probabilistic system S beginning
in initial state s.30 O’Neill et al. [47] show how to construct this probability mea-
sure from p. We now demonstrate how the measure can be used in the definitions of
hyperproperties.

Probabilistic noninterference. In information-flow security, the original motiva-
tion for adding probability to system models was to address covert channels and to
establish connections between information theory and information flow [24,25,44].
Probabilistic noninterference [25] emerged from this line of research. Intuitively,
this policy requires that the probability of every low trace be the same for every

29To be a valid probability, p(s, s′) must be in the real interval [0, 1] for all s and s′; and for all s, it
must hold that

∑
s′ p(s, s′) = 1.

30The initial state can be eliminated if we also assume a prior probability on initial states [26, Sec-
tion 6.5]. The requirement that the traces in T be finite is, however, essential to ensure that Prs,S (T ) is a
valid probability measure.
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low-equivalent initial state. To formulate probabilistic noninterference as a hyper-
property, we need some notation. Let the low equivalence class of a finite trace t be
denoted [t]L, where

[t]L � {t′ ∈ Ψfin | evL(t) = evL(t′)}.

The probability that system S, starting in state s, produces a trace that is low-
equivalent to t is therefore Prs,S([t]L). Let the set of initial states of trace property T
be denoted Init(T ), where

Init(T ) � {s | {s} � T}.

Probabilistic noninterference can now be expressed as follows:

PNI �
{
T ∈ Prop | T ∈ PR

∧
(

∀s1, s2 ∈ Init(T ): evL(s1) = evL(s2)

=⇒ (∀t ∈ Ψfin: Prs1,T ([t]L) = Prs2,T ([t]L))
)}

. (7.5)

PNI is not hyperliveness for PR, because a system that deterministically produces
two non-low-equivalent traces from two initial low-equivalent states cannot be ex-
tended to satisfy PNI. Whether PNI is hypersafety for PR depends on whether state
space Σ is finite. To see why, consider a system T such that T /∈ PNI and T ∈ PR.
We can attempt to construct a bad thing M for T as follows. Since T /∈ PNI, there
exists a trace tL of low events that is produced by initial states s1 and s2 with differ-
ing probabilities. Let M be the prefix of T that completely determines the probability
of tL for those initial states:

M =
{
t ∈ Ψfin | t[0] ∈ {s1, s2} ∧ t � T ∧ evL(t) = tL

}
.

Recall that bad things must be finitely observable and irremediable. M is irremedi-
able because no extension of it can change the probability of tL for initial states s1
and s2. But is M finitely observable – that is, is M ∈ Obs? Recall that an element
of Obs must be a finite set of finite traces. Each trace in M is finite, but M might not
be a finite set:

• If state space Σ is countably infinite,31 then there could be infinitely many states
to which s1 (and s2) transition. Hence there could need to be infinitely many
traces in M to completely determine the probability of tL, so M could not be
in Obs. Moreover, any finite subset N of M would necessarily omit some states

31State space Σ cannot be uncountably infinite without generalizing probability function p(·, ·) to a
probability measure.
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from Σ. So it might be possible to extend N to a system T ′ that satisfies PNI by
adding traces containing those omitted states. Thus T would have no bad thing,
and PNI would not be hypersafety for PR.

• If Σ is finite, then only finitely many finite traces are low-equivalent to tL. Thus
M is finite, and no extension of T ′ of M can change the probability of tL. So
T ′ cannot be in PNI. Therefore PNI is hypersafety for PR.

Gray’s definition of probabilistic noninterference [25] is hypersafety for PR, because
Gray required the state (and input and output) space to be finite. But the definition
of O’Neill et al. [47] is neither hypersafety nor hyperliveness, because it allowed a
countably infinite state space.

Secure encryption. A private-key encryption scheme is a tuple (M, K, C, Gen,
Enc, Dec), where M is the message space, K is the key space, and C is the ciphertext
space, such that the following hold:

• Gen is the key-generation algorithm, a randomized algorithm that produces a
key k ∈ K. We write k ← Gen to denote the sampling of k from the probability
distribution induced by Gen.

• Enc is the encryption algorithm, an algorithm (either randomized or determinis-
tic) that accepts a key k ∈ K, a plaintext message m ∈ M, and yields a cipher-
text c ∈ C that is the encryption of m using k. We denote this as c = Enc(m, k).

• Dec is the decryption algorithm, a deterministic algorithm that accepts a key
k ∈ K, a ciphertext c ∈ C, and yields a plaintext m that is the decryption of c
using k. We denote this as m = Dec(c, k).

• Decryption is the inverse of encryption. Formally, for all m ∈ M and k ∈ K,

Pr(Dec(Enc(m, k), k) = m) = 1.

A private-key encryption scheme satisfies perfect indistinguishability [32] if the
probability distribution on ciphertexts is the same for all plaintexts. Formally, for
all m1, m2 and c,

Pr(k ← Gen: Enc(m1, k) = c) = Pr(k ← Gen: Enc(m2, k) = c).

Perfect indistinguishability can be formulated as a hyperproperty on probabilistic
systems. To encode encryption scheme (M, K, C, Gen, Enc, Dec) as a probabilistic
system, let the set of states of the system be

M ∪ K ∪ C ∪ {Gen} ∪ {Enc(m, k) | k ∈ K, m ∈ M}

∪ {Dec(c, k) | k ∈ K, c ∈ C}.

Let probability function p(·, ·) be defined such that:

• p(Gen, k) = Pr(k = Gen),
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• p(Enc(m, k), c) = Pr(c = Enc(m, k)), and
• p(Dec(c, k), m) = 1 iff Dec(c, k) = m.

Let the system so constructed from (M, K, C, Gen, Enc, Dec) be denoted

encSys(M, K, C, Gen, Enc, Dec),

and let the set of all such systems be ES. The following hyperproperty expresses
perfect indistinguishability:

PI �
{
T ∈ Prop | T ∈ ES ∧

(
∃M, K, C, Gen, Enc, Dec:

T = encSys(M, K, C, Gen, Enc, Dec)

∧ (∀m1, m2 ∈ M; c ∈ C: Pr(Enc(m1) = c)

= Pr(Enc(m2) = c))
)}

, (7.6)

where Pr(Enc(m) = c) denotes∑
k∈ K

PrGen,T ({Gen, k}) · PrEnc(m,k),T ({Enc(m, k), c}).

PI is hypersafety for ES because any encryption scheme that is not in PI has a
ciphertext c and two messages m1, m2 such that the probability that m1 encrypts
to c is not equal to the probability that m2 encrypts to c. Trace set {Enc(m, k), c|
k ∈ K, m ∈ {m1, m2}} thus is irremediable, and it is finite assuming that key
space K is finite. So the trace set is a bad thing. But note that PI is not subset closed
for Prop, so stepwise refinement is not applicable with PI.

Other definitions of secure encryption, such as computational indistinguishability
in various attacker models (including IND-CPA and IND-CCA), can similarly be
formulated as hyperproperties.

Quantifying information flow. Probability can also be used to reason about the
amount of information that a system can leak. For example, channel capacity is
the maximum rate at which information can be reliably sent over a channel [55];
Gray [25] formulates as a channel the leakage of secret information from a system,
and he quantifies the capacity of that channel. The hyperproperty “The channel ca-
pacity is k bits” (denoted CCk) is hyperliveness for PR, since no matter what the rate
is for some finite prefix of the system, the rate can changed to any arbitrary amount
by an appropriate extension that conveys more or less information.

To measure quantity of leakage from repeated experiments in probabilistic pro-
grams, Clarkson et al. [14] use a probabilistic denotational semantics. This seman-
tics can be used to define a system, and the traces of the system represent repeated
executions of the program. The hyperproperty “The quantity of leakage over every
series of experiments on program S is less than k bits” (denoted QLk) is hypersafety
for a variant of PR. For details, see Appendix B.
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8. Concluding remarks

Many security policies have been classified as hyperproperties in this paper. Fig-
ure 1 summarizes this classification.

Although this paper formulates security policies with hyperproperties, security
policies historically have been formulated in terms of confidentiality, integrity, and
availability requirements [16,17,31]. The relation between these two formulations is
an open question, but we can offer some observations:

• Information-flow confidentiality is not a trace property, but it is a hyperproperty,
and it can be hypersafety (e.g., observational determinism) or hyperliveness
(e.g., generalized noninterference).

• Integrity, which we have not discussed in this paper, includes examples from
safety, hypersafety, and hyperliveness.

• Availability is sometimes hypersafety (maximum response time in any execu-
tion, which is also safety) and sometimes hyperliveness (mean response time
over all executions).

The classification of security requirements as confidentiality, integrity, and availabil-
ity therefore would seem to be orthogonal to hypersafety and hyperliveness. Hyper-
safety and hyperliveness have the advantages of being formalized and providing an
orthogonal basis for constructing security policies. In contrast, there is no formal-
ization that simultaneously characterizes confidentiality, integrity, and availability,32

Fig. 1. Classification of security policies.

32The closest example of which we are aware is from Zheng and Myers [66], who formalize a particular
noninterference policy for confidentiality, integrity, and availability.
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nor are confidentiality, integrity, and availability orthogonal.33

Finally, no relatively complete verification methodology exists for confidentiality,
integrity, or availability. But there is such a methodology for trace properties: given
a trace property P , construct a safety property S and a liveness property L such
that P = S ∩ L, then use invariance arguments to verify S and well-foundedness
arguments to verify L [4,5]. And we have now taken steps toward generalizing this
methodology to apply to hyperproperties. Theorem 5 shows that every hyperprop-
erty P can be expressed as the intersection of a safety hyperproperty S and a liveness
hyperproperty L, and the proof of Theorem 5 shows that S and L can be constructed
from P. If S is a k-safety hyperproperty, then by Theorem 2, it can be verified using
reasoning about safety. It remains an open question whether general methods ex-
ist that are relatively complete for verification of safety hyperproperties that are not
k-safety, or for liveness hyperproperties.34 Such methods would complete the verifi-
cation methodology for hyperproperties. Then, security might take its place as “just
another” functional requirement to be verified.

Appendix A: Summary of notation

Bold face denotes “hyper” and sans serif denotes sets of (trace or hyper-) proper-
ties. Predicates and functions always begin with lower case, whereas (trace or hyper-)
properties always begin with upper case.

Σ set of all states
Ψfin set of all finite traces
Ψinf set of all infinite traces

Ψ set of all traces
t[i] trace index

t[..i] trace prefix
t[i..] trace suffix
Prop set of all trace properties

P powerset operator
|= trace property (and hyperproperty) satisfaction

NRW trace property “no read then write”
AC trace property “access control”
GS trace property “guaranteed service”
HP set of all hyperproperties
[P ] lift of trace property P to equivalent hyperproperty

33For example, the requirement that a principal be unable to read a value could be interpreted as confi-
dentiality or unavailability of that value.

34If the full power of second-order logic is necessary to express hyperproperties (as discussed at the
end of Section 2), then such methods could not exist. Nonetheless, methods for verifying fragments of the
logic might suffice for verifying hyperproperties that correspond to security policies.
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GMNI hyperproperty “Goguen and Meseguer’s noninterference”
GNI hyperproperty “generalized noninterference”
OD hyperproperty “observational determinism”
=L low-indistinguishability relation on states
≈L low-indistinguishability relation on traces
RT hyperproperty “mean response time”

SSC set of all subset-closed hyperproperties
SP set of all safety properties
� trace (or trace set) prefix

Obs set of all observations
SHP set of all safety hyperproperties

KSHP(k) set of all k-safety hyperproperties
Sk k-fold parallel self-composition

Sys set of all systems
SecS hyperproperty “secret sharing”

LP set of all liveness properties
LHP set of all liveness hyperproperties
true hyperproperty that holds of all systems

false hyperproperty that holds of no systems
Cl closure operator

PIF set of all possibilistic information-flow hyperproperties
NNT hyperproperty “not never terminates”
SAG trace property “sometime always good”

O open sets of Plotkin topology
↑ completion of trace or observation

O open sets of our topology
C closed sets of our topology
D dense sets of our topology

VL lower Vietoris construction
ClC closure under infinite intersection and finite union
Rep system representation

Obs(Rep) observations of a system representation
Rel system representation “relational systems”

TIRNI hyperproperty “termination-insensitive noninterference”
TSRNI hyperproperty “termination-sensitive noninterference”

LTS system representation “labeled transition systems”
BNDC hyperproperty “bisimulation nondeducibility on compositions”

SM system representation “deterministic state machines”
PR system representation “probabilistic systems”

Prs,S(T ) probability that set T of finite traces is produced by probabilistic
system S beginning in initial state s

PNI hyperproperty “probabilistic noninterference”
ES system representation “encryption schemes”
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PI hyperproperty “perfect indistinguishability”
CCk hyperproperty “channel capacity”
QLk hyperproperty “quantitative leakage”

BCNI hyperproperty “Boudol and Castellani’s noninterference”

Appendix B: Longer examples of hyperproperties

B.1. Boudol and Castellani’s noninterference

Boudol and Castellani [11] define a bisimulation-based noninterference policy for
concurrent programs. To model this policy as a hyperproperty, we first formalize
their model of program execution. They model execution as a binary relation → on
program terms and memories; a program term P and a memory μ step to a new
program term P ′ and memory μ′. Define the set ΣP of states for program P to
be the set of pairs of a program term and a memory, prog(s) to be the program
term from state s, and mem(s) to be the memory from state s. Define traces(P ) to
be the set of all traces t such that prog(t[0]) is P , and for all i, t[i] → t[i + 1].
This construction encodes P as a set of traces and is an instance of our general
construction for encoding LTSs (cf. Section 7.2.2); here there are only LTS-states
and no labels.

Second, we formalize Boudol and Castellani’s security policy. Let =L be an equiv-
alence relation on memories such that μ1 =L μ2 means μ1 and μ2 are indistinguish-
able to a low observer. State s can step to state s′ in program P , denoted stepsP (s, s′),
if

(∃t ∈ Ψinf, i ∈ N: t ∈ traces(P ) ∧ t[i] = s ∧ t[i + 1] = s′).

Define ≈P
L (read “bisimilar”) to be a binary relation on ΣP such that if s1 is bisimilar

to s2, then s1 and s2 must have indistinguishable memories to a low observer; further,
if s1 can step to state s′

1, then either s′
1 is bisimilar to s2, or s2 can step to s′

2 where
s′

1 and s′
2 are bisimilar. Formally, ≈P

L is the largest symmetric binary relation on ΣP
such that

s1 ≈P
L s2 =⇒ mem(s1) =L mem(s2)

∧
(

∃s′
1 ∈ Σ: stepsP (s1, s′

1) =⇒ s′
1 ≈P

L s2

∨ (∃s′
2 ∈ Σ: stepsP (s2, s′

2) ∧ s′
1 ≈P

L s′
2)

)
.

Relation ≈P
L formalizes Definition 3.5 ((Γ, L)-bisimulation) from [11].

Boudol and Castellani define program P to be secure, which we denote BCNI(P ),
iff P is bisimilar to itself in all initially low-equivalent memories:

BCNI(P ) � (∀μ1, μ2: μ1 =L μ2 =⇒ (P , μ1) ≈P
L (P , μ2)).
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BCNI(P ) formalizes Definition 3.8 (secure programs) from [11]. The hyperproperty
containing all secure programs according to Boudol and Castellani’s definition is

BCNI � {T ∈ Prop | T ∈ LTS =⇒ (∃P : T = traces(P ) ∧ BCNI(P ))}.

BCNI is hyperliveness because of the existential quantifier on s′
2 in the defini-

tion of ≈P
L : any observation that contains traces leading to nonbisimilar states can

be remedied by adding additional traces leading to bisimilar states. This remedia-
tion corresponds to a closure operator because it only adds traces, thus BCNI is a
possibilistic information-flow policy.

B.2. Quantitative information flow

We summarize the model of Clarkson et al. [14]. A state has an immutable high
component and a mutable low component. A repeated experiment on probabilistic
program S is a finite sequence of executions of S. Each individual execution is an
experiment. An execution is represented by two states: an initial state, in which in-
puts are provided to the program, and a final state, in which outputs are given by the
program. All initial states (across all executions) in a repeated experiment must have
the same high component but may have different low components. The probabilistic
behavior of S is modeled by a semantics �S� that maps inputs states to output dis-
tributions, where (�S�s)(s′) is the probability that S begun in state s terminates in
state s′. An attacker begins an experiment with a prebelief about the high component
of the initial state. After observing the output of the execution, the attacker updates
his prebelief to produce a postbelief about the high component of the initial state.

We here use traces and events to represent repeated experiments, where each state
in a trace produces an event.35 The events alternate between input and output, and the
first event in a trace must be an input. Each output must have the correct probability
of occurring according to �S� and the most recent input. Each low input component
may vary, but the high component must be the same in each input. Let Syst(S) denote
the system of such traces resulting from program S:

Syst(S) �
{
t ∈ Ψfin |

(
∀i: 0 � 2i + 1 � |t| =⇒ evHin(t[2i]) = evHin(t[0])

∧ p(t[2i], t[2i + 1]) = (�S�t[2i])(t[2i + 1])
)}

,

where |t| denotes the length of finite trace t, and p(·, ·) is the probability function used
in Section 7.2.4. From Syst(S) we can construct probability measure Prs,Syst(S), also

35A representation in which each finite trace contains two states (initial and final) might seem to be
suitable for repeated experiments. That representation would fail to preserve the order in which inputs are
provided (in initial states) across the sequence of executions in the repeated experiment. However, a single
trace with many states does capture this order.
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used in Section 7.2.4.36 The set of program states must be finite for the probability
measure to be well-defined.

Each pair of states t[i] and t[i + 1] (for even i) in repeated experiment t yields
an experiment. An experiment is described formally by a prebelief, a high input,
a low input, a low output, and a postbelief. As part of determining the postbelief
for an experiment, the attacker’s prediction δA of the low output is calculated from
prebelief bH and low input l:

δA(bH , l) � λs.bH (evHin(s)) · Prr,Syst(S)({rs}),

where r is the state that has evHin(s) as its high component and l as its low compo-
nent. Denote the ith experiment in trace t, with initial prebelief bH , as E (t, i, bH ).
We define E (t, i, bH ) using OCaml-style record syntax:

E (t, i, bH ) �
{

preBelief = if i > 0 then E (t, i − 1).postBelief else bH ;

highIn = evHin(t[2i]);

lowIn = evL(t[2i]);

lowOut = evL(t[2i + 1]);

postBelief = (δA(bH , l) | lowOut) � H
}

,

where | is the distribution conditioning operator, and � is the distribution projection
operator, from [14].

The quantity of flow in experiment E (t, i, bH ), denoted Q(E (t, i, bH )), is defined
in [14, Section 4]; we do not repeat the formalization here. The quantity of flow over
repeated experiment t with initial prebelief bH , denoted Q(t, bH ), is the sum of the
flow for each experiment in t:

Q(t, bH ) �
(|t| −1)/2∑

i=0

Q(E (t, i, bH )).

Hyperproperty QLk is the set of all systems that exhibit at most k bits of flow over
any experiment:

QLk �
{
T ∈ Prop |

(
∃S: T = Syst(S) =⇒ (∀t ∈ T , bH : Q(bH , t) � k)

)}
.

36Note that p(s, s′) is defined only at every other state in each trace of Syst(S), so to construct the
measure we treat each pair of states in the trace a single state.
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Appendix C: System representation results

The results that appear before Section 7.2 implicitly assume that the system repre-
sentation is Prop. Section 7.2 generalizes those results to an arbitrary representation
Rep, where Rep is a set of trace sets. We now give the formal statements of those
generalized results.

Let Tr(Rep) denote the set of all traces that are contained in any system in Rep
– that is, Tr(Rep) =

⋃
T ∈Rep T . Let Obs(Tr(Rep)) denote the set of all finite traces

that are prefixes of some trace in Tr(Rep) – that is, Obs(Tr(Rep)) = {t ∈ Ψfin |
(∃t′ ∈ Tr(Rep): t � t′)}. Let the lift [P ]Rep of property P in Rep be P (P ) ∩ Rep.

To generalize safety and liveness to system representations, it suffices to replace
Ψinf with Tr(Rep) and Ψfin with Obs(Tr(Rep)). A trace property S is a safety property
for system representation Rep iff

(
∀t ∈ Tr(Rep): t /∈ S =⇒ (∃m ∈ Obs(Tr(Rep)): m � t

∧ (∀t′ ∈ Tr(Rep): m � t′ =⇒ t′ /∈ S))
)
.

A trace property L is a liveness property for system representation Rep iff

(
∀t ∈ Obs(Tr(Rep)): (∃t′ ∈ Tr(Rep): t � t′ ∧ t′ ∈ L)

)
.

Let SP(Rep) be the set of all safety properties for Rep, and let LP(Rep) be the set
of all liveness properties for Rep. Likewise, let SHP(Rep) be the set of all safety
hyperproperties for Rep, and let LHP(Rep) be the set of all liveness hyperproperties
for Rep.

The following results are simple corollaries of the original results, although in
some cases additional assumptions are needed about Rep.

Generalization of Proposition 1. If (∀t ∈ Tr(Rep): {t} ∈ Rep), then

(
∀S ∈ P (Rep): S ∈ SP(Rep) ⇐⇒ [S]Rep ∈ SHP(Rep)

)
.

The forward direction of this generalization always holds, but the backward direction
(⇐=) might not hold if Rep does not allow individual traces from Tr(Rep) to be
representations: the bad thing for a safety hyperproperty could never be an individual
trace, hence the safety hyperproperty could not be the lift of a safety property. So the
backward direction requires the assumption that any individual trace in Tr(Rep) is
itself a system representation in Rep – that is, (∀t ∈ Tr(Rep): {t} ∈ Rep). Note that
Prop satisfies this assumption.

Generalization of Proposition 2. If (∀T ⊆ Tr(Rep): T ∈ Rep), then

(
∀L ∈ P (Rep): L ∈ LP(Rep) ⇐⇒ [L]Rep ∈ LHP(Rep)

)
.
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The backward direction of this generalization always holds, but the forward direc-
tion (=⇒) might not hold if Rep does not allow arbitrary unions of individual traces
from Tr(Rep) to be representations: the individual good things for a liveness prop-
erty, when unioned, would not necessarily be good for the lift of that liveness prop-
erty. So the forward direction requires the assumption that arbitrary unions of in-
dividual traces in Tr(Rep) are themselves system representations in Rep – that is,
(∀T ⊆ Tr(Rep): T ∈ Rep). Note that Prop satisfies this assumption.

Generalization of Theorem 1. If (∃L ∈ LP(Rep): L �= Tr(Rep)), then

SHP(Rep) ⊂ SSC(Rep).

SSC(Rep) is the set of all hyperproperties for Rep that are subset closed on Rep:

P ∈ SSC(Rep) ⇐⇒
(

∀T ∈ P: (∀T ′ ∈ Rep: T ′ ⊂ T =⇒ T ′ ∈ P)
)
.

The strictness of the subset in the theorem generalization requires the assump-
tion that there exist subset-closed hyperproperties that are not safety. But it
suffices to instead assume that hyperliveness is not trivial for Rep – that is,
(∃L ∈ LP(Rep): L �= Tr(Rep)). Note that Prop satisfies both assumptions.

Generalization of Theorem 2.(
∀S ∈ Rep, K ∈ KSHP(k)(Rep): (∃K ∈ SP(Rep): S |= K ⇐⇒ Sk |= K)

)
.

KSHP(k)(Rep) is the subset of SHP(Rep) where the size of bad thing M is bounded
by k.

Generalization of Theorem 3. If there exists some liveness hyperproperty for Rep
that is not a possibilistic information-flow policy for Rep, then

PIF(Rep) ⊂ LHP(Rep).

PIF(Rep) is the set of all possibilistic information-flow policies expressed by closure
operators Cl of type Rep → Rep. The strictness of the subset requires the assump-
tion of the existence of a liveness hyperproperty for Rep that is not a possibilistic
information-flow policy for Rep. Note that Prop satisfies this assumption.

Generalization of Theorem 5.(
∀P ∈ P (Rep): (∃S ∈ SHP(Rep), L ∈ LHP(Rep): P = S ∩ L)

)
.

The proof of this generalization requires the following generalized definition:

Safe(P) �
{
T ∈ Rep |

(
∀M ∈ Obs(Rep): M � T

=⇒ (∃T ′ ∈ Rep: M � T ′ ∧ T ′ ∈ P)
)}

.

Also, in the definition of Live(P), notation H must now denote the complement of
hyperproperty H with respect to Rep.
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Appendix D: Proofs

Bueno and Clarkson [12] have formally verified Propositions 1 and 2, Theo-
rems 2, 3 and 5, and an analogue of Theorem 1 using the Isabelle/HOL proof as-
sistant [46]. We believe that the remaining proofs could also be formally verified.

Proposition 1. (∀S ∈ Prop: S ∈ SP ⇐⇒ [S] ∈ SHP).

Proof. By mutual implication.

(⇒) Let S be an arbitrary safety property. We want to show that [S] is a safety
hyperproperty – that is, any trace property T not in [S] contains some bad
thing.
First, we find a bad thing M for T . By the definition of lifting, [S] = P (S) =
{P ∈ Prop|P ⊆ S}. Since T is not in this set, T �⊆ S. So some trace t is in T
but not in S. By the definition of safety, if t /∈ S, there is some finite trace m
that is a bad thing for S. So no extension of m is in S. Define M to be {m}.
Second, we show that M is irremediable. Note that M � T because m � t and
t ∈ T . Let T ′ be an arbitrary trace property that extends M – that is, M � T ′.
By the definition of �, there exists a t′ ∈ T ′ such that m � t′. We established
above that no extension of m is in S, so t′ /∈ S. But, again by the definition of
lifting, T ′ /∈ [S], since T ′ contains a trace not in S.
Thus, by definition, [S] is hypersafety.

(⇐) Let S be an arbitrary trace property such that [S] is hypersafety. We want to
show that S is safety. Our strategy is as above – we find a bad thing and then
show that it is irremediable.
Consider any t such that t /∈ S. By the definition of lifting, we have that
{t} /∈ [S]. By the definition of hypersafety applied to [S], there exists an
M � {t} such that for all T ′ � M , we have T ′ /∈ [S].
We claim that M must be nonempty. To show this, suppose for sake of con-
tradiction that M is empty. Then M is a prefix of every trace property T ′, so
no T ′ can be a member of S, which implies that [S] itself must be empty. But
[S] = P (S), so [S] must at least contain S as a member. This is a contradiction,
thus M is nonempty and contains at least one trace.
All traces in M must be prefixes of t, by the definition of �. Choose the longest
such prefix in M and denote it as m∗. This m∗ serves as a bad thing for t, as
we show next.
Let t′ be arbitrary such that m∗ � t′, and let T ′ = {t′}. By the transitivity
of �, we have M � T ′, so T ′ /∈ [S] by the above application of the definition
of hypersafety. But this implies that t′ /∈ S, by the definition of lifting.
We have shown that, for any t /∈ S, there exists an m � t, such that for any
t′ � m, we have t′ /∈ S. Therefore, S is safety, by definition. �

Theorem 1. SHP ⊂ SSC.



M.R. Clarkson and F.B. Schneider / Hyperproperties 1197

Proof. Assume that S is hypersafety. For sake of contradiction, also assume that S
is not subset closed. This latter assumption implies that there exist two trace prop-
erties T and T ′ such that T ∈ S, and T ′ /∈ S, yet T ′ ⊂ T . By the definition of
hypersafety, since T ′ /∈ S, there exists an observation M that is a bad thing for
T ′ – that is, M � T ′ and for all T ′ ′ such that M � T ′ ′, it holds that T ′ ′ /∈ S. Con-
sider this M . By the definition of �, since T ′ ⊂ T and M � T ′, we have M � T .
Then T is an instance of T ′ ′ above, which means T /∈ S. But this contradicts T ∈ S.
Therefore, S must be subset closed.

To see that the subset relation is strict, define the trace property true as Ψinf.
Consider any liveness property L other than true – for example, guaranteed service
GS (2.3). When lifted to hyperproperty [L], the result is subset closed by definition
of [·]. By Proposition 2 below (whose proof does not depend on this theorem), [L] is
hyperliveness. Since L is not true, we have that [L] is not true, which is the only hy-
perproperty that is both hypersafety and hyperliveness. So [L] cannot be hypersafety.
Thus [L] is a hyperproperty that is not hypersafety but is subset closed. �

Theorem 2. (∀S ∈ Sys, K ∈ KSHP(k): (∃K ∈ SP: S |= K ⇐⇒ Sk |= K)).

Proof. Let K be an arbitrary k-safety hyperproperty of system S. Our strategy is to
construct a safety property K that holds of system Sk exactly when K holds of S.

Since K is k-safety, every trace property not contained in it has some bad thing of
size at most k – that is, for all T /∈ K, there exists an observation M where |M | � k
and M � T , such that for all T ′ where M � T ′, it holds that T ′ /∈ K. Construct the
set M of all such bad things:

M �
{
M ∈ Obs | |M | � k ∧ (∃T ∈ Prop: T /∈ K ∧ M � T )

∧ (∀T ′ ∈ Prop: M � T ′ =⇒ T ′ /∈ K)
}
.

Next we define some notation to encode a set of traces as a single trace. Consider a
trace property T such that |T | � k. Construct a finite list of traces t1, t2, . . . , tk such
that ti ∈ T for all i. Further, we require that no ti is equal to any tl, for any i and l, un-
less |T | < k. We construct a trace t such that t[j] is the tuple (t1[j], t2[j], . . . , tk[j]);
note that t is a trace over state space Σk. Let trace t so constructed from T be denoted
zipk(T ), and let the inverse of this construction be denoted unzipk(t); note that zipk(·)
and unzipk(·) are partial functions. We can also apply this notation to observations,
which are finite sets of finite traces.37

37In this case, the ti have finite and potentially differing length. So if j > |ti|, let ti[j] = ⊥ for some
new state ⊥ /∈ Σ. Thus, zipk(T ) is a trace over state space (Σ ∪ ⊥)k . We redefine trace prefix � over
this space to ignore ⊥: let t � t′ iff, for some t′ ′ that is a trace over Σ, �t� = �t′ �t′ ′, where �t� is
the truncation of t that removes any ⊥ states. For notational simplicity, we omit this technicality in the
remainder of the proof.
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Now we can construct safety property K. Let K be the set of traces over Σk such
that no trace in K encodes an extension of any bad thing M ∈ M:

K �
{
tk | ¬(∃M ∈ Obs: M ∈ M ∧ zipk(M ) � tk)

}
,

where tk denotes a trace t over space Σk.
To see that K is safety, suppose that tk /∈ K. Then by the definition of K, there

must exist some M ∈ M such that zipk(M ) � tk. Consider any trace uk � zipk(M ).
By the definition of K, we have that uk /∈ K. Thus, for any trace tk not in K, there
is some finite bad thing zipk(M ), such that no extension uk of the bad thing is in K.
By definition, K is therefore safety.

Finally, we need to show that S satisfies K exactly when Sk satisfies K. We do so
by mutual implication.

(⇒) Suppose S |= K. Then, by definition, S ∈ K. For sake of contradiction, suppose
that Sk �⊆ K. Then, by the definition of subset, there exists some tk ∈ Sk such
that tk /∈ K. Let T be unzipk(tk). By the definition of K, there must exist some
M ∈ M such that zipk(M ) � tk. Applying unzipk(·) to this predicate, and
noting that unzip is monotonic with respect to �, we obtain M � unzipk(tk).
By the definition of T , we then have that M � T . By the construction of M,
T therefore cannot be in K. By the construction of Sk and the definition of
T , each trace in T must also be a trace of S. So by definition, T � S. By
transitivity, we have that M � S. By the construction of M, S then cannot
be in K. But this contradicts the fact that S ∈ K. Therefore, Sk ⊆ K, so by
definition Sk |= K.

(⇐) Suppose Sk |= K. Then, by definition, Sk ⊆ K. Suppose, for sake of con-
tradiction, that S does not satisfy K. Then, by definition, S /∈ K. Since K is
k-safety, this means that there exists an M � S, where |M | � k, such that for
all T ′ � M , T ′ /∈ K. Let mk be zipk(M ), and let sk be a trace of Sk such that
mk � sk (such a trace must exist since M � S). By the construction of K,
for any tk � mk, we have that tk /∈ K. Therefore, sk /∈ K, and it follows that
Sk �⊆ K. But this contradicts the fact that Sk ⊆ K. Therefore, S ∈ K, so by
definition S |= K. �

Proposition 2. (∀L ∈ Prop: L ∈ LP ⇐⇒ [L] ∈ LHP).

Proof. By mutual implication.

(⇒) Let L be an arbitrary liveness property. We want to show that [L] is a liveness
hyperproperty – that is, any observation M can be extended to a trace property
T that is contained in [L]. So let M be an arbitrary observation. By the defini-
tion of liveness, for each m ∈ M , there exists some t � m such that t ∈ L. For
a given m, let that trace t be denoted tm. Construct the set T =

⋃
m∈M {tm}.

Since all the tm are elements of L, we have T ⊆ L. By the definition of lifting,
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it follows that T is contained in [L]. Further, T extends M by the construction
of T . Thus, T satisfies the requirements of the trace property we needed to
construct. By definition, [L] is hyperliveness.

(⇐) Let L be an arbitrary property such that [L] is hyperliveness. We want to show
that L is liveness. So consider an arbitrary trace t, and let T = {t}. Since [L]
is hyperliveness, we have that there exists a T ′ such that T � T ′ and T ′ ∈ [L].
Since T � T ′ and T = {t}, there exists a t′ such that t � t′ and t′ ∈ T ′, by
the definition of �. By the definition of lifting, if t′ ∈ T ′ ∈ [L], then it must
be the case that t′ ∈ L. Thus, for any t, there exists a t′ such that t � t′ and
t′ ∈ L. Therefore, L is liveness, by definition. �

Theorem 3. PIF ⊂ LHP.

Proof. Let P be an arbitrary possibilistic information-flow hyperproperty, and let
ClP be the closure operator that Mantel [38] would associate with P.38 Then, by
Mantel’s Definition 10, it must be the case that P = {ClP(T ) | T ∈ Prop}. Closure
operators must satisfy the axiom (∀X: X ⊆ Cl(X)), which we use below.

To show that P is hyperliveness, let T ∈ Obs be arbitrary. By the definition of
hyperliveness, we need to show that there exists a T ′ ∈ Prop such that T � T ′

and T ′ ∈ P. Let T ′ be ClP(T̂ ), where T̂ denotes the embedding of T into Prop by
infinitely stuttering the final state of each trace in T , as discussed in Section 2. By
the closure axiom above, we have that T̂ ⊆ ClP(T̂ ). So by the definition of �, we
can conclude T � ClP(T̂ ) = T ′. Further, T ′ must be an element of P since it is the
ClP-closure of trace property T̂ . Therefore, T ′ satisfies the required conditions, and
P is hyperliveness.

To see that the subset relation is strict, consider liveness property GS (guaranteed
service) from Section 2. It corresponds to liveness hyperproperty [GS], but has no
corresponding closure operator. For suppose that such a closure operator did exist,
and consider an infinite trace t in which service fails to occur. The closure of any set
containing t must still contain t, by the axiom above. But then the closure does not
satisfy GS, and so the closure operator cannot correspond to [GS]. �

Proposition 3. OB = OSB.

Proof. By mutual containment.

(⊇) By definition, the elements of OB are finite intersections of elements of OSB.
Thus, every element of OSB is already trivially an element of OB.

38More precisely, Mantel argues that every “possibilistic information-flow property [sic]” can be ex-
pressed as a basic security predicate, and that each basic security predicate induces a set of closure oper-
ators. Any element of this set suffices to instantiate ClP. Also, Mantel’s closure operators were over finite
traces, and we have generalized to infinite traces.
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(⊆) Let N be an arbitrary element of OB. By the definition of a base, we can write N
as

⋂
i ↑Mi, where i ranges over a finite index set and each Mi is an observation.

We want to show that there exists an element ↑N of OSB such that N = ↑N .
So consider N. Every trace property T in it must extend every Mi. Thus, by
the definition of �, every such trace property T extends

⋃
i Mi. Therefore N =

↑
⋃

i Mi. Our desired observation N is thus
⋃

i Mi. Note that, for N to be a
valid observation, it must be a finite set. The union over Mi must therefore
result in a finite set – which it does, since i ranges over a finite index set. �

Proposition 4. SHP = C.

Proof. By mutual containment.

(⊆) Let S be an arbitrary safety hyperproperty. We need to show that it is also a
closed set. By the definition of closed, this is equivalent to showing that S is
the complement of an open set. Our strategy is to construct hyperproperty O,
show that O and S are equal, and show that O is open.
By the definition of hypersafety, we have that any trace property T that is not
a member of S – and thus is a member of S – must contain some bad thing.
Consider the set M ∈ P (Obs) of all bad things for S. M contains one or more
elements for every trace property in S:

M �
{
M ∈ Obs |

(
∃T ∈ S: M � T

∧ (∀T ′ ∈ Prop: M � T ′ =⇒ T ′ ∈ S)
)}

.

Next, define O as the completion of M – that is, the set of all trace properties
that extend a bad thing for S:

O �
⋃

M ∈M

↑M

= {T | (∃M ∈ M: M � T )}, (D.1)

where the equality follows by the definition of ↑M . Since each such trace prop-
erty T violates S, we would suspect that O is the complement of S. This is
indeed the case:

Claim. O = S

Proof. By mutual containment.

(⊆) Suppose T ∈ O. Then by Eq. (D.1), there is some M ∈ M such that
M � T . By the definition of M, any extension of M is an element of S.
Since T is such an extension, T ∈ S.
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(⊇) Suppose T ∈ S. Then T /∈ S, so by the definition of hypersafety, (∃M ∈
Obs: M � T ∧ (∀T ′ ∈ Prop: M � T ′ =⇒ T ′ /∈ S)). Consider that M . It
must be a member of M, by definition. Since M � T , we have that T ∈ O
by Eq. (D.1). �

All that remains is to show that O is open. First, note that ↑M , for any M ∈
Obs, is by definition an element of OSB. Thus each of the sets ↑M in the
definition of O is open. Second, by the definition of open sets, a union of open
sets is open. O is such a union, and is therefore open.

(⊇) Let C be an arbitrary closed set. We need to show that it is also hypersafety.
Our strategy is to identify, for any trace property T not in C, a bad thing for T .
If such a bad thing exists for all T , then C is by definition hypersafety.
Since C is closed, it is by definition the complement of an open set. By Propo-
sition 3, we can therefore write C as follows:

C =
⋃
i

↑Mi, (D.2)

where each Mi is an observation.
Let T be an arbitrary trace property such that T /∈ C, or equivalently, such that
T ∈ C. Then T must be in at least one of the infinite unions in Eq. (D.2). Thus,
there must exist an i such that

T ∈ ↑Mi and Mi = {U ∈ Prop | Mi � U}, (D.3)

where the equality follows from the definition of ↑.
We construct the bad thing M for T by defining:

M � Mi.

We have that M � T , because of Eq. (D.3).
To show that M is a bad thing for T , consider any T ′ � M . By the definition
of M , T ′ � Mi. By Eq. (D.3), it follows that T ′, like T , is a member of ↑Mi.
By Eq. (D.2), T ′ ∈ C. Therefore, T ′ /∈ C.
We have now shown that for any T /∈ C, there exists an M � T , such that for
all T ′ � M , T ′ /∈ C. Thus C is hypersafety, by definition. �

Proposition 5. LHP = D.

Proof. By mutual containment.

(⊆) Let L be an arbitrary liveness hyperproperty. We need to show that L is dense.
By the definition of dense, we must therefore show that L intersects every non-
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empty open set. So let O be an arbitrary nonempty open set. We need to show
that L ∩ O is nonempty. By Proposition 3 and the definition of open, we can
write O as

⋃
i ↑Mi. Consider an arbitrary Mi. Since L is hyperliveness, there

exists a T � Mi such that T ∈ L. Further, by the definition of ↑, we have
that T ∈ O. Therefore, T ∈ L ∩ O, and it follows that L is dense, by defini-
tion.

(⊇) Let D be an arbitrary dense set. To show that D is hyperliveness, we must show
that any observation T can be extended to a trace property T ′ contained in D –
that is, (∀T ∈ Obs: (∃T ′ ∈ Prop: T � T ′ ∧ T ′ ∈ D)). So let T be an arbitrary
observation. Let OT be the completion of T :

OT � ↑T

= {T ′ ∈ Prop | T � T ′}. (D.4)

OT is an element of OSB, the subbase of our topology, by definition. Thus,
by the definition of a subbase, OT is an open set. By the definition of a dense
set (which is that a dense set intersects every open set), we therefore have that
OT ∩ D �= ∅. Let T ′ be any element in the set OT ∩ D. By Eq. (D.4), we have
T � T ′.
We have now shown that, for an arbitrary observation T , there exists a trace
property T ′ such that T � T ′ and T ′ ∈ D. Therefore, D is hyperliveness, by
definition. �

Theorem 4. O = VL(O).

Proof. By mutual containment.

(⊆) Suppose O ∈ O. By the definitions of a base and of O, we can write O as⋃∞
i ↑Mi, where each Mi is an element of Obs.39 Now we calculate:

∞⋃
i

↑Mi = 〈definition of ↑〉

∞⋃
i

{T | T � Mi}

= 〈definition of �〉
∞⋃
i

{
T | (∀∗mij ∈ Mi: (∃t ∈ T : mij � t))

}

39We decorate quantifiers with ∞ and ∗ to denote an infinite and finite range, respectively.
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= 〈definition of ↑〉
∞⋃
i

{
T | (∀∗mij ∈ Mi: ↑mij ∩ T �= ∅)

}
= 〈definition of 〈 · 〉 〉

∞⋃
i

{
T | (∀∗mij ∈ Mi: T ∈ 〈↑mij 〉)

}
= 〈definition of ∩ 〉

∞⋃
i

∗⋂
j

〈↑mij 〉.

Since ↑mij ∈ OB by definition, and OB ⊆ O by the definition of
base, we have that 〈↑mij 〉 ∈ VSB

L (O). Thus, by the definition of subbase,⋃∞
i

⋂∗
j 〈↑mij 〉 ∈ VL(O). Therefore, by the calculation above, we can con-

clude O ∈ VL(O).
(⊇) Suppose O ∈ VL(O). By the definition of subbase and VL, we can write

O as
⋃∞

i

⋂∗
j 〈Oij 〉, where each Oij is an element of O. Now we calcu-

late:

∞⋃
i

∗⋂
j

〈Oij 〉 = 〈definition of 〈 · 〉 〉

∞⋃
i

∗⋂
j

{T | T ∩ Oij �= ∅}.

Since Oij is open in the base topology O, it can be rewritten a union of base
open sets ↑tijk, where each tijk is a finite trace:

Oij =
∞⋃
k

↑tijk.

We continue calculating:

= 〈rewriting Oij 〉
∞⋃
i

∗⋂
j

{
T

∣∣∣ T ∩
( ∞⋃

k

↑tijk

)
�= ∅

}
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= 〈set theory〉
∞⋃
i

{
T | (∀∗j: (∃∞k: T ∩ ↑tijk �= ∅))

}
= 〈definition of �〉

∞⋃
i

{
T | (∀∗j: (∃∞k: {tijk} � T ))

}

= 〈set theory; let k′ be the k guaranteed to exist for i and j〉
∞⋃
i

{
T

∣∣∣ ∗⋃
j

tijk′ � T

}

=

〈
let Mi =

∗⋃
j

tijk′

〉

∞⋃
i

{T | Mi � T}

= 〈definition of ↑〉
∞⋃
i

↑Mi.

Finally, since Mi is a finite set of finite traces, it is an element of Obs. So by de-
finition, ↑Mi ∈ OSB. Thus by the definition of base,

⋃∞
i ↑Mi ∈ O. Therefore,

by the calculation above, we can conclude O ∈ O. �

Proposition 6. SHP = ClC ({[S] | S ∈ SP}).

Proof. Let S be an arbitrary safety hyperproperty. By Proposition 4, S is a closed set
in topology O. By Theorem 4, S is thus also a closed set in topology VL(O). By the
definition of closed, S is the complement of an open set in topology VL(O). By the
definition of a base, we can thus write S as unions of intersections of base elements.
Letting ∼ denote set complement, we calculate:

S = 〈definition of base〉
∞⋃
i

∗⋂
j

〈Oij 〉
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= 〈definition of 〈 · 〉 〉
∞⋃
i

∗⋂
j

{T | T ∩ Oij �= ∅}

= 〈double negation〉

∼∼
∞⋃
i

∗⋂
j

{T | T ∩ Oij �= ∅}

= 〈set theory〉

∼
∞⋂
i

∗⋃
j

{T | T ∩ Oij = ∅}

= 〈set theory〉

∼
∞⋂
i

∗⋃
j

{T | T ⊆ Oij}

= 〈definition of [·]〉

∼
∞⋂
i

∗⋃
j

[Oij].

Removing a complement from each side of the above equation, we obtain

S =
∞⋂
i

∗⋃
j

[Oij].

Since each Oij is open in topology O, we have that Oij is closed in O. By the fact
that closed sets in O correspond to safety properties [4], Oij is a safety property.
Therefore, S is the infinite intersection of finite unions of safety properties, and by
definition of ClC must be an element of ClC ({[S] | S ∈ SP}).

Similarly, given an arbitrary element of ClC ({[S] | S ∈ SP}), the same reason-
ing used above establishes that it is also an element of SHP. Therefore, by mutual
containment, the two sets are equal. �

Theorem 5. (∀P ∈ HP: (∃S ∈ SHP, L ∈ LHP: P = S ∩ L)).

Proof. This theorem can be easily proved by adapting either the logical [54] or topo-
logical [4] proof of the intersection theorem for trace properties. The domains in-
volved are merely upgraded to include an additional level of sets. Here we take the
former approach and rehearse the logical proof.



1206 M.R. Clarkson and F.B. Schneider / Hyperproperties

Our strategy is as follows. Given hyperproperty P, we construct safety hyperprop-
erty S that contains P as a subset. We also construct liveness hyperproperty L that
contains P. The intersection of S and L then necessarily contains P, and we shall
show that the intersection is, in fact, exactly P.

To construct S, we define the safety hyperproperty Safe(P), which stipulates that
the hyperliveness of P is never violated. A bad thing for this safety hyperproperty
is any set of traces that cannot be extended to satisfy P. So we require that Safe(P)
contains only sets T of traces such that any observation of T can be extended to
satisfy P. Formally,

Safe(P) �
{
T ∈ Prop |

(
∀M ∈ Obs: M � T

=⇒ (∃T ′ ∈ Prop: M � T ′ ∧ T ′ ∈ P)
)}

.

It is straightforward to establish that Safe(P) is hypersafety: Any set T not contained
in Safe(P) must satisfy the negation of the predicate in the above definition of Safe(P)
– that is, (∃M ∈ Obs: M � T ∧ (∀T ′ ∈ Prop: M � T ′ =⇒ T ′ /∈ P)). If no
extension of M can be in P, then no extension T ′ of M can be in Safe(P) because
the hyperliveness of P would be violated in T ′ at observation M . So

(∀T ′ ∈ Prop: M � T ′ =⇒ T ′ /∈ P)

=⇒ (∀T ′ ∈ Prop: M � T ′ =⇒ T ′ /∈ Safe(P)). (D.5)

Thus, by monotonicity, (∃M ∈ Obs: M � T ∧ (∀T ′ ∈ Prop: M � T ′ =⇒ T ′ /∈
Safe(P))). Therefore Safe(P) is hypersafety.

Similarly, to construct L, we define the liveness hyperproperty Live(P), which
stipulates that it is always possible either to satisfy P or to become impossible, due
to some bad thing, to satisfy P. In the latter case, a safety hyperproperty has been
violated – namely, Safe(P). Formally,

Live(P) � P ∪ Safe(P),

where H denotes the complement of hyperproperty H with respect to Prop. To show
that Live(P) is hyperliveness, consider any observation T . Suppose that T can be
extended to some trace property T ′ such that T ′ ∈ P. Then T ′ is also in Live(P),
so Live(P) is hyperliveness for T . On the other hand, if T cannot be extended to
satisfy P, then T is a bad thing for Safe(P) – that is, (∀T ′ ∈ Prop: T � T ′ =⇒ T ′ /∈
P). Let T ′ be an arbitrary extension of T . By the same reasoning as Eq. (D.5), T ′ is
not in Safe(P). Therefore, T ′ must be in Safe(P). Thus, Live(P) is again hyperliveness
for T . We conclude that Live(P) is hyperliveness.

Next, note that P ⊆ Safe(P), because any element T of P satisfies the definition of
Safe(P). In particular, for any M � T , there is a T ′ � M such that T ′ ∈ P – namely,
T ′ = T . Thus, Safe(P) = P ∪ Safe(P).
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Finally, let S = Safe(P) and L = Live(P), and we prove the theorem by simple set
manipulation:

S ∩ L = Safe(P) ∩ Live(P)

= (P ∪ Safe(P)) ∩ (P ∪ Safe(P))

= P ∩ (Safe(P) ∪ Safe(P))

= P ∩ Prop

= P. �
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