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ABSTRACT

The contributions of this paper are the following.

o We describe the implementation of the C* system for
semi-automatic application-level checkpointing of C pro-
grams. The system has (i) a pre-compiler that instru-
ments C programs so that they can save their states
at program execution points specified by the user, and
(ii) a novel memory allocator that manages the heap
as a collection of pools.

e We describe two static analyses for reducing the over-
head of saving and restoring the application state. The
first one optimizes stack variables, while the second
one optimizes heap data structures.

e To benchmark our system, we compare the overheads
introduced by our semi-automatic approach with the
overhead of handwritten application-level checkpoint-
ing in an n-body code written by Joshua Barnes. Ex-
cept for very small problem sizes, these overheads are
comparable.

e We highlight various algorithmic challenges in the opti-
mization of application-level checkpointing that should
provide grist for the mills of the PLDI community.

1. INTRODUCTION

The running times of many applications are now exceed-
ing the mean-time-between failure (MTBF) of the underly-
ing hardware. For example, protein-folding using ab initio
methods on the IBM Blue Gene is expected to take a year
for a single protein, but the machine is expected to lose a
processor every day on the average. As a result, software
needs to be resilient to hardware faults.

Checkpointing is the most commonly used technique for
fault tolerance. The state of the running application is
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saved periodically to stable storage; on failure, the computa-
tion is restarted from the latest checkpoint. Checkpointing
comes in two very different flavors: system-level checkpoint-
ing (SLC) and application-level checkpointing (ALC).

SLC saves the bits of the machine state to stable stor-
age [13L|1]. On large, parallel machines, this can be a lot of
bits, and the overhead of saving them is large. In most ap-
plications however, there are some key data structures from
which the entire computational state can be recovered. In
ALC, these data structures are saved and restored directly
by the application |14]. For example, the program on the
IBM Blue Gene saves only the positions and velocities of
all the bases in the protein since the entire computational
state can be recovered from this information [11]. Instead
of saving terabytes of data, it saves only a few megabytes.

Both approaches have advantages and disadvantages. SLC
can be transparent to the applications programmer, while
ALC requires the developer to write code to save and re-
store the application state. This code can be tedious to
write and debug. On the other hand, SLC must save the
entire process state, while ALC exploits domain knowledge
in order to save only the core application state.

In this paper, we describe a system called C® for semi-
automatic application-level checkpointing of C programs.
The system has (i) a pre-compiler that instruments C pro-
grams so that they can save their states at program execu-
tion points specified by the user, and (ii) a novel memor,
allocator that manages the heap as a collection of pools[}f]
We describe two static analyses for reducing the overhead
of saving and restoring the application state. The first one
optimizes stack variables, while the second one optimizes
heap data structures.

To evaluate the effectiveness of our techniques, we studied
one application in depth. This application, called treecode,
is an n-body simulation written by Joshua Barnes. We chose
it because it is a non-trivial code, and because it contains
hand-written state saving code, which provides us with a
benchmark. Our experiments show that for all but the
smallest problem sizes, the overheads are comparable.

The rest of the paper is organized as follows. Section
describes the features of the treecode application that are
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void *pvec;
body *bodytab;
cell *root;
node *active;
cell *interact;

int mainQ{
pvec = calloc(...);
bodytab = calloc(...);

while(...){
maketree (bodytab) ;
gravcalcQ);
savestate(); // manual checkpointing

¥

void maketree(){
for(...)
if(...)
free(cell)

#pragma ccc PotentialCheckpoint

for(...)
if(...)
cell = calloc(...);

void gravealc(){
active = calloc(...);
interact = calloc(...);

while(...){
}

free(active);
free(interact);

Figure 1: Overview of treecode

analysis that we use to reduce the number of lexical variables
checkpointed. In Section we describe our approach to
reducing the amount of heap data that is saved. In Section@
we describe related work, and in Section[7], we discuss future
work.

2. TREECODE

Figure [1| presents a skeletal overview of treecode [2], an
application for conducting n-body simulations using a hier-
archical force calculation algorithm written in ANSI C. It
consists of 7 source files and 7 header files, comprising a
total of approximately 3000 lines of source code.

Unlike O(N?) direct sum methods that completely calcu-
late the force that each body asserts on the others, treecode
partitions the bodies using an oct-tree, such that each node
of the tree describes the bodies within a spatial volume,
termed a cell. The use of such a structure allows for a “rea-
sonably accurate” approximation of the forces exerted by
the bodies in O(NlogN) time.

The non-leaf nodes of the oct-tree are represented by in-
stances of the cell structure; the leaves are instances of
body. Both are subtypes (of a sort) of the node structure. A
cell contains (up to) 8 pointers to its descendants, each one
either a body or another cell. In addition to this tree struc-
ture, each of the nodes of the tree contains a next pointer,
which is used to create a linked list of all a cell’s children.
The next pointer of the last element on such a list is then set
to point to the same object as the parent’s next. Each cell
also contains a pointer, more, which points to the head of
its child list. The next and more pointers create a threading
of the tree’s nodes, allowing the tree to be walked as a list.
This threading was constructed so that a “tree search can be
performed by a simple iterative procedure.” A diagram of
such a tree is in Figure|2] In that picture the more pointers

are not shown, but can be assumed to be the same as the
pointer to each cell’s left-most child.

When the application begins, it allocates an array to hold
the specified number of bodies, and then initializes each of
them. Then the simulation is conducted for the requisite
number of time steps, each one computed by an iteration
of the loop in main(). Each iteration has two main compo-
nents. First, maketree() is called to construct an oct-tree
with the bodies as its leaves. Then, gravcalc() is called
to walk the tree to discover which nodes interact with each
other and to calculate the forces acting on each body.

The function maketree() first deallocates all the cells in
the existing tree by walking the threaded pointers. These
objects are not explicitly deallocated but rather are placed
on the freecell list to be reused as needed. Then a new tree
is constructed, reusing objects from the freecell list when a
new cell is needed. Only if that list is empty does treecode
allocate more memory via a call to calloc(). Because of
this behavior, treecode can be described as using a custom
memory allocator.

The gravcalc() function calculates how the bodies in-
teract with each other. It allocates two temporary arrays:
interact, which contains lists of all the nodes that interact
with a particular body, and active, which lists all the nodes
that need to be examined when constructing these interac-
tion lists |2]. It then walks the tree, determining the inter-
actions between bodies, so that it can calculate the forces
acting on each.

Cell Body

OO

Oct-tree Pointer
-
“next" Pointer

Figure 2: treecode tree data structure

The application can be run in a mode where it will save
its state to disk at the end of each iteration, via a call to
savestate(). In the event of a failure, the restarted appli-
cation can read that information and use it to resume at the
next iteration. This example of ALC showing the efficiency
of that technique - although the cells of the tree have not
yet been deallocated, the knowledge that they will be allows
savestate() to ignore them.

Because treecode constructs an 8-way tree, if the tree was
complete the number of internal nodes would be approxi-
mately % of the number of leaves; therefore, eliminating the
cells from the checkpoint might only increase performance
by é‘ However, the “fullness” of the tree is dependent on
the underlying physics of the model being simulated: when
using the included Plummer model generator to initialize
the bodies, it appears that the average fullness is between 2
and 3 children per cell.

Table [I] reports the execution time of the treecode ap-
plication running three different sized n-body simulations,



Size | Configuration Time Chpt Size
Sec. ovrhd MB | ovrhd
10% | Original - no chpt 3.61 - N.A. N.A.
Original - chpt 4.70 | 30.2% 0.5 -
10° | Original - no chpt 54.43 - NA. [ N.A.
Original - chpt 63.53 | 16.7% 4.97 -
10% | Original - no chpt || 714.95 - N.A. N.A.
Original - chpt 804.66 | 12.6% || 49.59 -

Table 1: Runtimes and Checkpoint Size

(10*, 10°, and 10°), each using the provided Plummer model
to initialize the bodies. The table also shows the runtime
required for the application when run in state-saving mode,
the overhead that such checkpointing adds to the runtime,
and the size of the average checkpoint file. For the largest
simulation size, the hand-written checkpointing code adds
12.6% to the execution time. For smaller simulations, the
overhead is greater.

One note: treecode’s original fault-tolerance routine used
the C standard library function fwrite() to save checkpoint
data. We converted this to use the write() system call in-
stead. We also broke very large writes up into a series of
smaller calls, each writing a page (4 KB) of data. For our
test system, this transformation vastly improved the per-
formance of the application’s state saving routine, halving
the time required to write the checkpoint. We needed to
make this transformation in order to ensure that compar-
isons with our automatic checkpointing system were fair (C*
checkpointing code uses a similar mechanism).

3. THE C3 SYSTEM

C? is a system for automatically adding ALC code to a C
language program. It consists of two components, a source-
to-source compiler (the c? pre-compiler) that converts the
code of an application into that of a semantically consistent
yet fault-tolerant version, and a library (the C* runtime)
that contains fault-tolerant implementations of the standard
C library functions, and some utility functions used by the
inserted code. The output of the pre-compiler is then passed
to the native compiler, where it is compiled and linked with
the runtime, producing a fault-tolerant application.

The C? system has been designed to provide efficient check-
pointing for all the constructs in the C language specifica-
tion. Portable checkpointing systems (where a checkpoint
taken on one architecture can be restarted on another), such
as Porch [15], need to save checkpoint data in an architecture
and operating system neutral format. On the other hand,
C? saves a program’s variables as binary data. Although
this limits C® to providing homogeneous checkpointing (the
application can only be restarted on a machine of identi-
cal OS and architecture), it allows for the efficient saving of
data, and does not require complete type information. Re-
quiring complete type information limits input programs to
a subset of the C language that we believe is not sufficient for
“real-world” computational science applications. treecode,
in fact, uses ambiguous pointers.

The C® system requires no modifications to the input pro-
gram, except that the locations where checkpointing should

occur are marked with a pragma statement (#pragma ccc
PotentialCheckpoint). These represent potential check-
point locations: when execution reaches such a location, the
runtime system determines if a checkpoint should indeed be
taken. Because the modified application is only capable of
checkpointing and restarting at the specified locations, static
analysis can be used to reason about the behavior of the ap-
plication at those points, and the pre-compiler can use the
results of such analysis to optimize checkpointing.

For treecode we chose to place the checkpoint location
in maketree(), right after the cell’s are freed. Compare
this location with where the developer placed the call to
savestate(), inside the main loop. At that point, the cell’s
are still live, but the developer knows that they do not need
to be saved. The analysis that we describe in Section [5| is
not currently able to deduce this, so we have placed our
checkpoint after the cell’s have been freed.

Because the C® pre-compiler can only add fault-tolerance
to the code that it is invoked upon, if the application code
utilizes a “state-full” library, a fault-tolerant version of that
library must be provided for the application to correctly
restart (the memory allocator is one such example). The
C? runtime contains fault-tolerant versions of the standard
C library calls. Additionally, we have developed a fault-
tolerant version of the MPI library |6} |7].

3.1 Thec?® Pre-compiler

The code that the pre-compiler inserts must ensure that
the application resumes at the instruction immediately fol-
lowing where the checkpoint was taken and that the applica-
tion’s variables are saved and restored correctly. Because a
program’s variables are saved as binary data, on restart the
system must force each variable to be restored to its original
address. This is necessary so that a variable dereferenced as
a pointer will point to the proper object after restart. This
requires two separate mechanisms.

3.1.1 Checkpointing the application’s position

The C? system uses a data structure, called the Position
Stack (PS), to record and recreate the application’s position
in both its dynamic execution and its static program text.
At each checkpoint location in the code, the pre-compiler
inserts a unique label. Additionally, a call-graph analysis
is performed and a label is inserted before every function
call that might eventually lead to such a location. The pre-
compiler also inserts code to push and pop values onto the
PS as these labels are encountered during execution. If a
potential checkpoint location is reached, and a checkpoint
is taken, the runtime saves the PS to the checkpoint file.
In such a manner each checkpoint contains a record of the
call sequence that led to the specific checkpoint location for
which the data in the checkpoint file corresponds to.

Immediately upon restart, the runtime system pads the
stack via calls to alloca(), such that all successive func-
tions have their stack frames at the same addresses they
had before the checkpoint. Then it restores the PS before
handing control to the original main() function. Each pro-
cedure, in turn, uses the PS to call the same function that
it had called immediately before the checkpoint was taken.
When control arrives in the innermost function, the appli-
cation jumps to just below where the checkpoint was taken.
In such a manner, the stack is rebuilt with the local vari-
ables occupying the same addresses as they had before the



restart, the program’s dynamic position is as it was when
the checkpoint was taken, and its position in the static text
is restored to the point immediately following the code that
saved the checkpoint.

3.1.2 Checkpointing the application’s data

The pre-compiler uses another structure, the Variable De-
scription Stack (VDS), to save and restore the values held by
the stack variables. At the location where a variable enters
scope, the pre-compiler inserts code to push the variable’s
address and size onto the VDS. Where a variable leaves
scope, code is inserted to pop that the record from the VDS.
As an optimization, the C® pre-compiler will rename and lift
nested scoped local variables up to the function-scope level.
This ensures that a variable scoped to a loop body will not
be unnecessarily pushed and popped in each iteration of the
loop. Figure |3| shows such manipulations.

function(int a) { function(int a) {
int b[10]; int b[10];
{ int c;
int c; VDS.push(&a, sizeof(a));
. VDS.push (&b, sizeof(b));
¥ VDS.push(&c, sizeof(c));
} {

b3
VDS.pop(3) ;
}

Before Pre-Compiler After Pre-Compiler

Figure 3: Manipulating the VDS

When a checkpoint is taken, for each item on the VDS,
the C® runtime copies the specified number of bytes from
the specified address to the checkpoint. It also saves the
VDS as part of the checkpoint. On recovery, after the stack
is rebuilt, the VDS is restored and used to copy the values
from the checkpoint file back to the proper addresses.

3.2 Thec?® Runtime

The C® runtime is a set of functions which perform two
different duties - they are responsible for the saving and
restoring of application state, and they provide a fault tol-
erant implementation of the standard C library. The most
interesting of these functions are those that implement the
memory allocator: these are the only ones that we discuss
in detail. To employ these functions, the pre-compiler con-
verts all calls to the native allocator (malloc(), free(), etc.)
to the version provided in the C® runtime (CCCmalloc(),
CCC_free(), etc.).

3.2.1 Thez?® Allocator

In addition to the usual requirements of providing an ap-
plication with an efficient mechanism to support the creation
and freeing of dynamic memory objects, C*’s allocator must
ensure that when an application is restarted from a check-
point, every allocated object will be restored to the same
address that it originally held, that all such objects con-
tain the same data as they did at checkpoint time, and that
future calls to malloc and free behave correctly.

The C® allocator manages the heap objects in a pool of
memory that it requests from the operating system. For
simplicity’s sake, we model that pool as a contiguous region
of bytes; however, in actuality the pool consists of a collec-
tion of contiguous regions, called sub-pools, which may or
may not be contiguous with one another. On restart, the

C? system requests the same pool of memory from the op-
erating system, copies objects’ data from the checkpoint file
into the proper addresses, and reconstructs the free lists.

SLC systems save the heap by writing the entire region
of memory that the native allocator had control over to the
checkpoint file. An advantage that C® has over such systems
is that, because it implements its own memory allocator, it
only needs to save the portion of the pool that was ever
actually used. Another, even greater advantage is that C>
does not need to save the objects that have been deallocated
by the application. For certain codes, the amount of deal-
located memory can be significant; not saving that memory
could dramatically decrease the overhead of taking a check-
point. The allocator still needs to ensure that future calls
to malloc and free behave as expected.

Although the presence of deallocated objects allows the
C? allocator to save less data, the overhead of checkpoint-
ing the heap is not just a function of the amount of data
to be saved. We illustrate this with a sample application
that is treecode-like in its memory requirements - it first
allocates 2,000,000 objects of 64 bytes each, and then frees
alternate ones. We implemented three different heap-saving
algorithms, and applied them to this sample application.
The runtime in seconds for these three algorithms is shown
in Figure 2}

These results, and all others presented in this paper, were
obtained on a 2.20 GHz Intel Xeon based system containing
1.0 GB of RAM. Hyper-Threading was disabled for these
measurements. Microsoft Windows Server 2003 was the op-
erating system, and all code was compiled with the MinGW
version of the gcc 3.2.3 compiler, with the optimization level
set to -O3. The checkpoints were written to a network file
server over a 100 Mbit Ethernet connection.

Algorithm Time, seconds
Naive 1027.91
Copy to buffer 26.33
C3 2 color 22.94

Table 2: Runtimes for three algorithms for exclud-
ing freed object

The first algorithm implemented a “naive” strategy: start-
ing at the first object on the heap, visit each object, if an
object has not been deallocated, save its address, size, and
data to the checkpoint file. The time to checkpoint the heap
in this method was over 1000 seconds. This astronomical
time is due to the very high number of system calls that the
checkpointer makes - three per live object.

The second strategy used a similar algorithm, but instead
of writing objects to the checkpoint file as they are encoun-
tered, they are copied to a buffer. That buffer is then saved
to the checkpoint file, in chunks of pages. For this strategy,
the runtime falls to below 26.4 seconds.

We believe that to efficiently checkpoint the heap, the sys-
tem needs to quickly partition allocated and deallocated ob-
jects at checkpoint time. The third algorithm, which is used
by C®, uses multiple, disjoint memory pools. The motiva-
tion behind this concept is that, if the objects in the program
can be partitioned so that, at a checkpoint, all of the objects
allocated to a particular pool have been freed then this pool



can be trivially excluded from the checkpoint. In order to
keep the processing cost small, pools that have at least one
live object are saved entirely. By carefully assigning objects
to multiple pools, we gain the benefit of using a contigu-
ous buffer of non-free objects, without needing to perform
any copying. This third algorithm required only under 23
seconds, a 13% improvement over the second strategy.

The C* allocator manages a fixed number of memory
pools, each with its own region of address space, with no
page belonging to more than one pool. The C*? allocation
routines all take an extra parameter, the color, which spec-
ifies the pool into which the new object should placed.

Each pool has its own free list and a counter, live count,
that keeps track of how many objects in that pool have
not yet been freed. If, at checkpoint time, a pool’s live
count is zero, then all of the objects in that pool have been
deallocated, and the pool does not need to be saved.

Clearly, carefully assigning objects to colors is necessary
to obtain good performance. An optimally bad assignment
of colors would not only require the contents of every pool
to be saved to disk, but could potentially obliterate the per-
formance improvement that comes from reusing reclaimed
objects that might now reside is a disjoint pool. Since there
is a minimal overhead associated with saving a pool there
is an incentive to prevent a few small objects from being
allocated to a pool of their own. Finally, the number of
pools is bounded by a fixed value at compile time. While
the opportunity for a performance gain from a good color-
ing is substantial, these competing pressures, taken over the
space of perhaps many checkpoints, makes finding a color-
ing a potentially very hard problem. In Section 5] we present
one possible technique for deriving a good coloring.

3.3 Overhead

The C? system adds two different kinds of execution time
overhead: (1) the cost of executing the compiler inserted
code and using C*’s heap implementation, and (2) the cost
for taking a checkpointing and writing it to disk.

One change that we make to the treecode application
(before feeding it to the C* compiler) is to explicitly deallo-
cate the cell objects, via a call to free() rather than place
them on the application’s internal free list. This transfor-
mation is semantically correct because none of these objects
are ever accessed between their placement on and removal
from the list. We justify making this alteration because re-
cent work [5] has shown that custom allocators often degrade
performance for most applications.

The reason for this change is because, by explicitly call-
ing free() (by conversion CCC_free()) the C® system is in-
formed that such an object is no longer in use, and could use
that knowledge to optimize the checkpointing of the heap.

3.3.1 The overhead of the transformations

Table [3| shows the non-checkpointing runtime, in seconds,
of both the original treecode application and the version
produced by C3. The results are for six iterations of three
different sized n-body simulations, 10*, 10%, and 10°, where
the initial conditions of the bodies was produced by the
built-in Plummer model generator.

The difference in runtimes includes the costs of (1) us-
ing the C® memory allocator, (2) explicitly deallocating the
objects originally placed on the freecell list, (3) executing
the code to manage the VDS and PS, and (4) checking if the

Size | Configuration Time
Sec. ovrhd
10% | Original - no ckpt 3.61 -
C3 - no ckpt 3.67 | 1.7%
10° | Original - no ckpt 54.43 -
C3 - no ckpt 54.53 | 0.2%
10% | Original - no ckpt || 714.95 -
C3 - no ckpt 716.41 | 0.2%

Table 3: Non-checkpointing overheads

Size | Configuration Time Chpt Size
Sec. ovrhd MB ovrhd
107 | Original - no chpt 3.61 - N.A. N.A.
Original - chpt 4.70 | 30.2% 0.5 -
Baseline C3 6.14 | 70.2% 1.09 | 118.7%
10° | Original - no chpt 54.43 - [ N.A. N.A.
Original - chpt 63.53 | 16.7% 4.97 -
Baseline C3 71.55 | 31.4% 8.64 | T41%
105 | Original - no chpt || 714.95 - N.A. N.A.
Original - chpt 804.66 | 12.6% || 49.59 -
Baseline C3 868.18 | 21.4% || 83.38 68.1%

Table 4: Runtimes and Checkpoint Size, C* Baseline

application needs to take a checkpoint or if it is in recovery
mode.

For the largest problem size, the overhead that the C®
system added to the original treecode application, is %
of 1%. The fact that the C® source transformations, and
the C® memory allocator add very little overhead to the
application means that, for the goal of providing efficient
fault-tolerance, we only need to concern ourselves with the
overhead of the actual state saving routines.

3.3.2 The overhead of state-saving

Tablemeasures the overhead that take checkpoints adds
to the treecode application. For the same simulations as
above, we compare the overhead added by treecode’s own
state-saving code to the overhead added by the C® version.
The times measured here include the time to take a check-
point once each iteration.

The rows labeled “Original - no chpt” shows the running
time of the original treecode with state-saving turned off.
Running time overheads are measured relative to these rows.
The rows labeled “Original - chpt” shows the running time
and checkpoint sizes of the original treecode with state-
saving turned on. Checkpoint size overheads are measured
relative to these rows. The rows labeled “Baseline C®” show
the running time and checkpoint sizes of the code emitted
by C* without any of its optimizations enabled and using
only one memory pool.

Observe that for the 10° sized simulation, the manually
written checkpointing code saves an average checkpoint size
of just below 50MB, and imposes an overhead of 12.5% on
the runtime of the, non-fault-tolerant version. The C* gen-



erated version writes an average checkpoint of more than
83MB and imposes an overhead of 21.5% on execution time.
The differences in checkpoint size and execution time be-
tween the handwritten and compiler generated code is fairly

large. Primarily, this is because the handwritten fault-tolerance

takes advantage of the fact that it does not need to save the
cells which are on the free list.

The following sections of this paper discuss static and dy-
namic techniques that are used to reduce the amount of
checkpoint data.

4. OPTIMIZING LEXICIAL VARIABLES

Previous work [3] has shown that checkpoints can be re-
duced by performing a static liveness analysis over the set of
variables in the program to determine, for each checkpoint,
the set of variables whose values are required after the check-
point. Variables that are not required can safely be excluded
from the checkpoint. Our work differs in that, rather than
using the analysis to make a static decision about each vari-
able at each checkpoint, we use the analysis as a driver for
a three-tiered approach to deciding this question.

In this section, we will first describe our context-sensitive
liveness analysis and then describe how it is used to drive
our optimizations.

4.1 Analysis

A liveness analysis requires that, for each program state-
ment, the set of locations that may be used and the set that
must be defined are identified. We define these sets as,

Use(s) is the set of locations whose value may be used in
the evaluation of the statement s. For pointer expres-
sions, this may include both the pointer location as
well as the location pointed-to by the pointer.

Def(s) is the set of locations that must be defined in the
evaluation of the statement s. By convention, the set
for the statement at the beginning of any lexical block
includes all of the locations that are entering scope.
For assignments through pointers, this set includes the
target of the pointer only if the pointer target can be
unambiguously determined.

These sets can be determined by a local syntactic analysis
that makes use of an underlying pointer analysis [16]. For
this paper, compound locations such as arrays and struc-
tures are treated monolithically.

Data-Flow Equations:

if s is PeT% for some procedure P

id
b5 = { Fs 0 ¢ pentry ©  ret if s is a call to procedure P

Fs o (Ug/ csuces(s) $s)  otherwise

where Fg = AX.Use(s) U (X — Def(s))

Operations on Data-Transforming Functions:

Data-flow functions: Fs = (Use(s), Def(s))

Initial function: L = (0,U) where U is the universal set of locations
Identity function: id = (0,0)

Application: (G,K)(X)=GU (X — K)

Union confluence: (G1, K1) U (Gg,K2) = ((G1 UG2), (K1 NKsy))
Composition (G1, K1) 0 (Gg, Kg) = (G1 U (Gg — K1), K1 U Kg)
Canonical form: (G, K)) = (G, K = G)

Figure 4: Context-Sensitive Liveness Analysis

Given these sets, the liveness analysis is performed by
computing the least-fixed point of the second-order equa-
tions shown in the top part of Figure This fixed point
is computed over the interprocedural control flow graph of
the program using the usual lattice of functions. The anal-
ysis is context-sensitive modulo the flow-insensitive pointer
analysis we use to construct the Def and Use sets.

This analysis is efficient since each liveness function can
be represented by a pair of variable sets, (G, K). Each oper-
ation required to compute the fixed point is then reduced to
a constant number of set operations. A canonical form re-
duces the necessary equality test to syntactic equality. The
complete list of the operations is shown in the lower part of
Figure @ Given a statement, s, and a stack-context for s,
G = 0¢...0n, Where each o; is a call-statement, the set of
live variables associated with s in context & is

L(876) =¢so0 ¢cr;ft 0--0 ¢a6’et (@),
ret

where ;" refers to the return-statement corresponding to
the call-statement o;.

4.2 Optimizations

Liveness analysis can be used to answer questions about
the relationship between checkpoints and live variables:

1. Given a variable, v, is there any checkpoint at which
v is live in some valid context?

2. Given a variable, v, and a specific checkpoint, c, is
there any valid context in which v is live at ¢?

3. Given a variable, v, a specific checkpoint, ¢, and a
specific context, &, for ¢, is v live at ¢ in context &7

These questions are the basis of a tiered system of check-
pointing optimizations. Questions 1 and 2 can be answered
by performing a live-context analysis to merge the live vari-
able sets for each live context at each statement into a single
set for that statement. Question 3 must be answered at run-
time, as described below.

The first tier of optimization identifies variables that are
never live at any checkpoint statement in the program. Since
these variables are not used after any checkpoint, the VDS
push and pop instructions for these variables may be elimi-
nated.

The second tier of optimization identifies, for each check-
point ¢, variables that are not live at that checkpoint. A list
of these variables is constructed at compile-time and passed
to the C?® runtime, which safely excludes these variables from
all checkpoints taken at c.

The third tier of optimization is for variables whose live-
ness at a particular checkpoint is context-dependent. In this
case, a finite automaton is statically derived by converting
the data-transform functions of the analysis to a state tran-
sition function over the state space of possible contexts [9].
Accepting states are then the contexts such that the vari-
able appears in the output of the data-transform function
associated with the checkpoint. At checkpoint-time, the au-
tomaton is executed with the actual dynamic stack context,
PS, that led to the checkpoint, and the variable is then
included or excluded from the checkpoint accordingly.

By choosing an optimization strategy based on the live-
ness characteristics of each variable, we are able to minimize
the runtime overhead of the state-saving mechanism while at
the same time retaining the ability to utilize the full power
of the context-sensitive analysis. This is a capability that is



unique to our system.

4.3 Experiments

For treecode, the total analysis, including the computa-
tion of the Def/Use sets requires about five seconds, with
less than half of that going to computing the fixed point. Be-
cause of the representation we use for the data-transforming
functions, it is actually faster to compute all of the func-
tions explicitly than to use any demand-based techniques
for context-sensitive analyses. Since there is only a single
checkpoint and the live variable set at that checkpoint is
context-independent, only first tier optimizations are per-
formed on this code.

Figurelists the live variable at the checkpoint statement
in treecode. Variables marked “yes” in the column labeled
treecode? are those variables saved by the manual state-
saving mechanism provided in the code.

Variable [ treecode? [ Comments

Global Variables

bodytab yes

dtime yes

dtout yes

eps yes

ncell no always 0 at checkpoint
nbody yes

nstep yes

options yes

outfile no respecified at restart
rsize yes

savefile no respecified at restart
theta yes

tnow yes

tout yes

tstop yes

usequad yes

File Static Variables

paramvec | yes
progname | yes

Local Variables

btab no copy of global bodytab
cpustart no stores timing information
nbody no copy of global nbody

Local Static Variables
firstcall no always FALSE at checkpoint

namebuf no fully overwritten before use

Standard Streams

stderr no handled by C library
stdin no handled by C library
stdout no handled by C library

Figure 5: Result of Liveness Analysis at Checkpoint

Notice the variables that our analysis marks as live but
that are not included in treecode’s state-saving,

e btab and nbody are formal parameter that contain
copies of global variables passed to the function where
we take a checkpoint. Their inclusion is a consequence
of our checkpoint location.

e The variable cpustart stores a time that is used when
each iteration terminates to compute the elapsed time
of the iteration. The manual restoring mechanism re-
stores to a point that recomputes this value.

e The values of ncell and firstcall are constant at
each invocation of the checkpoint.

e File pointers outfile and savefile are respecified

when the program is manually restarted.

e namebuf is a buffer that will be completely overwritten
after the checkpoint before it is used. Our construction
of Def sets treats arrays monolithically and is unable
to detect this.

e The standard stream variables are automatically reini-
tialized by the C library during a recovery and are
never explicitly recorded in the VDS or saved at a
checkpoint.

Using the liveness results to eliminate VDS pushes and
pops, the size of the saved lexical variable set is reduced
from 748 bytes to 160 bytes, a reduction of 78%. In addition,
the size of the VDS, which is saved at each checkpoint, was
reduced from 476 bytes to 212 bytes. Taken together, our
optimization system reduced by more than 75% the total
storage required to save and restore the static memory.

Table [f] shows the aggregate performance results, with
new rows labeled “+ stack opts.”, which give the checkpoint
size and corresponding execution time of the treecode with
the optimizations described in this section enabled.

Size | Configuration Time Chpt Size

Sec. ovrhd MB ovrhd

107 | Original - no chpt 3.61 - [ N.A. N.A.
Original - chpt 4.70 | 30.2% 0.5 -
Baseline C3 6.14 | 70.2% 1.09 | 118.7%
+ stack opts. 6.19 | 71.4% 1.08 | 118.5%

10° Original - no chpt 54.43 - N.A. N.A.
Original - chpt 63.53 | 16.7% 4.97 -
Baseline C3 71.55 | 31.4% 8.64 | T41%
+ stack opts. 70.97 | 30.4% 8.63 74.0%

108 Original - no chpt || 714.95 - N.A. N.A.
Original - chpt 804.66 | 12.6% || 49.59 -
Baseline C3 868.18 | 21.4% || 83.38 68.1%
+ stack opts. 867.42 | 21.3% || 83.38 68.1%

Table 5: Runtimes and Checkpoint Size, using vari-
able optimizations

Because the overhead of checkpointing treecode is domi-
nated by the cost of saving the heap, the total performance
gain achieved by optimizing the lexical variables alone is
minimal. These optimizations would have a significantly
greater impact on codes that utilize large, statically allo-
cated arrays and structures (e.g., some Fortran programs).
In such codes, if checkpoints are placed inside common rou-
tines, the ability to exclude these elements in certain con-
texts would also have a significant impact.

5. AUTOMATIC COLORING

In Section we showed that a color-based heap allocation
can reduce the overhead of checkpointing heap objects. The
performance results shown in row “+ stack opts.” of Table
correspond to implicitly assigning all of these sites to a sin-
gle default color. In this section, we show how the liveness
analysis developed in Section[f] can be used to automatically
assign multiple colors to allocation sites.

In the pseudocode shown in Figure |1} we have shown the
allocation sites using the standard function calloc(). In
the discussion below, we will refer to these sites by the vari-



able that is assigned the result of calloc(), namely, active,
interact, btab, cell, and pvec. After the colors are com-
puted, the calls to calloc are modified so that the color is
passed as an additional argument.

Very often, the application developer will write a wrapper
to functions like calloc that checks for error conditions.
Allocations are then made via this wrapper function. This
is true of the original version of treecode, which defines a
function allocate which contains the program’s only call
to calloc. In programs like this, a small collection of static
allocating statements may be responsible for all or most of
the memory allocation in a program. This severely limits
the number of possible colorings. We handle these cases by
recognizing when a function returns the output of a standard
allocation routine. Our system then treats calls to these
wrapper functions as the allocation sites.

5.1 Conservative Coloring

A simple coloring algorithm is based on the “liveness”
of the output of each allocation sites. The output of an
allocating function is said to be live at a checkpoint if it is
in the transitive points-to set of one or more live variables,
as determined by the analysis presented in Section [4] that
may be dereferenced at point after the checkpoint. A color
consists of the set of allocation sites whose output has the
same liveness at any checkpoint.

For treecode, this partitions the allocations into two sets,
{{active, interact}, {btab, cell, pvec}}. The perfor-
mance relating to this coloring is shown in the rows labeled
“+ conserv. coloring” in Table

This coloring is not competitive because it causes the
cell’s, which are all deallocated, to be saved, whereas the
hand-written code does not. The problem arises because of
the cycles present in the treecode data structures, as illus-
trated in Figure [2] It is impossible for our pointer analysis
to determine that at the checkpoint all of the allocated cells
were reclaimed.

5.2 Optimistic Coloring

The conservative coloring algorithm does not take into
account the fact that the C® runtime system uses a live
object count objects in order to determine whether each
color needs to be saved. Thus, a coloring does not have
to be “correct”, in the sense that it accurately partitions
the live and dead objects at each checkpoint; correctness
is ensured by the runtime system. Therefore, our coloring
algorithm should strive to produce a “good” coloring.

Our current approach to coloring is based on a set of in-
tuitions about what constitutes a “good” coloring,

e To the greatest extent possible, objects that are known
not to be live at a checkpoint should not share a color
with objects that are known to be live.

e Since there is a minimal cost associated with saving a
color, small, infrequently created, objects with similar
liveness characteristics should share a color.

e Objects that may be freed before a checkpoint are
more amenable to sharing a color than objects that
are certainly not freed.

e The total number of colors cannot exceed the maximal
number of colors provided by the system.

We have developed a heuristic that captures these in-
tuitions. Our heuristic starts by assigning each allocation

statement to its own color. Then a rating is assigned to
each allocation statement at each checkpoint. This rating is
a four-tuple of the following metrics,

1. Live?: {Y,?,N} An allocation is live if it unambigu-
ously pointed to by a live variable that is dereferenced
in the future. It is not live if it is not transitively
pointed to by any live variable. Otherwise, its liveness
is unknown.

2. Size: {L,S} An allocation is small if it returns space
for a single structure or base-type object. Otherwise
it is large.

3. Frequency: {*,0,1} An allocation has frequency 0 it
has not occurred before the checkpoint, frequency 1 if
it has occurred a non-looping number of times before
the checkpoint and * otherwise.

4. Free?: {Y,?,N} An allocation has been freed if it is
the unambiguous target of a free statement possibly
occurring before the checkpoint. It is not if it is not
in the points-to set of any free statement that possibly
occurs before the checkpoint and unknown otherwise.

Each of these metrics forms a lattice, with the expected
join operations. Ratings also forms a lattice, whose join
operation is the pairwise join of each metric. The rating of
a color is defined as the join of the ratings of all allocations
assigned to that color.

Table[] shows the ratings assigned to the allocation state-
ments in treecode.

Allocation | Live? | Size | Freq | Free?
active N L * Y
interact N L * Y
btab Y L 1 ?

cell ? S * ?
pvec Y L 1 N

Table 6: Ratings for treecode’s Allocations

Each pair of colors can be assigned a compatability pref-
erence, which indicates the desirability of merging the two
colors and is based on the intuition presented above. Each
preference is one of four values and reflects the desirabil-
ity of merging colors with the those ratings at a particular
checkpoint, Strong Merge (SM), Merge (M), Seperate (S)
and Strongly Separate (SS)

The compatability preferences for treecode are shown in
Table |7} For example, merging a color containing active
with a color containing pvec is strongly undesirable accord-
ing to our intuition since active is dead at the checkpoint
whereas pvec is live and neither is a small, infrequently oc-
curring allocation. This is reflected in the table by the pair
having a rating of SS.

‘ {N7L’*7Y} {Y7L717?} {?787*7? {Y7L717N}
INLFYT SM SS S SS
{Y,L,1,7} ss SM S M
{?7.8%7 S S SM S
{Y,L,1,N} ss M S M

SM = Strong Merge, M = Merge, S = Separate, SS = Strongly Separate

Table 7: Color Compatibility Preferences

For a program with multiple checkpoints, the aggregate



preference for a pair of colors is the average of the preferences
at each checkpoint. Intuitively, it takes three preferences to
counteract a strong preference of the opposite type.

Once the preferences have been computing, a pair of colors
with the highest compatibility score is chosen and merged.
The rating is assigned to the new color is the join of the
previous ratings. The heuristic continues greedily choosing
pairs to merge until there are no remaining desirable merges
(ratings of SM or M) and the number of colors does not
exceed the maximal allowable number of colors.

For treecode, the heuristic begins by merging the pvec

and btab colors. The rating of the new entry is then {Y,L,1,7}.

In the second iteration, the active and interact colors
have the only remaining desirable merge preference and are
merged. The new rating is {N,S,* ,L}. The algorithm termi-
nates at this point since there no remaining desirable merges
to be made and the system allows for more than three col-
ors. The result is a 3-coloring of the allocation statements:
{{active, interact}, {btab, pvec}, {cell}}.

5.3 Experiments

Table [8]shows the aggregate performance results with new
rows labelled “+ conserv. coloring” and “+ heuristic color-
ing”. The 3-coloring computed by the heuristic has the very
desirable property that the bodytab and cell allocations are
in distinct colors. When a checkpoint occurs, the color con-
taining the cell allocations will not be saved as no objects
assigned to that color are live

Size | Configuration Time Chpt Size
Sec. ovrhd MB ovrhd
107 | Original - no chpt 3.61 - [ N.A. N.A.
Original - chpt 4.70 | 30.2% 0.5 -
Baseline C3 6.14 | 70.2% 1.09 | 118.7%
+ stack opts. 6.19 | 71.4% 1.08 | 118.5%
—+ conserv. coloring 5.71 | 58.2% 0.87 75.9%
+ heuristic coloring 5.46 | 51.3% 0.69 | 38.8%
105 | Original - no chpt 54.43 - N.A. N.A.
Origimal - chpt 6353 | 16.7% || 4.07 -
Baseline C3 71.55 | 31.4% 8.64 | 741%
+ stack opts. 70.97 30.4% 8.63 74.0%
+ conserv. coloring 69.49 | 27.7% 8.34 | 68.1%
+ heuristic coloring 64.10 | 17.8% 5.15 3.9%
10% | Original - no chpt 714.95 - [ N.A. N.A.
Original - chpt 804.66 | 12.6% || 49.59 -
Baseline C3 868.18 21.4% 83.38 68.1%
+ stack opts. 867.42 | 21.3% || 83.38 | 68.1%
+ conserv. coloring || 867.07 21.2% || 83.01 67.5%
+ heuristic coloring || 807.23 | 12.9 % || 49.79 0.4%

Table 8: Runtimes and Checkpoint Size, using two
and three colors

As this example illustrates, the key to unlocking the per-

formance of the colored heap allocation is carefully chosen
colors. This requires an analysis that is more sophisticated
than a simple liveness analysis. The problem is also more
complicated than region analysis, because the decision to
share a color is based not only on liveness but also on the
size of the allocation, the pattern of invocations and recla-
mations, and the presence of multiple checkpoints.

Recall that the purpose of this study was to establish
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whether or not program analysis and transformation could
be used to automatically derive ALC code that is compet-
itive in performance with hand-written code. Comparing
the results in Table [8] which are summarized in Figure [6]
we can see that the answer is “yes”, at least in the case of
treecode.

6. RELATED WORK

Manual Application-level Checkpointing Several sys-
tems have been developed to make ALC easier to program.
The Dome (Distributed Object Migration Environment) sys-
tem [4] is a C++ library based on data-parallel objects.
SRS [17] allows the programmer to manually specify the
data that needs to be saved as well as its distribution. On
recovery the system uses this information to recover the pro-
gram’s state and redistribute the data on a potentially dif-
ferent number of processors.

Automatic Application-level Checkpointing Porch |15]
supports portable ALC for programs written in a restricted
subset of C. It generates runtime meta-information that pro-
vides size and alignment information for basic types and lay-
out information, which allows the checkpointer to convert
all data to a universal checkpoint format. The APrIL sys-
tem [10] uses techniques similar to Porch, but uses heuristic
techniques for determining the type of heap objects.
Reducing Checkpoint Size Beck and Plank [3] used a
context-insensitive live variable analysis to reduce the amount
of state information that must be saved when checkpoint-
ing. In this sense, their analysis is less precise than ours,
however, their analysis is also able to compute information
for incremental checkpointing.

The CATCH |[12] system uses profiling to determine the
likely size of the checkpoints at different points in the pro-
gram. A learning algorithm is then used to choose the points
at which checkpoints should be taken so that the size of the
saved state is minimized while keeping the checkpoint inter-
val optimal.

Automatic Memory Management There are many con-
nections between our heap allocation techniques and other
work on automatic memory management. First, our notion
of heap “colors” is similar to “regions” in region-based allo-
cation. However, there is an important difference: A color is



a set of memory objects that are likely to have similar check-
point requirements, while a region is a set of objects that can
safely be deallocated all at once. Nevertheless, because both
approaches are concerned with the lifetime of objects, there
are similarities between our analysis and region analysis |8].

Second, there are connections with garbage collection [18].
For instance, both are inhibited by custom memory manage-
ment and imprecise type information in C programs. Fur-
thermore, with more precise type information, many garbage
collection techniques (e.g., copying, generations), would be
useful additions to our heap implementation.

7. CONCLUSIONS

A significant contribution of this work is that it demon-
strates that it is possible for efficient application-level check-
pointing code to be generated automatically. Other signifi-
cant contributions include the following;:

e our three-tiered approach to utilizing an inter-procedural

program analysis that allows progressively more accu-
rate information to be computed, as it is required,

e our novel design of a heap management system that
facilitates efficient checkpointing of the heap, and

e our heuristic for automatically assigning colors to heap
allocations.

In our current work, we are addressing the following,
Effectiveness and Efficiency. How effective and efficient
is our system for other codes? We are in the process of
collecting other applications for evaluation.

Automatic Checkpoint Placement. Our system cur-
rently requires the programmer to manually determine the
program locations at which checkpoints will be taken. Can
this be automated?

Saving vs. Recomputing. There are some cases where
it is possible to avoid saving data by recomputing it on re-
covery. There are several examples among the variables in
Figure btab and ncell are copies of the global variables
bodytab and ncell respectively. The real savings will come
from recomputing heap data structures. This will be key to
competing with hardwritten application-level checkpointing.
Reclaiming memory management. [5] demonstrates
that custom memory management is usually less desirable
than relying on the system-provided memory management.
Furthermore, as we have seen in treecode, custom memory
management can make it difficult to modify an application
to use advances memory management features. A very inter-
esting research problem would be to develop program anal-
yses and transformations to replace custom memory man-
agement routines with calls to the standard routines. This
would be useful for other memory management system, such
as region-based allocation, garbage collection, etc.
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