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• An algebra of multi-dimensional arrays (MoA) and
an index calculus (the ψ-calculus) allow a series
of operations to be composed so as to minimize
temporaries.

• An array, and all operations on arrays are defined
using shapes, i.e. sizes of each dimension.

• Scalars are 0-dimensional arrays. Their shape
is the empty vector.

• Same algebra used to specify the algorithm as
well as to map to the architecture.

• Composition of multiple Kronecker Products will
be discussed.



Historical Background
• Universal Algebra - Joseph Sylvester, late 19th Century
• Matrix Mechanics - Werner Heisenberg, 1925

o Basis of Dirac’s bra-ket notation
• Algebra of Arrays - APL – Ken Iverson, 1957

o Languages: Interpreters & Compilers
o Phil Abrams: An APL Machine(1972) with Harold Stone

• Indexing operations on shapes, open questions, not algebraic closed 
system. Furthered by Hassett and Lyon, Guibas and Wyatt. Used in 
Fortran. 

o Alan Perlis: Explored Abram’s optimizations in compilers for APL. 
Furthered by Miller, Minter, Budd. 

o Susan Gerhart: Anomalies in APL algebra, can not verify correctness.
o Alan Perlis with Tu: Array Calculator and Lambda Calculus 1986

February 20, 2009 2NSF Workshop on Future Directions in 
Tensor-Based Computation and Modeling



• MoA and Psi Calculus: Mullin (1988)
o Full closure on Algebra of Arrays and Index Calculus based on  

shapes.
o Klaus Berkling: Augmented Lambda Calculus with MoA

– Werner Kluge and Sven-Bodo Scholz: SAC
o Built prototype compilers: output C, F77, F90, HPF
o Modified Portland Groups HPF, HPF Research Partner
o Introduced Theory to Functional language Community

– Bird-Meertens, SAC, …
– Applied to Hardware Design and Verification

• Pottinger (ASICS), IBM (Patent, Sparse Arrays),   
Savaria (Hierarchical Bus Parallel 

Machines)
o Introduce Theory to OO Community (Sabbatical MIT Lincoln 
Laboratory).

– Expression Templates and C++ Optimizations for Scientific 
Libraries

Historical Background 
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Tensors and Language Issues
• Minimizing materialization of array valued 

temporaries…

where A, B, C, and D are huge 3-d (or higher 
dimensional) arrays

• How to generally map to processor/memory 
hierarchies

• Verification of both semantics and operation
• Equivalence of programs
• No language today has an array algebra and index 

calculus without problems with boundary conditions.

D = ((A + B) ⊗ C)T
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Notation
• Dirac:

– Inner product:

– Outer product:

– Tensor-vector multiply: 

• Dirac notation unified Linear Algebra and Hilbert 
Space: Tensors are ubiquitous across many

disciplines: Quantum and Classical

a | b

a b

a b( ) c = a b c( )
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Tensors and Multi-Particle 
States

“The Hilbert space describing the n-particle system is 
that spanned by all n-th rank tensors of the form:

  |ψ > = |ψ1 > |ψ2 >K |ψn >

The zero-particle states (i.e. n = 0 ) are tensors of 
rank zero, that is, scalars (complex numbers).”

Quote: Richard Feynman, “Statistical Mechanics” pp. 168-
170
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Manipulation of an Array
• Given a 3 by 5 by 4 array:

• Shape vector: 

• Index vector:

• Used to select: 
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Is defined by:

Kronecker Product of A and B

The Kronecker Product:
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Kronecker Product of A and B

(A ⊗ B)I ,J = Ai, jBl,m

where 

I ≡< i l > J ≡< j m >

MoA would write:

< i j l m >ψ (A opx B) = (< i j >ψA) × (< l m >ψB)
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Kronecker Product flattened using row-major layout

MoA Outer Product flattened using row-major layout

MoA Outer Product of A and B
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Multiple Kronecker Products

• Large temporaries: ;

• Complicated index calculations

• Processor/memory optimizations difficult

TEMP = B ⊗ C A ⊗ TEMP
Standard approach suffers from:

A ⊗ B ⊗ C( )
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Shapes and the Outer Product

Note: The general definition takes an array of indicies as its left argument.
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Multiple Kronecker Products

•We want:

with:  C = A ⊗ B

E = A ⊗ B( )⊗ A

A =

B =
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Multiple Kronecker Products

•We want:

with:  C = A ⊗ B

Shape of C is < 6 6 > because we are
combining a < 2 2 > array with a < 3 3 >
Typo: +ed instead of Xed

E = A ⊗ B( )⊗ A

C =

Note the use of the
generalized binary
operation + rather than
* (times) in this “product”
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E = C ⊗ A

⊗AE =

E =
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Multiple Outer Products

C = A opx B

C =

Typo: +ed instead of Xed
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Multiple Outer Products

Notice the shape. The shape is <2 2 3 3>.
From this shape we can easily index each 3 by 3.
<0 0> ψ�gets the first one.
Notice how easily we can use these indicies 
to map to processors. Now perform the outer product of
C with A. Now the shape is <2 2 3 3 2 2>.

With the shape we can perform index compositions.
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•This is the Denotational Normal Form (DNF) expressed
in terms of Cartesian coordinates.
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• Convert to the Operational Normal Form (ONF) expressed
in terms of start, stop and stride, the ideal machine abstraction

•Break up over 4 processors…need to restructure the array
shape from to

•Thus for 

2 2 3 3 2 2 4 3 3 2 2

0 ≤ p < 4

A
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Conclusions
• We’ve discussed how an algebra can describe an 

algorithm, its decomposition, and its mapping to
processors.

• We’ve discussed how to compose array operations
• We’ve built prototype compilers and hardware
• What is next? How can the applications drive the 

research?
• How can the research drive the funding?
• How do we continue to have fun either way?


