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Introduction
Problem Setting

Nonnegative matrix approximation (NNMA) problem:

A = [a1, . . . ,aN ], ai ∈ RM
+, is input nonnegative matrix

Goal : Approximate A by conic combinations of
nonnegative representative vectors b1, . . . ,bK such that

ai ≈
K

∑
j=1

bjcji , cji ≥ 0, bj ≥ 0,

i.e. A≈ BC, B,C ≥ 0.



Introduction
Objective or Distortion Functions

The quality of the approximation A≈ BC is

Measured using an appropriate distortion function

For example, the Frobenius norm distortion or the
Kullback-Leibler divergence

In this presentation, we focus on the Frobenius norm distortion,
which leads to the least squares NNMA problem:

minimize
B,C≥0

F (B;C) = 1
2‖A−BC‖2

F,



Nonnegative Matrix Approximation
Basic Framework

NNMA objective function is not simultaneously convex in B & C

But is individually convex in B & in C

Most NNMA algorithms are iterative and perform an alternating
optimization

Basic Framework for NNMA algorithms

1. Initialize B0 and/or C0; set t ← 0.
2. Fix Bt and solve the problem w.r.t C, Obtain Ct+1.
3. Fix Ct+1 and solve the problem w.r.t B, Obtain Bt+1.
4. Let t ← t + 1, & repeat Steps 2 and 3 until convergence criteria
are satisfied.



Nonnegative Tensor Approximation
Problem Setting

For brevity, consider 3-mode tensors only

Least squares objective function

A ,T ∈ R`×m×n
+

‖A −T ‖2
F =

l

∑
i=1

m

∑
j=1

n

∑
k=1

(
[A ]ijk − [T ]ijk

)2
.

Given a nonnegative tensor A ∈ R`×m×n, find a nonnegative
approximation T ∈ R`×m×n which consists of nonnegative
components

Tensor decomposition :
“PARAFAC” or “Tucker”



Nonnegative PARAFAC Decomposition

PARAFAC or Outer Product Decomposition:

minimize ‖A −T ‖2
F

subject to T =
k

∑
i=1

pi ⊗qi ⊗ r i ,

where A , T ∈ R`×m×n,

P = [pi ] ∈ R`×k , Q = [qi ] ∈ Rm×k , R = [r i ] ∈ Rn×k ,

P, Q, R ≥ 0.



Nonnegative Tucker Decomposition

Tucker decomposition of tensors,

minimize ‖A −T ‖2
F

subject to T =
(
P,Q,R

)
·Z ,

where A , T ∈ R`×m×n, Z ∈ Rp×q×r ,

P ∈ R`×p, Q ∈ Rm×q, R ∈ Rn×r ,

Z , P, Q, R ≥ 0.



Nonnegative PARAFAC Decomposition
Algorithm - Reduce to NNMA

Basic Idea: build a matrix approximation problem
For example, for matrix factor P,

Fix Q and R
Form Z ∈ Rk×mn where i-th row corresponds to vectorized qi ⊗ r i

Form A ∈ R`×mn where i-th row corresponds to vectorized
A (i, :, :)
Now the problem is

minimize
P≥0

‖A−PZ‖2
F.



Nonnegative Tucker Decomposition
Algorithm - Update Matrix Factors by Reducing to NNMA

Basic Idea: build a matrix approximation problem
For example, for matrix factor P,

Fix Z , Q and R
Form Z ∈ Rp×mn by flattenning the tensor

(
Q,R

)
·Z along

mode-1
Computing T =

(
P,Q,R

)
·Z is equivalent to PZ

Flatten the tensor A similarly, obtain a matrix A ∈ R`×mn

Now the problem is

minimize
P,Z≥0

‖A−PZ‖2
F.



Existing NNMA Algorithms
NNLS : Column-wise subproblem

The Frobenius norm is the sum of Euclidean norms over columns

Optimization over B (or C) boils down to a series of nonnegative
least squares (NNLS) problems

For example, fix B and find a solution x — i-th column of C
reduces a NNLS problem:

minimize
x

f (x) = 1
2‖Bx−ai‖2

2,

subject to x ≥ 0.



Existing NNMA Algorithms
Exact Methods

Basic Framework for Exact Methods

1. Initialize B0 and/or C0; set t ← 0.
2. Fix Bt and find Ct+1 such that

Ct+1 = argmin
C

F (Bt ,C),

3. Fix Ct+1 and find Bt+1 such that

Bt+1 = argmin
B

F (B,Ct+1),

4. Let t ← t +1, & repeat Steps 2 and 3 until convergence criteria are satisfied.

Exact Methods
Based on NNLS algorithms:

Active set procedure [Lawson & Hanson, 1974]
FNNLS [Bro & Jong, 1997]
Interior-point gradient method

Projected gradient method [Lin, 2005].



Existing NNMA Algorithms
Inexact Methods

Basic Framework for Inexact Methods

1. Initialize B0 and/or C0; set t ← 0.
2. Fix Bt and find Ct+1 such that

F (Bt ,Ct+1)≤F (Bt ,Ct),

3. Fix Ct+1 and find Bt+1 such that

F (Bt+1,Ct+1)≤F (Bt ,Ct+1),

4. Let t ← t +1, & repeat Steps 2 and 3 until convergence criteria are satisfied.

Inexact Methods

Multiplicative method [Lee & Seung, 1999]

Alternating Least Squares (ALS) algorithm

“Projected Quasi-Newton” method [Zdunek & Cichocki, 2006]



Existing NNMA Algorithms
Deficiencies

Active Set based methods

NOT suitable for large-scale problems

Gradient Descent based methods

May suffer from slow convergence — known as zigzagging

Newton-type methods

Naïve combination with projection does NOT guarantee convergence



Previous Attempts at Newton-type Methods for NNMA
Difficulties

rf(xk)
x1xk

xk � �Dkrf(xk) level sets of f
�x = xk � (GTG)�1(GTGxk �GTh)x�

P+[xk � �Dkrf(xk)℄P+[xk � (GTG)�1(GTGxk �GTh)℄
x2

Naïve Combination of projection step and non-diagonal gradient
scaling does not guarantee convergence

An iteration may actually lead to an increase of objective



Projected Newton-type Methods
Ideas from the Previous Methods

The active set :
If active variables at the final solution are known in advance,

Original problem reduces to an equality-constrained problem
Equivalently one can solve an unconstrained sub-problem over
inactive variables

Projection :

The projection step identifies active variables at each iteration

Gradient :

The gradient information gives a guideline to determine which
variables will not be optimized at the next iteration



Projected Newton-type Methods
Overview

Combine Projection with non-diagonal gradient scaling

At each iteration, partition variables into two disjoint set,
Fixed and Free variables

Optimize the objective function over Free variables

Convergence to a stationary point of F is guaranteed

Any positive definite gradient scaling scheme is allowed,
i.e., the inverse of full Hessian, an approximated Hessian by
BFGS, conjugate gradient, etc



Projected Newton-type Methods
Fixed Set

Divide variables into Free variables and Fixed variables.

Fixed Set: Indices listing entries of xk that are held fixed

Definition: a set of indices

Ik =
{

i
∣∣xk

i = 0, [∇f (xk)]i > 0
}

.

A subset of active variables at iteration k

Contains active variables that satisfy the KKT conditions



Newton-type Methods

rf(xk)
x1xk

xk � �Dkrf(xk) level sets of f
�x = xk � (GTG)�1(GTGxk �GTh)x�

P+[xk � �Dkrf(xk)℄P+[xk � (GTG)�1(GTGxk �GTh)℄
x2



Fast Newton-type Nonnegative Matrix Approximation
FNMAE & FNMAI– an exact and Inexact Method

A subprocedure to update C in FNMAE

1. Compute the gradient matrix ∇CF (B;Cold ).
2. Compute fixed set I+ for Cold .
3. Compute the step length vector α .
4. Update Cold as

U←Z+

[
∇CF (B;Cold)

]
; //Remove gradient info. from fixed vars

U←Z+

[
DU
]
; //Fix fixed vars

Cnew←P+

[
Cold−U ·diag(α)

]
//Enforce feasibility

5. Cold← Cnew

6. Update D if necessary

FNMAI: To speed up computation,

Step-size α is parameterized

Inverse Hessian is used for non-diagonal gradient scaling



Experiments
Comparisons against ZC
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Relative errors achieved by both FNMAI and FNMAE are lower than ZC.

Note that ZC does not decrease the errors monotonically



Experiments
Application to Image Processing
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Image reconstruction as obtained by the ALS, LS, and FNMAI procedures

Reconstruction was computed from a rank-20 approximation

ALS leads to a non-monotonic change in the objective function value



Experiments
Application to Image Processing - Swimmer dataset - rank 13

Lee & Seung’s rank 17 FNMAE rank 17



Experiments
Application to Image Processing - Swimmer dataset - rank 20

Lee & Seung’s rank 20 FNMAE rank 20



Experiments
Application to Image Processing - Swimmer dataset

Lee & Seung’s FNMAE

Rank 13
140.53 47.06 Elapsed CPU Time

4.49×107 2.01×107 Objective Function Value

Rank 17
182.24 62.29 Elapsed CPU Time

2.41×107 6.85×10−4 Objective Value

Rank 20
156.18 41.93 Elapsed CPU Time

5.61×105 4.71×103 Objective Function Value



Experiments
Comparison against Lee & Seung-type Algorithms - PARAFAC/ k = 8

FNTA Lee & SeungOriginal

P

Q

R

Nonnegative PARAFAC decomposition with k = 8

Original P,Q,R ∈ R16×8 and rank 8

Final rank is 8 for both FNTA and Lee & Seung

FNTA gives smaller reconstruction error



Experiments
Comparison against Lee & Seung-type Algorithms - PARAFAC/ k = 16

P

Q

R

Original FNTA Lee & Seung

Nonnegative PARAFAC decomposition with k = 16

Original P,Q,R ∈ R16×8 and rank 8

Final ranks are 11 for FNTA and 16 for Lee & Seung

FNTA produces sparser and low-rank solution



Experiments
Comparison against Lee & Seung-type Algorithms - Tucker

P

Original Lee & SeungFNTA

Nonnegative Tucker decomposition with [p q r ] = [8 8 8]

Original P,Q,R as before

Original core tensor has 1 for all entries

FNTA gives smaller reconstruction error

Both methods fit the original tensor very well (error < 1e-4)

Unlike PARAFAC, Both are unable to discover factors



Simultaneous Update of Factors

Instead of alternating optimization between B and C,

Update B and C jointly

For example, after computing B̄ and C̄ s.t.

B̄ = argmin
B≥0

‖A−BCk‖2
F, C̄ = argmin

C≥0
‖A−Bk C‖2

F.

Solve two-dimensional bound-constrained optimization,

min
0≤(β ,γ)≤1

‖A−
(
Bk + β (B̄−Bk ))

(
Ck + γ(C̄−Ck ))‖2

F.



Summary

Nonnegative matrix and tensor approximation problems

Non-diagonal gradient scaling can give faster convergence
Algorithmic framework based on partitioning of variables

an exact & probably convergent method (more accurate)
an inexact method analogous to ALS (faster)
extensions to NNTA

In progress...
More general distortion functions, e.g., Bregman divergences
Publicly available software toolbox

A MATLAB Implementation of FNMAE is now available at
www.cs.utexas.edu/users/dmkim/Source/software/nnma/index.html
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