Chapter 6

A Survey of Matrix Computations

Charles Van Loan
Department of Computer Science, Cornell University, Ithaca, NY 14853-7301, U.S.A.

Preface

This chapter is a three-level introduction to the field of matrix computations. The first section is very informal and is designed to acquaint the reader with the basic tools of the trade. The tools range from the algorithmic (What is a Householder matrix and how can it be used to solve the least square problem?) to the analytic (What happens to the solution of a least square problem if we perturb the data?).

In the second section we discuss the matrix factorizations that figure heavily in numerical linear algebra. For each factorization we survey algorithms, associated mathematical properties, and applications. Sprinkled throughout this section are special topics that illustrate the power of the factorization paradigm.

In the final section we use one factorization (Cholesky) to illustrate various aspects of high performance matrix computations. Successful computing nowadays requires the design of codes that pay careful attention to the flow of data during execution. Our goal is to make the reader more aware of these data movement concerns.

Of course, it is impossible to do justice to the matrix computation field in just a few pages and so we have been careful to include ample pointers to the literature. But before delving into the research papers it is useful to be aware of some of the standard references. Books that attempt to cover the area include Hager [1988], Stewart [1973], Watkins [1991], and Golub & Van Loan [1983]. The last reference is particularly comprehensive—virtually everything we discuss may be found in that volume.

There are several good books that focus on some of the major problem areas such as linear systems, least squares fitting, and the eigenvalue problem. These include Forsythe & Moler [1967], Lawson & Hanson [1974], Parlett [1980], Varga [1962], and Wilkinson [1965].

Sparse matrix problems are increasingly important and so we mention the texts by Björck, Flannery & Schneider [1981], Duff, Erisman & Reid [1986], and George & Liu [1981].
For those interested in the development or use of matrix computation software we recommend Ciment & Van Loan [1988], Smith, Boyle, Kahan, Garbow, Boyle, Dongarra & Moler (1979), Garbow, Boyle, Dongarra & Moler (1972), Dongarra, Bunch, Moler & Stewart (1979), and Wilkinson & Reinsch [1971]. A new package called LAPACK is due to be released soon and will be a milestone in practical scientific computing. The project is funded by the National Science Foundation and so all the codes will be in the public domain. LAPACK has all the functionality of the LINPACK and EISPACK packages plus many additional capabilities. LINPACK covers linear equations and joint squares while EISPACK handles the eigenproblem. All of the dense matrix computations mentioned in this chapter can be handled by codes from these two packages.

Another software tool that is both widespread and indispensable is MATLAB. MATLAB is an interactive system that facilitates the design and testing of matrix algorithms. The MATLAB language is rapidly becoming the model for exposition in the field as it permits a very high level of specification.

At the time of writing (1992), it is possible to obtain software for many of the algorithms in the book by sending electronic mail to any of the following three addresses:

netlib@ornl.gov
netlib@research.nct.com
research/netlib

Typical messages include:

send index (For a list of available libraries.)
send index for linpack (For a list of LINPACK codes.)
send eisvectors from eispack (For the EISPACK 3rd code.)

The matrix computation literature is widely scattered, however, some of the more important journals include SIAM J. Scientific and Statistical Computing, SIAM J. Matrix Analysis, SIAM J. Numerical Analysis, SIAM Review, Numerische Mathematik, J. Linear Algebra and its Applications, Mathematics of Computation, ACM Transactions on Mathematical Software, and IMA J. on Numerical Analysis. We also mention that many interesting matrix methods surface in the engineering literature, particularly the IEEE journals.

Finally, a word about the level of linear algebra expertise that is required to understand this chapter. The reader should certainly be familiar with the concepts of basis, independence, transpose, inner product, span, null space, range, and inverse. No less important are the notions of norm, orthogonality, and eigenvalue although with these topics we start with definitions. Readers who wish to sharpen their linear algebra background should consult Halmos [1958], Leon [1980], or Strang [1988].
1. Some tools of the trade

This section is an informal introduction to the analytic and computational tools that underpin numerical linear algebra. Low dimension examples are the rule with appropriate generalizations to follow. The central themes include (a) the language of matrix factorizations, (b) the art of introducing zeros into a matrix, (c) the exploitation of structure, and (d) the distinction between problem sensitivity and algorithmic stability.

1.1. Gaussian elimination

Perhaps the most important problem in scientific computing is the problem of solving a system of linear equations. The method of Gaussian elimination proceeds by systematically removing unknowns from equations. The core calculation is the multiplication of an equation by a constant and its addition to another equation. For example, if we are given the system

\[
\begin{align*}
2x_1 - x_2 + 3x_3 &= 13, \\
-4x_1 + 6x_2 - 5x_3 &= -28, \\
6x_1 + 13x_2 + 16x_4 &= 37,
\end{align*}
\]

then we start by multiplying the first equation by 2 and adding it to the second equation. This removes \(x_1 \) from the second equation. Likewise we can remove \(x_1 \) from the third equation by adding to it, \(-3\) times the first equation. With these two reductions we obtain

\[
\begin{align*}
2x_1 - x_2 + 3x_3 &= 13, \\
4x_2 + x_3 &= -2, \\
16x_2 + 7x_3 &= -2.
\end{align*}
\]

We then multiply the (new) second equation by 4 and add it to the (new) third equation, obtaining

\[
\begin{align*}
2x_1 - x_2 + 3x_3 &= 13, \\
4x_2 + x_3 &= -2, \\
3x_3 &= 6.
\end{align*}
\]

In reverse order these three equations imply

\[
\begin{align*}
x_3 &= 6/3 = 2, \\
x_2 &= (-2 - x_3)/4 = -1, \\
x_1 &= (3 - 3x_3 + x_2)/2 = 3.
\end{align*}
\]
1.2. LU factorization

This description of Gaussian elimination can be succinctly described in matrix terms. In particular, the process finds a lower triangular matrix L and an upper triangular matrix U so that $A = LU$. In the preceding example, we have

$$
A = \begin{bmatrix}
2 & -1 & 3 \\
-4 & 6 & -5 \\
6 & 13 & 16
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
3 & 4 & 1
\end{bmatrix} \begin{bmatrix}
2 & -1 & 3 \\
0 & 1 & 4 \\
0 & 0 & 3
\end{bmatrix} = LU.
$$

We call this the LU factorization. Notice that the subdiagonal entries in L are made up of the multipliers that arise during the elimination process. The diagonal elements of L are all equal to one and so we refer to L as a unit lower triangular matrix.

How does b fit into this matrix description of Gaussian elimination? Note that the transformed right-hand side in (1) is the solution to the lower triangular system

$$
\begin{bmatrix}
1 & 0 & 0 & \mid & y_1 \\
-2 & 1 & 0 & \mid & y_2 \\
3 & 4 & 1 & \mid & y_3
\end{bmatrix} = \begin{bmatrix}
13 \\
-28 \\
37
\end{bmatrix}.
$$

Thus, the overall technique has three stages:

- Apply the elimination process to A obtaining the factorization $A = LU$.
- Solve the lower triangular system $Ly = b$.
- Solve the upper triangular system $UX = y$.

If all fits together nicely since $Ax = (LU)x = L(Ux) = Ly = b$.

In matrix computations, this language of 'matrix factorizations' has assumed a role of great importance. It enables one to reason about algorithms at a high level which in turn facilitates generalization and implementation on advanced machines. Thus, it is more appropriate to regard Gaussian elimination as a procedure for computing the LU factorization than as an $Ax = b$ solver.

1.3. Solving triangular systems

As evidenced by the above, the need to solve a triangular linear system of equations is an important problem. For upper triangular systems, the unknowns are resolved in reverse order by a process known as backward substitution. Lower triangular systems are solved via an analogous process called forward substitution. In this case the unknowns are resolved in forward order.

1.4. Work and notation of a 'flop'

Triangular system solving is a good setting for introducing flop counting as a method for anticipating performance. In an n by n unit lower triangular system
\[Ly = b, \text{ the } k\text{th unknown is prescribed by} \]
\[y_k = b_k - \sum_{j=1}^{k-1} l_{kj} y_j, \]

This requires \(k - 1 \) multiplies and \(k - 1 \) adds for a total of \(2(k - 1) \) flops. A flop is a floating point arithmetic operation (as opposed to an integer or logical operation). It follows that \(y \) requires \(n^2 - n \) flops to compute. Now typically \(n \) is sufficiently large to ignore low order terms and so it is perfectly reasonable to say that \(n \)-by-\(n \) forward substitution costs \(n^2 \) flops.

A more complicated flop count reveals that Gaussian elimination requires \(\frac{1}{3} n^3 \) flops to produce the \(L \) and \(U \) factors. Thus, when a linear system is solved via this algorithm, the arithmetic associated with the triangular system solves is dominated by the arithmetic required for the factorization.

Flop counting is a useful way to anticipate the performance of a matrix calculation but it has two shortcomings. First, on a modern computer the efficiency of \(n \) matrix code is more often determined by the nature of memory traffic than by flops. See Section 3 for further details. Second, matrix computations usually involve a large amount of integer arithmetic subroutines and this can dominate the actual cost of the floating point arithmetic. Nevertheless, the counting of flops is useful so long as one remembers that the volume of floating point arithmetic is but one of several factors that determine program efficiency.

1.5. Residual versus error

Consider the following innocuous linear system first point out to me by C. Moler:
\[
\begin{bmatrix}
0.780 & 0.563 \\
0.913 & 0.659
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
0.217 \\
0.254
\end{bmatrix}.
\]

Without going into algorithmic details, suppose we apply two different methods and get two different solutions:
\[
x^{(1)} =
\begin{bmatrix}
0.341 \\
-0.087
\end{bmatrix},
\quad
x^{(2)} =
\begin{bmatrix}
0.999 \\
-1.00
\end{bmatrix}.
\]

Which one is preferred? An obvious way to compare the two solutions is to compute the associated residuals:
\[
b - Ax^{(1)} =
\begin{bmatrix}
0.0000001 \\
0
\end{bmatrix},
\quad
b - Ax^{(2)} =
\begin{bmatrix}
0.001343 \\
0.001572
\end{bmatrix}.
\]

On the basis of residuals, it is clear that \(x^{(1)} \) is preferred. However, we are confronted with a dilemma when we learn that the exact solution is given by
Thus, $x^{(1)}$ readers a small residual while $x^{(2)}$ is much more accurate. Reasoning in the face of such a dichotomy requires care. We may be in a situation where how well Ax predicts b is paramount. In that case, we are after a small residual solution. In other settings, accuracy is critical in which case the focus is on nearness to the true solution. The point here is twofold: (a) the notion of a 'good' solution can be ambiguous, and (b) the intelligent appraisal of algorithms requires sharper tools.

1.6. Problem sensitivity and nearness

In our 2-by-2 problem above, the matrix A is very close to singular. Indeed,

$$
\hat{A} = \begin{bmatrix}
0.789 & 0.563001095 \\
0.913 & 0.639
\end{bmatrix}
$$

is exactly singular. Thus, an $O(10^{-8})$ perturbation of the data renders our problem insoluble. Our intuition tells us that difficulties should arise if our given $Ax = b$ problem is 'near' to a singular $Ax = b$ problem. In that case we suspect that small changes in the problem data, i.e., A and b, will induce relatively large changes in the solution. It is clear that we need to be able to quantify notions such as 'nearness to singularity' and 'problem sensitivity.'

Notice that these concerns have nothing to do with underlying algorithms. They are mathematical issues associated with the $Ax = b$ problem. However, as we now show, they do clarify what we can expect from an algorithm in light of rounding errors.

A finite amount of hardware is devoted to the storage of each floating point number. A floating point number has a mantissa and an exponent. We focus on the former and for clarity assume that we are working on a base-10 machine with d-digit mantissas. We define the unit roundoff to be the largest floating point number such that the floating point addition of 1 and u equals 1. For d-digit arithmetic, $u = 10^{-d}$. In general, a relative error of order $O(10^{-d})$ occurs each floating point operation. However, errors arise even before we commence computation for data must be stored. For example, if $d = 4$ then u would have the representation 0.3142×10^3. In general, if $f(x)$ denotes the stored version of a real number x, then

$$f(x) = x + e \cdot |x| \leq u \cdot$$

Let us return to the $Ax = b$ problem. Any algorithm that requires the storage of A (e.g., Gaussian elimination) 'sees' only the perturbed problem

$$(A + E)\hat{x} = b + f,$$

(3)
where \(|x| = u[a_i]\) and \(f = u[b_i]\). Since \(\hat{x} \) is the 'best we can do', we ask two fundamental questions: (a) how can we guarantee that \(A + E \) is nonsingular, and (b) how close is \(\hat{x} \) to the true solution \(x \)?

1.7. Norms: Quantifying error and distance

To answer these questions we need the concept of a norm. Norms are one vehicle for measuring distance in a vector space. For vectors \(x \in \mathbb{R}^n \) the 1, 2, and infinity norms are of particular importance:

\[
\|x\|_1 = |x_1| + \cdots + |x_n|,
\]

\[
\|x\|_2 = \sqrt{x_1^2 + \cdots + x_n^2},
\]

\[
\|x\|_\infty = \max\{|x_1|, \ldots, |x_n|\}.
\]

For matrices \(A \in \mathbb{R}^{m \times n} \) we have

\[
\|A\|_1 = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|, \quad \|A\|_2 = \max_{1 \leq i \leq n} \|A_i\|_2,
\]

\[
\|A\|_\infty = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}|, \quad \|A\|_F = \sqrt{\sum_{i,j=1}^{m,n} |a_{ij}|^2}.
\]

It follows that the matrix of rounding errors \(E \) in (2) satisfies \(\|E\|_1 \leq u\|A\|_1 \).

In the discussions that follow, whenever the choice of norm is a side issue, we drop subscripts. In examples with an order-of-magnitude theme, we choose whichever of the above norms is most convenient bearing in mind that for small problems they do not differ by much. However, in serious applications the choice of a norm can be critical. This is especially true with weighted norms, e.g., \(\|x\|_W = \|Dx\|_2 \). Here, \(D \) is a nonsingular diagonal weighting matrix that may reflect our knowledge of underlying measurements.

1.8. Condition of linear systems

The \(Ax = b \) sensitivity issues posed turn out to involve the condition number. In particular, if \(A \in \mathbb{R}^{m \times n} \) then we say that

\[
\kappa(A) = \|A\|_2 \|A^{-1}\|_2
\]

is the condition number of \(A \) with respect to inversion. If \(A \) is singular, then we assume \(\kappa(A) = \infty \). Note that the condition number involves a choice of norm which we can stress though subscripting: \(\kappa_p(A) = \|A\|_p \|A^{-1}\|_p \). For \(p = 1, 2, \infty \) we have \(\kappa_p(A) \geq 1 \).

It turns out that the perturbed system (3) is nonsingular if
meaning that \(A \) is not too badly conditioned with respect to the unit roundoff.

The condition number also figures in the bounding of the relative error in the stored system solution \(\hat{x} \). In particular, if \(A \) and \(A + E \) are nonsingular, then

\[
\frac{\|x - \hat{x}\|}{\|x\|} \leq \kappa(A)
\]

From this we reason that in the absence of additional information we have no right to expect an \(Ax = b \) solver to obtain an accurate solution to an ill-conditioned linear system.

1.9. LU with Pivoting

We return to Gaussian elimination. It can be shown that the computed solution \(\hat{x} \) satisfies a perturbed system \((A + \Delta A)\hat{x} = b\), where \(\|\Delta A\| = \|\hat{L}\|\|\hat{L}\|\). Here, \(\hat{L} \) and \(\hat{U} \) are the computed \(L \) and \(U \). These quantities can be arbitrarily large as suggested by the 2-by-2 factorization

\[
\begin{bmatrix}
\varepsilon & 1 \\
1 & 1/\varepsilon
\end{bmatrix}
\begin{bmatrix}
1 & \varepsilon \\
1/\varepsilon & 1
\end{bmatrix} =
\begin{bmatrix}
1 & 1 + \varepsilon \\
0 & 1 - 1/\varepsilon
\end{bmatrix}.
\]

If we use 16-digit floating point arithmetic to solve

\[
\begin{bmatrix}
\varepsilon & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
1/\varepsilon
\end{bmatrix} =
\begin{bmatrix}
1 + \varepsilon \\
2
\end{bmatrix}.
\]

which has exact solution \(x = [1 \ 1]^{T} \), then in Table 1 is what we find for various \(\varepsilon \). The troubling thing with this example is that the matrix \(A \) is well conditioned, e.g., \(\kappa(A) = 1 + O(\varepsilon) \). This means that Gaussian elimination introduces errors way above the level predicted by the mathematical sensitivity of the problem. This is because of the very small, \(O(\varepsilon) \), pivot that arises in the first step.

A simple way around this difficulty is to introduce row interchanges. For our example above, this means we apply Gaussian elimination to compute the LU

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(|x - \hat{x}|/|x|)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-7}</td>
<td>6 · 10^{-14}</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>2 · 10^{-11}</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>9 · 10^{-9}</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>9 · 10^{-5}</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>7 · 10^{-3}</td>
</tr>
</tbody>
</table>
factorization of A with its rows reversed

$$
\begin{bmatrix}
\varepsilon & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
2 \\
1 + \varepsilon
\end{bmatrix}.
$$

The resulting algorithm is an example of Gaussian elimination with partial pivoting. A full precision answer is obtained. (Note that A is well conditioned.) In general, partial pivoting involves a linear search at each elimination step. When x_i is being removed we search for the biggest coefficient for x_i in the remaining equations. That equation is then interchanged with the current kth equation. The resulting factorization has the form $PA = LU$, where P is a permutation matrix. A permutation matrix is the identity with its rows permuted. To solve $Ax = b$ we solve $Ly = Pb$ and then $Ux = y$. The application of P to b is an $O(n)$ operation.

1.10. Backwards stability

We say that a linear equation solver is backwards stable if it produces an \tilde{x} that solves a nearby problem exactly, i.e., $(A + E)\tilde{x} = b + f$ with $\|E\| = u\|A\|$ and $\|f\| = u\|b\|$. This turns out to be the case for Gaussian elimination with pivoting. Two important heuristics follow from this:

$$
\|A\tilde{x} - b\| \leq u\|A\|\|\tilde{x}\|,
\|\tilde{x} - x\| \leq u\kappa(A)\|x\|.
$$

The first result essentially says the algorithm produces small relative residuals, regardless of problem condition. The second heuristic shows the accuracy does depend upon problem condition. If a standard norm (such as $\|\cdot\|_2$) is involved and the unit roundoff and condition satisfy $u = 10^{-6}$, and $\kappa(A) = 10^9$, then \tilde{x} has approximately $q - p$ correct digits.

For the relative error bound to be of practical interest, we need an estimate of the condition. The central problem of condition estimation is to obtain a good estimate in $O(n^2)$ flops assuming the availability of a factorization such as $A = LU$ or $PA = LU$. This turns out to be possible, see Cline, Moler, Stewart & Wilkinson [1979], Cline, Conn & Van Loan [1982], Griew & Lewis [1981], Hager [1984], Higham [1987], and Van Loan [1987].

1.11. Banded systems

We now turn our attention to the exploitation of structure, a very important theme in matrix computations. A matrix $A \in \mathbb{R}^{n \times n}$ has upper bandwidth q and lower bandwidth r if $a_{ij} = 0$ whenever $j > i + q$ or $i > j + r$. Thus,
\[
A = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

has upper and lower bandwidth equal to 1. In this case we also say that \(A \) is tridiagonal. It is often possible to exploit band structure during a factorization. For example, the \(L \) and \(U \) factors of a tridiagonal are bidiagonal:

\[
L = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad U = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

If pivoting is performed, then \(L \) is not lower bidiagonal but it does have the property that there is at most one nonzero below the diagonal in each column. The number of flops required to factor a matrix with upper and lower bandwidth equal to \(p \) is \(O(mp^2) \).

Further details concerning the manipulation of band matrices may be found in Golub & Van Loan [1989].

1.12. Symmetric systems

Symmetry is another important property that can be exploited in matrix computations. For example, if \(A \) is symmetric (\(A = A^T \)), then the amount of data that defines \(x = A^{-1}b \) is halved. Let us see how this reduction is reflected in the LU factorization. If \(A = LU \) is a nonsingular symmetric matrix with an LU factorization, then \(LU = U^T L \) implies that \(U^{-1} L = L^{-1} U = D \) is diagonal. Thus, we can rewrite the LU factorization as \(A = L(DL)^T \):

\[
\begin{bmatrix}
4 & -8 & -4 \\
-8 & 18 & 14 \\
-4 & 14 & 25
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & -2 & -1 \\
0 & 2 & 0 \\
0 & 3 & 0
\end{bmatrix} \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Once obtained, the \(LDL^T \) factorization can be used to solve \(Ax = b \) by solving \(Ly = b \), \(Dx = y \), and \(Ux = z \).

This factorization need not be stable for the same reasons that the \(LU \) without pivoting may be unstable. Pivoting can rectify this but if we compute \(PA = LU \) we can no longer expect \(U \) to be a diagonal scaling of \(U^1 \) since \(PA \) is no longer symmetric. A possible way around this is to perform symmetric pivoting. In particular, we seek a permutation \(P \) so that the \(LDL^T \) factorization of \(PA^P \) is stable. But notice that the diagonal of this matrix is a permutation of \(A \)'s diagonal. It follows that if all of \(A \)'s diagonal entries are small, then huge pivots can arise regardless of the choice of \(P \).
There are two ways around this problem. In the approach of Bunch &
Kaufman [1977] a permutation is found so that $PAP^T = LDL^T$, where L is unit
lower triangular and D is a direct sum of 1-by-1 and 2-by-2 matrices, e.g.,

$$
PAP^T = \begin{bmatrix}
1 & 0 & 0 & 0 \\
\times & 1 & 0 & 0 \\
\times & \times & 1 & 0 \\
\times & \times & \times & 1
\end{bmatrix} \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & \times & \times & 0 \\
0 & \times & \times & \times \\
0 & \times & \times & \times
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
\times & 1 & 0 & 0 \\
\times & \times & 1 & 0 \\
\times & \times & \times & 1
\end{bmatrix}.
$$

The pivot strategy which determines P is rather complicated and involves a
2-column search at each step. The overall process is as stable as Gaussian
elimination with pivoting and involves half the flops. Once obtained, the
Bunch–Kaufman factorization can be used to solve a linear system in $O(n^3)$
flops as follows: $Lw = Pb$, $Dz = w$, $L^Tv = z$, $x = P^Tv$.

An alternative method for the stable factorization of an indefinite symmetric
matrix is due to Aasen [1971] who developed an n^3 algorithm for the
factorization $PAP^T = LDL^T$, where T is tridiagonal and L is unit lower
tridiagonal:

$$
PAP^T = \begin{bmatrix}
1 & 0 & 0 & 0 \\
\times & 1 & 0 & 0 \\
\times & \times & 1 & 0 \\
\times & \times & \times & 1
\end{bmatrix} \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & \times & \times & 0 \\
0 & \times & \times & \times \\
0 & \times & \times & \times
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
\times & 1 & 0 & 0 \\
\times & \times & 1 & 0 \\
\times & \times & \times & 1
\end{bmatrix}.
$$

Once obtained, the Aasen factorization can be used to solve a linear system as
follows: $Lw = Pb$, $Tz = w$, $L^Tv = z$, $x = P^Tv$. $O(n^2)$ flops are required.

1.13. Positive definiteness

A matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if $x^TAx > 0$ for all nonzero $x \in \mathbb{R}^n$.
Symmetric positive definite matrices constitute a particularly important class
and fortunately they submit to a particularly elegant factorization called the
Cholesky factorization. In particular, if A is symmetric positive definite, then
we can find a lower triangular G such that $A = GG^T$. In the 2-by-2 case if we
equate entries in the equation

$$
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} = \begin{bmatrix}
G_{11} & 0 \\
G_{21} & G_{22}
\end{bmatrix} \begin{bmatrix}
G_{11} & 0 \\
G_{21} & G_{22}
\end{bmatrix},
$$

we obtain the equations

$$
a_{11} = G_{11}^2 \Rightarrow G_{11} = \sqrt{a_{11}},
$$

$$
a_{21} = G_{21}G_{11} \Rightarrow G_{21} = a_{21}/G_{11},
$$

$$
a_{22} = G_{22}^2 + G_{21}^2 \Rightarrow G_{22} = \sqrt{a_{22} - G_{21}^2}.
$$
Using the definition of positive definite it is not hard to show that the two square roots are square roots of positive numbers, thereby ensuring the production of a real G. Furthermore, $|x_i| = \sqrt{A_{ii}}$ for all i and j, ensuring that no large numbers surface during the Cholesky reduction. Thus, pivoting is not necessary and Cholesky is backwards stable.

\section{Orthogonality and the QR factorization}

Orthogonality is a central concept in matrix computations. A set of vectors \((x_1, \ldots, x_3)\) is orthogonal if \(x_i^T x_j = 0\) whenever \(i \neq j\). Thus,

\[
\begin{bmatrix}
1 & -2 \\
1 & 3 \\
2 & 1
\end{bmatrix}
\]

is an orthogonal set. If in addition \(x_i^T x_i = 1\), then they are referred to as orthonormal.

The computation of orthogonal bases via the Gram–Schmidt process is well known. If \(a_1\) and \(a_2\) are given vectors and we set

\[
x_1 = a_1, \quad q_1 = x_1 / \| x_1 \|_2, \quad x_2 = a_2 - (q_1^T a_2) q_1, \quad q_2 = x_2 / \| x_2 \|_2,
\]

then \(q_i\) is orthogonal to \(q_j\) and \(\text{span}(a_1, a_2) = \text{span}(q_1, q_2)\).

For the data

\[
a_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 8 \\ -1 \\ 14 \end{bmatrix},
\]

we obtain

\[
x_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad q_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad q_2 = \begin{bmatrix} 8 \\ -1 \\ 14 \end{bmatrix} / \sqrt{190}.
\]

This reduction can be expressed as a factorization:

\[
\begin{bmatrix} 1 & -8 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 3 & 6 \\ 1 & -1 & 0 & 15 \end{bmatrix} / \sqrt{190}.
\]

We call this the QR factorization and it has an important role to play in least squares and eigenvalue computations.
The computations of the QR factorization is usually obtained through successive orthogonal transformations of the data. In particular, a product of 'simple' orthogonal matrices $Q = Q_1 \cdots Q_k$ is found so that $Q'A = R$ is upper triangular. Two classes of such simple transformations are available to use: Householder reflections and Givens rotations.

1.15. Householder reflections

A **Householder reflection** has the form

$$H = I - 2uv^T, \quad v \in \mathbb{R}^n, \|v\|_2 = 1.$$

It is easy to confirm that H is orthogonal.

Suppose $x^T = [2 \quad -1 \quad 2]$ and we set $v = u/\|u\|_2$ where

$$u = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} \quad \text{and} \quad x^T = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}.$$

It is easy to verify that if

$$H = I - 2uv^T = \frac{1}{3} \begin{bmatrix} -10 & 5 & -10 \\ 5 & 14 & 2 \\ -10 & 2 & 11 \end{bmatrix},$$

then

$$Hx = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}.$$

This illustrates how a Householder matrix can be called upon to zero all but the top component of a vector x. The Householder vector v has the form $x = \|x\|e_1$, where e_1 is the first column of I_n. (The sign is chosen so that no cancellation ensues when forming the first component of v.)

Householder vectors are used to zero designated sub-columns and sub-rows in a matrix. For example, if

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix},$$

and we wish to zero the subdiagonal portion of the second column, then we determine a Householder vector $v \in \mathbb{R}^3$ so that the corresponding Householder
matrix $H \in \mathbb{R}^{n \times n}$ does the following:

$$
H = \begin{bmatrix}
\tilde{a}_{12} \\
\tilde{a}_{13} \\
\tilde{a}_{23}
\end{bmatrix}
= \begin{bmatrix}
\tilde{x}_{22} \\
0 \\
0
\end{bmatrix}.
$$

If we define the 5-by-5 orthogonal matrix:

$$
\tilde{R} = \begin{bmatrix}
1 & 0 \\
0 & H
\end{bmatrix},
$$

then

$$
HA = \begin{bmatrix}
\tilde{a}_{11} & \tilde{a}_{12} & \tilde{a}_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & 0 & \tilde{a}_{33}
\end{bmatrix}.
$$

Here, the tildes denote updated entries. Note that \tilde{R} is a Householder matrix itself associated with the vector $\tilde{v} = [0 \ v^T]^T$.

The product HA of an m-by-m Householder matrix and an n-by-k matrix involves $O(nk)$ flops if we invoke the formula

$$
HA = (I - 2vv^T)A = A - vv^TA.
$$

We see that the new A is a rank-one update of the old A.

Householder updates are backwards stable. This means that if we compute an update of the form $A \leftarrow HA$, then the result is an exact Householder update of a matrix near to the original A.

A 4-by-3 matrix can be upper triangularized by a product $Q = H_i H_{i-1} \ldots H_1$ of Householder matrices as follows:

$$
\begin{bmatrix}
 x & x & x \\
 x & x & x \\
 x & x & x \\
 x & x & x \\
\end{bmatrix}
\begin{bmatrix}
 x & x & x \\
 0 & x & x \\
 0 & x & x \\
 0 & 0 & x \\
\end{bmatrix}
\begin{bmatrix}
 x & x \\
 0 & 0 \\
 0 & 0 \\
 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 x \\
 x \\
 x \\
 x \\
\end{bmatrix}.
$$

This progressive introduction of zeros via Householder reflections is typical of several important factorization algorithms. These computations are backwards stable, e.g., the computed \tilde{R} satisfies $Q^T(A + E)$ where Q is exactly orthogonal and $\|E\| = \|A\|$.

Various aspects of Householder manipulation are included in Golub & Van Loan [1989], Parlett [1971], and Tsa (1975).
1.16. Given rotations

A 2-by-2 Given rotations is an orthogonal matrix of the form
\[G(\theta) = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}, \quad c = \cos(\theta), \quad s = \sin(\theta). \]

If \(x = [x_1, \ x_2]^T \), then it is possible to choose \((c, s)\) such that if \(y = G^T x \), then \(y_2 = 0 \). Indeed, all we have to do is set
\[c = x_1/\sqrt{x_1^2 + x_2^2}, \quad s = -x_2/\sqrt{x_1^2 + x_2^2}. \]

However, a preferred algorithm for computing the \((c, s)\) pair would more likely resemble the following in which we assume that \(x \neq 0 \):

\[
\begin{align*}
\text{If } & |x_1| > |x_2| \\
\tau &= x_2/x_1; \quad c = 1/\sqrt{1 + \tau^2}; \quad s = \tau \cdot c
\end{align*}
\]

\[
\begin{align*}
\text{else } & \quad \tau = x_1/x_2; \quad c = 1/\sqrt{1 + \tau^2}; \quad s = \tau \cdot c
\end{align*}
\]

In this alternative, we guard against the squaring of arbitrarily large numbers and thereby circumvent the problem of overflow. Overflow occurs when a floating operation leads to a result with an oversized exponent. Another benefit of this \((c, s)\) determination is that square roots are always taken of numbers in this range [1, 2]. This restriction is sometimes helpful in the design of VLSI square root circuitry.

Given rotations can be used to introduce zeros in a very selective fashion. Suppose that we want to compute the QR factorization of the structured matrix
\[A = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ e_1 & e_2 & e_3 \end{bmatrix}. \]

We first determine \((c, s)\) so
\[\begin{bmatrix} c & s \end{bmatrix} \begin{bmatrix} r_{11} \\ r_{22} \\ e_1 \end{bmatrix} = \begin{bmatrix} e_3 \end{bmatrix}. \]

We say that
\[G(1, 4) = \begin{bmatrix} c & 0 & 0 & s \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & 0 & c \end{bmatrix}. \]
is a Givens rotation in the (1, 4) plane. Note that

$$G(1, 4)^T A = \begin{bmatrix}
\tilde{r}_{11} & \tilde{r}_{12} & \tilde{r}_{13} & 0 \\
0 & \tilde{r}_{22} & \tilde{r}_{23} & 0 \\
0 & 0 & \tilde{r}_{33} & \tilde{c}_3 \\
0 & \tilde{c}_2 & 0 & \tilde{c}_1
\end{bmatrix}$$

Here, the tilde denotes updated matrix elements and the computation would continue with rotations in the (2, 4) and (3, 4) planes designed to remove \(\tilde{c}_2\) and \(\tilde{c}_3\). Note that 3 flops are associated with each updated element and so when a Givens update of the form \(A \leftarrow G^T A\) is performed, \(O(n)\) work is involved where \(n\) is the number of columns. Similar comments apply to postmultiply updates of the form \(A \leftarrow AG\).

Givens updates are backwards stable and various aspects of their implementation are discussed by Steward [1976a], Gentleman [1973], and Hammarling [1974]. See also Golub & Van Loan [1989].

1.17. The least squares problem

Given \(A \in \mathbb{R}^{m \times n}\) and \(b \in \mathbb{R}^m\) with \(m > n\), consider the problem of finding \(x \in \mathbb{R}^n\) so that \(Ax = b\). This is an overdetermined system of equations and one must prepare for the fact that there may be no solution. However, if we seek an \(x\) so that \(Ax = b\), then a number of possibilities arise. The least squares approach involves the minimization of \(\|Ax - b\|_2\). Because the 2-norm is preserved under orthogonal transformations, we see that if \(Q\) is orthogonal, then

$$\|Ax - b\|_2 = \|Q^T (Ax - b)\|_2 = \|((Q^T A)x - (Q^T b))\|_2.$$

Thus, the given least squares (LS) problem based upon \((A, b)\) transforms to an equivalent LS problem based upon \((Q^T A, Q^T b)\). The transformed problem takes on a special form if \(A = QR\) is the QR factorization. For example, in the \((m, n) = (4, 2)\) case that means

$$\|Ax - b\|_2 = \begin{bmatrix}
\tilde{r}_{12} x_1 + \tilde{r}_{22} x_2 - \tilde{c}_3 \\
\tilde{r}_{22} x_2 - \tilde{c}_3 \\
\tilde{c}_3 \\
\tilde{c}_2
\end{bmatrix},$$

where \(Q^T b - c\) is the transformed right-hand side. It follows that the optimum choice for \(x\) is that which solves the 2-by-2 upper triangular system

$$\begin{bmatrix}
\tilde{r}_{11} & \tilde{r}_{12} \\
0 & \tilde{r}_{22}
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} - \begin{bmatrix}
\tilde{c}_3 \\
\tilde{c}_2
\end{bmatrix}.$$

Trouble arises in the QR solution of the LS problem if the columns of \(A\) are
dependent. If this is the case, then one of the \(r_j \) is zero and the back substitution process breaks down. However, it is possible to incorporate column interchanges during the Householder reduction with an eye towards maximizing \(|r_{11}| \) during the \(i \)th step. As a result of this, a set of independent columns is 'pushed up front'. For example, in a 4-by-3, rank 2 problem a factorization of the form

\[
Q^T A P = \begin{bmatrix}
 x & x & x^7 \\
 0 & x & x \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\]

would be obtained. In this situation, the LS problem has an infinite number of solutions but one would be selected that attempts to predict \(b \) from the first two columns of \(AP \).

Of course, it is not likely that exact zeros would surface during the computation. This leads to the difficult problem of numerical rank determination. For example, suppose in the 4-by-3 problem above we emerge with

\[
Q^T A P = \begin{bmatrix}
 1 & 2 & 3 \\
 0 & 10^{-6} & 10^{-8} \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\]

Whether or not we regard this as a matrix of rank 1, 2, or 3 depends upon (a) the precision of the underlying floating point arithmetic, and (b) the accuracy of the original \(A \). For example, if \(A \) is exact and \(u = 10^{-10} \), then we are on fairly firm ground to believe that rank(\(A \)) = 3. On the other hand, if \(u = 10^{-6} \) then a case can be made for rank(\(A \)) = 2. If the \(a_{ij} \) are just correct to 5 digits, then it might be best to regard \(A \) as having rank 1. This spectrum of possibilities reveals that the intelligent handling of rank determination is tricky and not without a subjective component. The stakes are high too because radically different LS solutions result for different choice of numerical rank.

1.18. Eigenvalue problems

Orthogonal transformations are also useful in eigenvalue problems. In the simplest setting we have \(A \in \mathbb{R}^{n \times n} \) and seek scalars \(\lambda \) so that \(A - \lambda I \) is singular. These scalars are called eigenvalues and they are the roots of the characteristic polynomial \(p(\lambda) = \det (A - \lambda I) \). It follows that an \(n \)-by-\(n \) real matrix has \(n \) (possibly complex) eigenvalues. We denote the set of eigenvalues by \(\lambda(A) \). If \(\lambda \in \lambda(A) \), then there exists a nontrivial vector called an eigenvector so that \(Ax = \lambda x \). There is also a left eigenvector \(y \) so that \(y^T A = \lambda y^T \).

Note that if \(T \) is nonsingular and \(Ax = \lambda x \), then \((T^{-1} AT)(T^{-1} x) = \lambda (T^{-1} x) \). This shows that the similar matrices \(A \) and \(T^{-1} AT \) have the same eigenvalues. The matrix \(T \) is called a similarity transformation.
From several points of view, orthogonal similarity transformations $A \to Q^T AQ$ are extremely attractive. They are backward stable when based upon Householder and Givens transformations, i.e., the computed $Q^T AQ$ is orthogonally similar to $A + E$, where $\| E \| = \| A \|$. The inverse is easily obtained and well-conditioned: $Q^{-1} = Q^T$, $\kappa(Q) = 1$.

An important family of eigenvalue methods involves computing an orthogonal Q such that the eigenvalues of $Q^T AQ$ are displayed. For example, if $A \in \mathbb{R}^{n \times n}$ has real eigenvalues, then it is possible to find a cosine–sine pair (c, s) such that

\[
\begin{bmatrix}
 c & s \\
- s & c
\end{bmatrix}
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
c & s \\
- s & c
\end{bmatrix}
= \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}.
\]

This is the $n = 2$ version of the Schur decomposition. Note that λ_1 and λ_2 are the eigenvalues of A. If y is an eigenvector of T, then $x = Qy$ is an eigenvector of A. It is easy to verify that

\[
y_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

and

\[
y_2 = \frac{1}{\sqrt{1 + \mu}} \begin{bmatrix} \mu \\ 1 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ \lambda_2 - \lambda_1 \end{bmatrix},
\]

are a pair of 2-norm eigenvectors of T associated with λ_1 and λ_2, respectively. Note that if $r \neq 0$ and $\lambda_1 = \lambda_2$, then y_2 is not defined. In this case we see that T (and hence A) does not have a full set of n independent eigenvectors. Numerically, the independence of the eigenvectors can deteriorate in $\mu \to \infty$.

Just observe that $y_2 \to y_1$ as $\mu \to \infty$.

The sensitivity of an eigenvalue to perturbation depends on how independent its eigenvector is from the eigenvectors associated with other eigenvalues. For example, suppose $\lambda_1(x)$ and $\lambda_2(x)$ are the eigenvalues of the following perturbation of the T matrix above:

\[
\tilde{T} = \begin{bmatrix} \lambda_1 & \mu \\ 0 & \lambda_2 \end{bmatrix}.
\]

It is not hard to show that for $i = 1, 2$, $\lambda_i(0) = \mu$. Thus, for small ε, the eigenvalues are perturbed by $O(\varepsilon \mu)$.

If A is symmetric then this sensitivity cannot occur. This is because $T = Q^T AQ$ is symmetric and so x is zero. Indeed, a symmetric matrix always has a full set of orthonormal eigenvectors and it can be shown that symmetric $O(\varepsilon)$ perturbations induce just $O(\varepsilon)$ perturbations of the eigenvalues.
1.19. The singular value decomposition

We close with a few remarks about another very important factorization. If \(A \in \mathbb{R}^{n \times n} \), then it is possible to find 2-by-2 orthogonal matrices \(U \) and \(V \) such that

\[
U^tAV = \begin{bmatrix}
\sigma_1 & 0 \\
0 & \sigma_2
\end{bmatrix}.
\]

This is called the singular value decomposition and in the \(n = 2 \) case it has a simple geometric description. In particular, the set

\[
(y; y = Ax, \|y\|_2 = 1)
\]

is an ellipse having semi-axes of length \(\sigma_1 \) and \(\sigma_2 \). Moreover, \(A \) maps the first and second columns of \(V \) onto \(\sigma_1 u_1 \) and \(\sigma_2 u_2 \), where \(u_1 \) and \(u_2 \) are the first and second columns of \(U \). It can be shown that \(\kappa^2(A) = \sigma_1/\sigma_2 \) and so the more elongated the ellipse, the bigger the condition.

The singular value decomposition reveals a great deal of \(A \)'s structure and turns out to be useful in a host of applications.

2. A catalog of matrix factorizations

Matrix factorizations that play a central role in numerical linear algebra are now presented. The discussion for each factorization is generally structured as follows. First, we state the factorization without proof and specify some of its more important related mathematical properties. Then we sketch associated algorithms and their numerical attributes. Finally, we describe a few important applications upon which the factorization has a bearing.

The classification of the matrix computation field by factorization is not too handy if you just want to see how a particular problem might be solved. So for those readers that are 'application driven', here is a more convenient classification in which we mention the relevant factorizations for each given problem:

- **General Linear Systems.** The LU factorization with pivoting and without. See Sections 2.2 and 2.3.
- **Positive Definite Systems.** The Cholesky and LDL\(^T\) factorizations. See Sections 2.4 and 2.6.
- **Symmetric Indefinite Systems.** The Bunch–Kaufman and Aasen factorizations. See Sections 2.7 and 2.8.
- **Full Rank Least Squares Problems.** The Cholesky and QR factorizations. See Sections 2.4 and 2.9.
- **Rank Deficient Least Squares Problems.** The QR factorization with column pivoting and the singular value decomposition. See Sections 2.11 and 2.20.
• The Unsymmetric Eigenvalue Problem. The Schur, Partial Schur, Jordan, and Hessenberg decompositions. See Sections 2.12-2.15.
• Symmetric Eigenvalue Problem. The symmetric Schur and tridiagonal decompositions. See Sections 2.17 and 2.18.
• The Eigenproblems $Ax = \lambda Bx$ and $A^tAx = \mu B^tBx$. The generalized Schur and the generalized singular value decompositions. See Sections 2.16, 2.22, and 2.23.

2.1. A word about notation

In the discussion that follows it is frequently necessary to be able to specify portions of a matrix column or row. A good notation for this is the colon notation. If $A \in \mathbb{R}^{m \times n}$, then $A(i, :)$ designates the ith row of A, and $A(:, j)$ the jth column. This assumes that $1 \leq i \leq m$ and $1 \leq j \leq n$. We can specify parts of a row or column as well:

$A(p:q, :) = [a_p, \ldots, a_q]^T$,

$A(:, p:q) = [a_p, \ldots, a_q]$.

If $A \in \mathbb{R}^{m \times n}$, then $[a_1, \ldots, a_n]$ is a column partitioning if $a_i \in \mathbb{R}^n$ is the kth column of A.

We also need a notation for specifying submatrices. Suppose $A \in \mathbb{R}^{m \times n}$ and $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ are integer vectors whose components satisfy $1 \leq u_i \leq m$ and $1 \leq v_i \leq n$. By $A(u, v)$ we mean the $m \times N$ matrix whose (i,j)th entry is $A(u_i, v_j)$. Typically u and v are specified by the colon notation. For example, if $u = [2, 4]$ and $v = [7, 8]$, then

$A(u, v) = A(2:4, 7:8) = \begin{bmatrix} a_{27} & a_{28} \\ a_{47} & a_{48} \end{bmatrix}$.

A colon designation of the form $i:p:j$ means count from i to j with increment p. Thus, if $i=4$, $p=3$, and $j=17$, then $u = i:p:j = (4, 7, 10, 13, 16)$. If a_j designates the jth column of $A \in \mathbb{R}^{m \times n}$, then

$A(:, i:p:n) = [a_i, a_{i+p}, \ldots, a_n]$, $r = i + kp$, $k = \text{floor}(n-1)/p$.

Likewise, $A(1:2:m, 2:2:n)$ is the submatrix of A defined by its odd rows and even columns.

2.2. The LU factorization with pivoting

Theorem. If $A \in \mathbb{R}^{m \times n}$, then there exists a permutation $P \in \mathbb{R}^{m \times m}$ such that $PA = LU$, where L is unit lower triangular with $|l_{ii}| \leq 1$ and U is upper triangular.
Mathematical notes

The determinant of A is given by $\pm u_{11} \cdots u_{nn}$. (The sign depends on $\det(P).$) If A is singular, then the factorization still exists but some diagonal entry of U will be zero, say u_{kk}. This implies a dependence among the first k columns of A.

If A is banded, then U has the same upper bandwidth as A and $L(k + 1:n, k)$ has the same number of nonzeros as $A(k + 1:n, k)$.

Algorithmic and numerical notes

Gaussian elimination with row pivoting is the standard means for computing the factorization and it requires $\lceil n^2 \rceil$ flops. The classical way of determining F is via partial pivoting. Other pivot strategies are used in the sparse matrix setting where one typically relaxes the criteria for pivoting in order to control the fill-in of nonzero entries during the elimination process. In this context, factorizations of the form $PAQ = LU$ are often obtained because both columns and rows are permuted. Sometimes it is possible to improve the quality of F through a process known as iterative improvement. Here, one computes the residual $r = b - Af$ and then uses the factorization to solve $Az = r$. Under certain conditions the refined solution $z = k + z$ satisfies a perturbed system $(A + F)z = b$, where $\|F\| = \omega_{ij}$. The overall solution procedure is then said to be backwards stable in the componentwise sense.

Applications

- The most common use of the $PA = LU$ factorization is the solution of general linear systems $Ax = b$. Indeed if we solve the triangular systems $L_2 = Pb$ and $Uz = y$, then $Ax = b$.
- The factorization can also be used to solve the multiple right-hand side problem $AX = B \in \mathbb{R}^{m \times r}$ column-by-column. Setting $B = t$ specifies the inverse, but this is rarely needed explicitly. For example, to compute some $\tilde{a} = c^TA^{-1}d$, compute $PA = LU$, solve $Az = d$ for z, and set $a = c^Tz$.

Further reading

Iterative refinement is a way of improving a computed solution to a linear system assuming that some factorization $PA = LU$ is available. See Arioli, Demmel & Duff [1992], Golub & Van Loan [1996], and Skeel [1990]. Various stability issues are covered by Higham & Higham [1988], and Trefethen & Schreiber [1997].

2.3. The LU factorization

Theorem. If $A \in \mathbb{R}^{n \times n}$ has the property that $\det(\rho(a;1:k, 1:k)) \neq 0$ for $k = 1:n - 1$, then there exists a unit lower triangular L and upper triangular U such that $A = LU$.

Mathematical notes

If A is banded, then L and U inherit the lower and upper bandwidth of A.

Algorithmic and numerical notes

Gaussian elimination without pivoting is the standard algorithm for computing this factorization. It requires the same amount of floating point work ($\frac{2}{3}n^3$ flops) but can often execute faster because pivoting can be disruptive in advanced computer systems. Moreover, it can sometimes destroy sparsity.

In the linear equation setting it is advisable to use this factorization only if it is known in advance that no small pivots arise. In particular, if Gaussian elimination without pivoting is used to solve a linear system, then it is essential that the resulting L and U factors be sufficiently banded. Ideally, a rigorous proof covering the problem at hand would do this. Otherwise, one might be forced to rely on massive computational experience of some kind of dynamic monitoring of element growth. The crucial factor is $|L||U|$, the product of the absolute values of the computed triangular factors. If this matrix has entries significantly larger than $O(n)$, then you probably want to invoke some form of pivoting. Currently, researchers are investigating the possibility of using iterative improvement in conjunction with 'reckless' LU computation.

Applications

- Diagonally dominant linear systems are an important class of problems for which pivoting is not necessary. Roughly speaking, $A \in \mathbb{R}^{n \times n}$ is diagonally dominant if $|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|$ for $i = 1$ with at least one strict inequality. It can be shown that if A^T is diagonally dominant, then the LU factorization exists and the l_i are bounded by 1.

- If

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

and A_{11} is k-by-k and nonsingular, then the Schur complement of A_{11} in A is prescribed by $C = A_{22} - A_{21}A_{11}^{-1}A_{12}$. This matrix can be obtained as follows:

- Compute the LU factorization $A_{11} = L_1U_1$.
- Solve $A_{21} = XU_1$, for $X \in \mathbb{R}^{(n-k)\times k}$
- Solve $A_{22} = LY$ for $Y \in \mathbb{R}^{(n-k)\times (n-k)}$
- Form $C = A_{22} - XY$.

Further reading

A sampling of papers that deal with LU factorizations of special matrices include Buikley [1974, 1977], de Boor & Pinkus [1977], Erisman & Reid [1974], Golub & Van Loan [1979], and Serbin [1980].
2.4. The Cholesky factorization

Theorem. If \(A \in \mathbb{R}^{n \times n} \) is symmetric and positive definite, then there exists a lower triangular \(G \in \mathbb{R}^{n \times n} \) such that \(A = GG^T \).

Mathematical notes

The eigenvalues of \(A \) are the squares of the singular values of \(G \). The largest entry in \(G \) is less than the square root of the largest entry of \(A \) (which must occur on the diagonal). The factorization also exists if \(A \) is just nonnegative definite, for if \(a_{kk} = 0 \), then it is easy to show that \(A(k:n, k) = G(k:n, k) = 0 \).

Algorithmic and numerical notes

An algorithm for computing the Cholesky factorization involves \(|n^3| \) flops and \(n \) square roots, about half the arithmetic associated with Gaussian elimination. If \(A \) has bandwidth \(p \), then \(O(np^2) \) flops are required and \(G \) has lower bandwidth \(p \). Solving symmetric positive definite systems via Cholesky is backwards stable. However, the process may breakdown if the condition of \(A \) has order 1/\(n \). Here, 'breakdown' means that a square root of a negative number arises.

For (nearly) semidefinite problems it is sometimes helpful to introduce symmetric pivoting. Here, we compute the Cholesky factorization of a permuted version of \(A \): \(PAP^T = GG^T \). \(P \) is designed so that the last \(n - r \) rows of \(G \) are zero, where \(r \) is the rank of \(A \).

Applications

- Cholesky is useful for solving positive definite systems: \(Gy = b \); \(G^Tx = y \). If \(A \) is symmetric and \(x \) is the solution of the least squares problem \(\min ||Ax - b|| \), then \(A \) is the solution of the normal equations \(A^T A x = A^T b \).
- In exact arithmetic, the Cholesky process breaks down if and only if \(A \) has a negative eigenvalue. Thus, the Cholesky procedure can be used to detect whether or not a symmetric matrix has a negative eigenvalue.
- If \(A \in \mathbb{R}^{n \times n} \) has full column rank, then the solution \(x_{LS} \) to the least squares problem \(\min ||Ax - b||_2 \) is the solution of the normal equations \(A^TAx = A^Tb \). If \(A \) is poorly conditioned or if \(||Ax_{LS} - b||_2 \) is fairly small, then one should solve the LS problem via the QR factorization or the SVD, see Sections 2.11, 2.14, and 2.20.

Further reading

2.5. Special topic: Updating Cholesky

Quasi-Newton methods for nonlinear optimization frequently require the updating of a Cholesky factorization. For example, at the current step we may
have the Cholesky factorization of an \(n \)-by-\(n \) approximate Hessian:

\[
H_i = L_i L_i^T.
\]

At the next step a new approximate Hessian \(H_i \) is obtained via a rank-2 update of \(H_i \):

\[
H_* = H_i + U_j B_j U_j^T, \quad U_j \in \mathbb{R}^{n \times 2}, B_j = \delta_j \in \mathbb{R}^{2 \times 2}.
\]

In this setting, the central problem is this: can we find a lower triangular matrix \(L_* \in \mathbb{R}^{n \times n} \) in \(O(n^2) \) flops so that \(H_* = L_* L_*^T \)? Notice that \(H_* \) need not be positive definite and so the sought after Cholesky factorization may fail to exist.

We outline a procedure which computes \(L_* \), if it exists. More efficient methods exist but our approach has a simplicity which makes it easy to convey the central ideas behind updating.

We begin by solving the multiple right-hand side problem \(L_* W = U_j \) for \(W \). This involves \(O(n^2) \) flops and it follows that

\[
H_* = L_* (I +WBW^T)L_*^T.
\]

Next, we find Givens rotations \(G_1, \ldots, G_s, J_0, \ldots, J_2 \) so that if

\[
V = (G_1, \ldots, G_s)(J_0, \ldots, J_2),
\]

then

\[
V^TW = \begin{bmatrix} R \\ 0 \end{bmatrix}, \quad R \in \mathbb{R}^{n \times 2}.
\]

Moreover, \(G_i = G(k-1,k) \) and \(J_i = J(k-1,k) \) are rotations in planes \(k = 1 \) and \(k \). An \(n = 4 \) schematic should illustrate the idea behind the reduction:

\[
\begin{bmatrix}
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times \\
\times & \times \\
\times & \times \\
\times & \times \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
R \\
0 \\
0 \\
0 \\
\end{bmatrix}.
\]

This requires \(O(n^3) \) flops. It can be shown that \(V \) has upper bandwidth 2 and that if

\[
\tilde{B} = I + V^T W B W^T V = \begin{bmatrix} RB_{k}^T & 0 \\ 0 & I_{n-k} \end{bmatrix},
\]
then

\[H_r = (L_r V) \hat{B} (L_r V)^T. \]

Let \(U \) be a rotation in the (1,2) plane so

\[U^T \hat{B} U = \text{diag}(d_1, d_2, \ldots, d_r) = D. \]

The orthogonal matrix \(Q = V U \) has upper bandwidth 2 and we have

\[H_r = (L_r Q)(D(L_r Q)^T. \]

\(H_r \) is positive definite if and only if \(d_1 \) and \(d_2 \) are positive. Assuming this to be the case, we then form \(C = L_r Q D^{-1} \). This can be done in \(O(n^3) \) flops because \(Q \) is a product of Givens rotations. Note that \(C \) has upper bandwidth 2 and that \(H_r = C^TC \).

The final step is to compute an orthogonal matrix \(Z \) (product of Givens rotations) such that \(Z^TCZ = T \) is upper triangular. This proceeds as follows:

\[
\begin{bmatrix}
 x & x & x & x \\
 x & x & x & (2,3) \\
 x & x & x & (3,4) \\
 0 & x & x & x \\
 0 & x & x & x
\end{bmatrix}
\]

This is a Givens QR factorization process, see Section 2.10. It involves \(O(n^3) \) flops and it follows that

\[H_r = (CZ)(CZ)^T = T^TT = L_r L_r^T, \]

is the required Cholesky factorization.

Further reading

We mention that there are also techniques for updating the factorizations \(PA = LU \), \(A = GG^T \), and \(A = LDL^T \). Updating these factorizations, however, can be quite delicate because of pivoting requirements and because when we tamper with a positive definite matrix the result may not be positive definite. See Björck [1984], Bojanczyk, Brest, Van Dooren & de Hoog [1987], Bunch, Nielsen & Sorensen [1978], Gill, Golub, Murray & Saunders [1974], Stewart [1979], Bartels [1971], Daniel, Gagg, Kaufman & Stewart [1976], Gill, Murray & Saunders [1975], and Goldfarb [1976].
2.6. The LDL^T factorization

Theorem. If $A \in \mathbb{R}^{n \times n}$ is symmetric and has the property that $\det(A(1:k,1:k)) \neq 0$ for $k = 1:n - 1$, then there exists a unit lower triangular L and a diagonal D such that $A = LDL^T$.

Algorithmic and numerical notes.

If A is positive definite, then LDL^T is the Cholesky factor. If $U = DL^T$ then $A = LU$. Thus, we can think of LDL^T as a 'square root free' Cholesky or as a natural symmetrization of the LU factorization.

It is generally not advisable to use this factorization unless A is positive definite. Otherwise, the same guidance applies that we offered in connection with LU without pivoting. Namely, the method is not backwards stable unless L and D are suitably bounded. This is assured, for example, if A is diagonally dominant.

Applications.

- The main application of this factorization is in the solution of symmetric positive definite systems. Indeed, if $Ly = b$, $Dx = y$, and $L^Tz = x$, then $Ax = b$.
- In some nonlinear optimization problems, symmetric linear systems $Ax = -g$ arise which 'should be' positive definite A. (Here, s is a step direction, A is an approximate Hessian, and g is a gradient.) If LDL^T is used, then it is possible to dynamically determine a nonnegative diagonal matrix D so that no negative D_{ii} arise. The result is a factorization of the form $(A + \Delta) = LDL^T$.

One then solves $(A + \Delta)s = -g$ instead of $As = -g$ and obtains a preferred s.

- In general, any application that calls for Cholesky can be solved via LDL^T. However, when solving a band positive definite systems it is better to rely on the latter factorization. The n square roots that surface in Cholesky can represent a significant portion of the arithmetic when A is banded. This is especially true if A is tridiagonal.

2.7. The Bunch–Kaufman factorization

Theorem. If $A \in \mathbb{R}^{n \times n}$ is symmetric, then there exists a permutation P such that $PAP^T = LDL^T$ where $L \in \mathbb{R}^{n \times n}$ is unit lower triangular with $|l_{ii}| \leq 1$ and D is a direct sum of 1-by-1 and 2-by-2 submatrices.

Algorithmic and numerical notes.

The factorization is discussed by Bunch & Parlett [1971], but Bunch & Kaufman [1977] discovered a clever pivot strategy that results in a 'Cholesky speed' procedure, i.e., $\mathcal{O}(n)$ flops and $\mathcal{O}(n^2)$ comparisons. It is as stable as Gaussian elimination with partial pivoting. Because of the pivot strategy, it is not possible to exploit band structure if it is present.
Applications
- The leading application of this factorization is the solution of symmetric indefinite systems: \(Lw = Pb, \ Dz = w, \ L^t y = z, \ x = Py \ \Rightarrow \ Ax = b \). Note that the \(Dz = w \) system involves solving 1-by-1 and 2-by-2 indefinite symmetric systems.
- The inertia of a symmetric matrix is a triplet of nonnegative integers \((P, Z, N)\) which are the number of positive, zero, and negative eigenvalues, respectively. A famous theorem due to Sylvester states that the inertia of \(A \) and \(X^t AX \) are the same if \(X \) is nonsingular. Thus, \(A \) and \(D \) have the same inertia and the inertia of the latter is easily computed. (Just examine the eigenvalues of the 1-by-1 and 2-by-2 blocks in \(D \).)

Further reading
The main papers associated with the computation of this factorization include Bunch [1971], Bunch & Kaasman [1977], Bunch, Kaufman & Parlett [1976], and Bunch & Parlett [1971].

2.8. The Aasen factorization

Theorem. If \(A \in \mathbb{R}^{n \times n} \) is symmetric, then there exists a permutation \(P \) such that \(PAP^t = LTL^t \) where \(L \in \mathbb{R}^{n \times n} \) is unit lower triangular with \(|l_{ii}| = 1\) and \(T \) is tridiagonal.

Algorithmic and numerical notes
- Early papers gave an algorithm requiring about \(n^3 \) flops. Aasen [1971] showed how to halve the work. No efficient version for band problems currently exists. The procedure is backwards stable.

Applications
- Any problem that can be solved by the Bunch-Kaufman factorization can also be solved via the Aasen approach.

Further reading
The original reference for the Aasen algorithm is Aasen [1971]. Comparisons with the diagonal pivoting approach are offered by Barwell & George [1976].

2.9. The QR factorization

Theorem. If \(A \in \mathbb{R}^{m \times n} \) then there exists an orthogonal \(Q \in \mathbb{R}^{m \times m} \) and an upper triangular \(R \in \mathbb{R}^{m \times n} \) such that \(A = QR \).

Mathematical notes
- If \(\text{span}(a_1, \ldots, a_k) \) defines an \(n \)-dimensional subspace of \(\mathbb{R}^m \) and \(QR = [a_1, \ldots, a_k] \) is the OR factorization, then the columns of \(Q(:, 1:k) \) form an
orthonormal basis for \(\text{span}(a_1, \ldots, a_k) \) for \(k = 1:n \). The columns of the matrix
\[
Q \in \mathbb{R}^{n \times (n+1)m}
\]
are an orthonormal basis for \(\text{span}(a_1, \ldots, a_k) \). If \(A \) is rank
deficient, then the QR factorization still exists but then \(R \) has one or more zero
diagonal entries.

Algorithmic notes

The factorization can be computed using Householder transformations.
Here, \(Q = H_{\ell_1} \cdots H_{\ell_{s}} \) and the 'mission' of \(H_{\ell_{k}} \) is to zero the subdiagonal portion
of the \(k \)th column of \(A \). Givens rotations can also be used but this is advisable
only if \(A \) is sparse or in certain parallel computation settings.

A careful implementation of the Gram–Schmidt process (known as modified
Gram–Schmidt) can also be used to compute the QR factorization. If House-
holder or Givens transformations are used, then the computed \(Q \) is orthogonal
to working precision. In modified Gram–Schmidt, the quality of \(Q \)'s ortho-
gonality depends upon the condition of \(A \).

Applications

- The QR factorization is frequently used to compute an orthonormal basis
 for a subspace and/or its orthogonal complement. However, if the dimension is
 'fuzzy', then the SVD (see Section 2.20) might be more appropriate.
- The least square solution of full rank overdetermined system of equations
 is a lead application for the QR factorization. Suppose \(A \in \mathbb{R}^{m \times n} \) with \(m \gg n \)
 and \(b \in \mathbb{R}^{m} \) are given. It follows that if
 \[
 Q^* A = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}, \quad Q^* b = \begin{bmatrix} c \\ d \end{bmatrix},
 \]
 where \(R_1 \in \mathbb{R}^{m \times m} \), \(c \in \mathbb{R}^{n} \), and \(d \in \mathbb{R}^{m-n} \), then
 \[
 \| Ax - b \|^2 = \| Q^* (Ax - b) \|^2 = \| R_1 x - c \|^2 + \| d \|^2,
 \]
 and so the minimizing \(x_{LS} \) is prescribed by the upper triangular system
 \(R_1 x_{LS} = c \).
 If \(x_{LS} \) is the computed solution obtained in this fashion, then \(x_{LS} \) solves a
 nearby LS problem and its relative error has the form
 \[
 \frac{\| x_{LS} - x \|}{\| x \|} = \kappa(A) (\alpha \| Ax - b \| + \beta \| x \|) \omega(A),
 \]
 where \(\alpha \) and \(\beta \) are small constants. Note the \(\kappa(A) \) term.

Further reading

An excellent overall reference for all aspects of the least squares problem is
Björck [1988]. The intelligent implementation of the QR process via orthogonal
transformations is discussed by Businger & Golub [1965] and Golub [1965].
Perturbation theory and associated error analyses for QR solution of the least squares problem is covered by Björck [1987], Gentleman [1973], and Stewart [1977]. Sparse/banded LS solution techniques are detailed by Cox [1981], Duff & Reid [1976], and Gill & Murray [1976].

2.10. Special topic: Equality constrained least squares

Consider the least squares problem with linear equality constraints:

\[
\min_{x \in \mathbb{R}^n} \|Ax - b\|_2.
\]

Here \(A \in \mathbb{R}^{m \times n} \), \(B \in \mathbb{R}^{m \times n} \), \(b \in \mathbb{R}^m \), \(d \in \mathbb{R}^p \), and rank \((B) = p\). We refer to this as the LSE problem. Assume for clarity that both \(A \) and \(B \) have full rank. Let

\[
Q^TB = \begin{bmatrix} R \\ 0 \end{bmatrix} \quad n - p
\]

be the QR factorization of \(B \) and set

\[
AQ = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad Q^Tx = \begin{bmatrix} y \\ z \end{bmatrix} \quad p
\]

It is clear that with these transformations the LSE problem becomes

\[
\min_{y, z \in \mathbb{R}^n} \|A_1y + A_2z - b\|_2.
\]

Thus, \(y \) is determined from the lower triangular constraint equation \(R^Ty = d \) and the vector \(z \) is obtained by solving the unconstrained LS problem

\[
\min_{z \in \mathbb{R}^n} \|A_2z - (b - A_1y)\|_2.
\]

Combining the above, we see that \(x = Q^Tz \) is the required solution. See Golub & Van Loan [1989] for more details.

An alternative approach for solving the LSE problem, called the method of weighting, is attractive for its simplicity. In this method the unconstrained LS problem

\[
\min_{x \in \mathbb{R}^n} \|A_1x - b\|_2 \quad \lambda \in \mathbb{R}^n
\]

is solved. Intuitively, if \(\lambda \) is large, then the constraint equation \(Bx = d \) will tend to be satisfied. A tricky feature associated with this method is the handling of large \(\lambda \). See Barlow, Nichols & Plemmons [1986], Elden [1980], Lawson & Hanson [1974], and Van Loan [1985b] for further discussion.
2.11. The QR factorization with column pivoting

Theorem. If \(A \in \mathbb{R}^{m \times n} \) then there exists an orthogonal \(Q \in \mathbb{R}^{m \times m} \) and a permutation matrix \(P \in \mathbb{R}^{n \times n} \), such that

\[
Q^TAP = R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} r \\ 0 \end{bmatrix},
\]

where \(r = \text{rank}(A) \) and \(R_{11} \) is upper triangular and nonsingular.

Mathematical notes

Any vector of the form

\[
x = \Pi^T \begin{bmatrix} -R_{11}^{-1}R_{12}z \\ z \end{bmatrix},
\]

where \(z \in \mathbb{R}^{n-r} \), is in the null space of \(A \).

Algorithmic and numerical notes

The factorization amounts to a QR factorization of a column-permuted version of \(A \). There are several ways to determine \(P \). The usual procedure is to determine \(P = \Pi_1 \cdots \Pi_j \), as a product of exchange permutations, \(\Pi_j \) is computed at step \(j \) so that the 2-norm of the current \(A(:,m,j) \) is maximized. As a result of this pivot strategy we have

\[
r^2 = \sum_{k=j+1}^{n} r^2_{kj},
\]

for \(k = j + 1:n \). Thus, the numbers in \(R \) diminish in size towards the bottom right-hand corner. This property is attractive with many triangular matrix condition number estimators.

Applications

- If \(r = m < n \), then any vector of the form

\[
x = \Pi \begin{bmatrix} K_{11}^{-1}Q^Tb \\ 0 \end{bmatrix}
\]

solves the underdetermined system \(Ax = b \).

- The factorization can be used to solve rank-deficient least squares problems \(\min \| Ax - b \| \). Suppose \(A \in \mathbb{R}^{m \times n} \) has rank \(r \). QR with column pivoting produces the factorization \(AIP = QR \), where

\[
R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} r \\ 0 \end{bmatrix},
\]

\(m - r \).

Given this reduction, the LS problem can be readily solved. Indeed, for any
We have
\[\|Ax - b\|_2^2 = \|(Q^\top A R)(P^\top x) - (Q^\top b)\|_2^2 = \|R_{1:1}y - (c - R_{1:2}z)\|_2^2 + \|d\|_2^2, \]
where
\[P^\top x = \begin{bmatrix} y \\ z \end{bmatrix} \quad r \quad n - r \quad \text{and} \quad Q^\top b = \begin{bmatrix} c \\ d \end{bmatrix} \quad m - r. \]
Thus, if \(x \) is an LS minimizer, then we must have
\[x = P \begin{bmatrix} R_{1:1}^{-1}(c - R_{1:2}z) \\ z \end{bmatrix}. \]
If \(z \) is set to zero in this expression, then we obtain the basic solution
\[x_b = \begin{bmatrix} R_{1:1}^{-1}c \\ 0 \end{bmatrix}. \]
Notice that \(x_b \) has at most \(r \) nonzero components and so the predictor \(Ax_b \) involves a subset of \(A \)'s columns. Indeed, QR with column pivoting can be thought of as a heuristic method for selecting a 'strongly' independent subset of \(A \)'s columns.

Further reading
Using QR with column pivoting in the rank-deficient LS setting is discussed by Chan [1987], and Businger & Golub [1965]. Deducing the condition of \(A \) from the condition of \(R \) is detailed by Anderson & Kahan [1975]. Perturbation aspects of the rank-deficient LS problem are covered by Stewart [1984, 1987], and Wedin [1973].

2.12. The partial Schur decomposition

Theorem. Suppose \(A \in \mathbb{R}^{m \times n} \) and that \(Q \in \mathbb{R}^{n \times n} \) is orthogonal. If the columns of \(Q_1 = Q(:,1:p) \) define an invariant subspace, then
\[A^\top A Q = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} \]
and the eigenvalues of \(T_{11} = Q_1^\top A Q_1 \) are also eigenvalues of \(A \).

Mathematical notes
This decomposition splits the spectrum in that \(\lambda(A) = \lambda(T_{11}) \cup \lambda(T_{22}) \). The columns of \(Q_2 = Q(:, p + 1:n) \) do not define an invariant subspace unless \(T_{22} \) is zero.
If T_{1} and T_{2} have no eigenvalues in common, then the Sylvester equation

$$T_{11}Y - YT_{22} = -T_{12}, \quad Y \in \mathbb{R}^{n \times p}$$

has a solution. This permits block diagonalization for if we set

$$Z = \begin{bmatrix} I_{p} & Y \\ 0 & I_{n-p} \end{bmatrix},$$

then

$$Z^{-1}TZ = \begin{bmatrix} T_{11} & T_{12} \left(Y - YT_{22} + T_{12} \right) \\ 0 & T_{22} \end{bmatrix} = \begin{bmatrix} I_{n} & 0 \\ 0 & T_{22} \end{bmatrix}.$$

Complex versions of the above reductions are possible. The matrix Q is then complex and unitary. Note that complex quantities can arise in a real matrix eigendecomposition because of possible complex conjugate eigenvalues.

Algorithmic notes

Suppose $|\lambda_{1}| \geq \cdots \geq |\lambda_{n}|$ is an ordering of $\lambda(A)$. If $|\lambda_{n-1}| \geq |\lambda_{n}|$, then a method known as orthogonal iteration can be used to compute a p-dimensional invariant subspace associated with the p largest eigenvalues. If $Q^{(0)} \in \mathbb{R}^{n \times p}$ is an initial guess, then the kth step in this iteration has the following form:

$$Z = AQ^{(k-1)} \quad \text{matrix-matrix multiply},$$

$$Q^{(k)}R^{(k)} = Z \quad \text{QR factorization}.$$

If $Q^{(0)}$ is not 'deficient', then the distance between $\text{ran}(Q^{(0)})$ and $\text{ran}(Q^{(t)})$ is bounded by a constant times $|\lambda_{n-1}/\lambda_{n}|^{t}$.

If $p = 1$, then the technique is known as the power method. If we replace A by A^{-1}, then the resulting iteration is called inverse orthogonal iteration. It can be used to find the small eigenvalues of A but it requires the solution of a linear system at each step.

Further reading

The connections among the various power iterations are discussed by Parlett & Poole [1973], Stewart [1975, 1976b], and Golub & Van Loan [1989].

2.13. The Schur decomposition

Theorem. If $A \in \mathbb{R}^{n \times n}$ has no complex eigenvalues, then there exists an orthogonal $Q \in \mathbb{R}^{n \times n}$ such that $Q^{\ast}AQ = T$ is upper triangular.

Mathematical notes

The diagonal elements of T are the eigenvalues of A. The columns of Q are called Schur vectors. For $j = 1:n$, $\text{ran}(Q(:, 1:j))$ is an invariant subspace. The
column $Q(:, j)$ is an eigenvector if and only if $T(1:j - 1, j) = 0$. T is diagonal if and only if A is normal, i.e., $A^* A = A A^*$. If $A \in \mathbb{R}^{n \times n}$ has complex eigenvalues, then they occur in conjugate pairs and it is possible to determine an orthogonal $Q \in \mathbb{R}^{n \times n}$ so that T is quasi-triangular. This means that T is upper triangular with 2-by-2 "bumps" along the diagonal corresponding to the complex conjugate eigenpairs. In particular, if $t_{k, k} \neq 0$, then the eigenvalues of

$$T(k - 1 : k, k - 1 : k) = \begin{bmatrix} t_{k-1, k-1} & t_{k-1, k} \\ t_{k, k-1} & t_{kk} \end{bmatrix}$$

are complex conjugate eigenvalues of A. The real orthogonal reduction to quasi-triangular form is referred to as the real Schur decomposition.

If complex transformations are "advisable", then we can find a unitary $Q \in \mathbb{C}^{n \times n}$ such that $Q^* T Q = T$ is upper triangular (and complex).

Algorithmic and numerical notes

The standard method for computing this decomposition is the QR iteration with shifts. A step in this procedure has the following form:

- Determine approximate eigenvalues μ_i and $\bar{\mu}_i$.
- Compute the QR factorization $QR = (A - \mu_i I)(A - \bar{\mu}_i I)$.
- $A_{new} = Q^* A Q$.

The key to a successful implementation of this iteration involves (a) the preliminary reduction of A to upper Hessenberg form (see Section 7.14), (b) the intelligent selection of the shifts μ_i and $\bar{\mu}_i$, and (c) a clever $Q^* A Q$ method for computing A_{new} from Q to A. The overall reduction involves about $3n^2$ flops if Q is required, $15n^2$ if not.

Once a real Schur decomposition is obtained, the columns of Q and the diagonal entries of T can be cheaply re-ordered so that the eigenvalues appear in any prescribed order. This is important because we can then acquire an orthonormal basis for an invariant subspace associated with any subset of eigenvalues.

The QR iteration is backwards stable meaning that the computed T is exactly similar to a matrix near to A in norm. This does not mean that the computed eigenvalues are accurate. Indeed, if λ is a distinct eigenvalue of A, then its computed analog $\tilde{\lambda}$ satisfies

$$| \tilde{\lambda} - \lambda | \approx \frac{u}{\alpha(\lambda)},$$

where $u(\lambda) = [x^T y]$. Here, x and y are unit 2-norm right and left eigenvectors: $Ax = \lambda x$, $y^T A = \lambda y$. The reciprocal of $u(\lambda)$ can be thought of as a condition for λ. If $\tilde{\lambda}$ is not distinct, then matters get complicated, see Golub & Van Loan [1989, Section 7.2].
Applications
• Once the Schur decomposition is acquired, the eigenvectors of A can be found through a back substitution process. In particular, if \(t_k \) is a distinct eigenvalue and we solve \((T(1:k-1,1:k-1) - t_k I)z = -T(1:k-1,k) \) for \(z \), then
\[
x = Q \begin{bmatrix} z \\ 1 \end{bmatrix}
\]
satisfies \(Ax = \lambda x \).
• The Lyapunov equation \(FX + XF^T = C \), where \(F \in \mathbb{R}^{m \times n} \) and \(C \in \mathbb{R}^{n \times m} \), can be solved by computing the Schur decomposition \(U^T FU = T \). (For clarity we assume that \(F \) has real eigenvalues.) Note that with the Schur decomposition the original Lyapunov equation transforms to \(TY + YT^T = \tilde{C} \) where \(X = U \sum_i \lambda_i U^T \) and \(\tilde{C} = U^T C U \). If \(\tilde{Y} = [\tilde{y}_1, \ldots, \tilde{y}_n] \) and \(\tilde{C} = [\tilde{c}_1, \ldots, \tilde{c}_n] \) are column partitioning, then for \(k = n \) we have
\[
(T + t_k I)\tilde{y}_k = \tilde{c}_k - \sum_{j=k+1}^n t_j \tilde{c}_j,
\]
Y can be resolved by invoking this formula for \(k = n, n-1, \ldots, 1 \).

Further reading
The mathematical properties of the algebraic eigenvalue problem and related perturbation theory are covered by Golub & Van Loan [1989].

2.14. The Heisenberg decomposition

Theorem. If \(A \in \mathbb{R}^{n \times n} \) then there exists an orthogonal \(Q \in \mathbb{R}^{n \times n} \) such that \(Q^T AQ = H \) is upper Heisenberg. In other words, \(H_{ij} = 0 \) whenever \(i > j + 1 \).

Mathematical note
If no subdiagonal entry of \(H \) is zero, then \(H \) is unmodified. If \(H \) is unmodified and \(A \in \mathbb{A}(A) \), then \(\text{rank}(A - \lambda I) = n - 1 \). This implies that if \(H \) is unmodified, then there is at most one independent eigenvector per eigenvalue.

If \(q_j \) is the ith column of \(Q \), then \(\{q_1, \ldots, q_n\} \) is an orthonormal basis for the Krylov subspace \(\text{span}(q_i, Aq_i, \ldots, A^{n-i}q_i) \) assuming the latter subspace has dimension \(i \).

Algorithmic and numerical notes
The standard method for computing the factorization is via Householder matrices. In particular, \(Q = Q_1 \cdots Q_n \) where \(Q_j \) is a Householder matrix
whose mission is to zero \(A(j + 2:n, j) \). This procedure requires \(\frac{3}{2} n^3 \) flops and is backwards stable.

If \(A \) is large and sparse the method of Arnoldi is of interest. After \(k \) steps of the Arnoldi process the leading \(k \)-by-\(k \) portion of \(H \) is available and its eigenvalues can be regarded as approximate eigenvalues of \(A \). The Arnoldi algorithm requires only matrix-vector products involving \(A \) and thus has potential for large sparse problems.

Applications

- The Hessenberg reduction is usually applied to \(A \) before computing the real Schur form. The QR iteration preserves Hessenberg form, a property that reduces work per iteration by an order of magnitude.
- If one has to solve \((A - \mu I)x = b\) for many different \(\mu \in \mathbb{R} \) and \(b \in \mathbb{R}^n \), then the volume of computation can be greatly reduced if \(A \) is first reduced to Hessenberg form. Note that if we solve \((H - \mu I)y = Q^Tb\) and set \(z = Qy \), then \((A - \mu I)x = b\). This involves a pair of matrix-vector products and a Hessenberg system solve implying \(O(n^3) \) flops.
- The Sylvester equation \(FX + XG = C \), where \(F \in \mathbb{R}^{m \times n} \), \(G \in \mathbb{R}^{n \times n} \), and \(C \in \mathbb{R}^{m \times n} \), can be solved by computing the Hessenberg decomposition \(U^T FU = H \) and the Schur decomposition \(V^T GV = S \). (For clarity we assume that \(G \) has real eigenvalues.) The original Sylvester equation now transforms to \(HY + YS = \tilde{C} \), where \(X = U^TY \) and \(\tilde{C} = U^T C V \). If \(Y = [y_1, \ldots, y_n] \) and \(\tilde{C} = [\tilde{c}_1, \ldots, \tilde{c}_m] \) are column partitions, then for \(k = 1, n \) we have

\[
(H + s_k I)y_k = \tilde{c}_k - \sum_{i=1}^{k-1} s_i y_i.
\]

Thus, if \(y_1, \ldots, y_n \) are computed in turn, then we obtain \(Y \).

- If \(\lambda \) is a computed eigenvalue of \(H \), then a corresponding eigenvector can be found via inverse iteration. In this procedure, the nearly singular Hessenberg system \((H - \lambda I)x = c\) is solved for a random \(c \). The solution \(x \) is very often rich in the desired eigendirection.

Further reading

The Hessenberg reduction to Hessenberg form is discussed by Dongarra, Kaufman & Hammarling [1986], and Businger [1969, 1971].

For a survey of applications where the decomposition has proven to be very useful, see Golub, Nash & Van Loan [1979], Laub [1981], and Van Loan [1982b].

2.15 Jordan canonical form

Theorem. If \(A \in \mathbb{C}^{n \times n} \) then there exists a nonsingular \(X \in \mathbb{C}^{n \times n} \) such that

\[
X^*AX = \text{diag}(J_f, \ldots, J_f)
\]

where
\[J = \begin{bmatrix}
\lambda & 1 & \cdots & 0 \\
0 & \lambda & \cdots & 1 \\
0 & \cdots & 0 & \lambda
\end{bmatrix} \]
is \(n \times n \) and \(n_1 + \cdots + n_r = n \).

Mathematical notes

The \(J \) are referred to as Jordan blocks. The number and dimensions of the Jordan blocks associated with each distinct eigenvalue is unique, although their ordering along the diagonal is not. If a Jordan block is bigger than 1-by-1, then the associated eigenvalue is said to be defective. This means that \(A \) has fewer than \(n \) independent eigenvectors. If this is not the case, then \(A \) is said to be diagonalizable.

Algorithmic and numerical notes

Because it involves a set of numerical rank decisions, computation of the JCF is tricky and involves use of the singular value decomposition (see Section 2.20) to resolve difficult questions that concern eigenvalue multiplicity.

Further reading

Some intelligent algorithms that address the difficulties associated with JCF computation include Ruhe [1969], Kågström & Ruhe [1980a,b], and Demmel [1983].

2.16. The generalized Schur decomposition

Theorem. If \(A \in \mathbb{C}^{n \times n} \) and \(B \in \mathbb{C}^{n \times n} \), then there exist unitary \(Q, Z \in \mathbb{C}^{n \times n} \) such that \(Q^*AZ = T \) and \(Q^*BZ = S \) are upper triangular.

Mathematical notes

The \(\lambda \) which make \(A - \lambda B \) singular are called the generalized eigenvalues of the pencil \(A - \lambda B \). Since

\[
\det(A - \lambda B) = \det(Q^*Z)\det(T - \lambda S) = \det(Q^*Z) \prod_{k=1}^r (t_{kk} - \lambda s_{kk}),
\]

it follows that the quotients \(t_{kk}/s_{kk} \) are generalized eigenvalues. If \(t_{kk} = 0 \) then \(A - \lambda B \) has an infinite eigenvalue. If for some \(k, t_{kk} = s_{kk} = 0 \), then \(\lambda(A, B) = \mathbb{C} \).

If \(B \) is nonsingular then \(Q^*AB^{-1}Q = T3^{-1} \) is the Schur decomposition of \(C = AB^{-1} \).

The columns of \(Z = Z(1, 1:p) \) define what is called a deflating subspace for the matrix pencil \(A - \lambda B \). In particular, \(\text{ran}(AZ_i) = \text{ran}(BZ_i) \).
Algorithmic and numerical notes
A generalization of the QR algorithm called the QZ algorithm is the standard approach to this problem. The algorithm is backwards stable and is not effected by singularity in A or B.

Applications
- The main application of the QZ algorithm is the computation to generalized eigenvalues and their associated eigenvectors. Indeed, the eigenvectors of the triangular pencil $T - \lambda S$ can be found via back substitution analogous to how one proceeds with the standard Schur decomposition.

Further reading

2.17. The symmetric Schur decomposition

Theorem. If $A \in \mathbb{R}^{n \times n}$ is symmetric, then there exists an orthogonal $Q \in \mathbb{R}^{n \times n}$ such that $Q^T A Q = D = \text{diag}(\lambda_i)$.

Mathematical notes
- Because symmetric matrices have a diagonal Schur form, the columns of Q are eigenvectors: $AQ(:, i) = Q(:, i) \lambda_i$.

- The stationary values of the Rayleigh quotient
 \[r(x) = \frac{x^T A x}{x^T x} \]
 are the eigenvalues of A. Moreover, if $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, then
 \[\lambda_i(A) = \max_{\text{det}|x|=1} \min_{y \neq 0} r(y). \]

This result can be used to show that if $\lambda \in \sigma(A)$, then there exists an eigenvalue $\lambda \in \sigma(A + E)$ such that $|\lambda - \lambda| \ll \|E\|_F$. Unlike the unsymmetric eigenvalue problem, $O(\varepsilon)$ perturbations of A induce $O(\varepsilon)$ perturbations of the eigenvalues.

Algorithmic and numerical notes
- If A is tridiagonal (see Section 2.18), then a symmetrized version of the QR iteration described in Section 2.13 is an effective method for computing the decomposition. A divide-and-conquer technique based on tearing is an alternative method of interest.
- If A is full, then the Jacobi iteration can be used. Jacobi's idea is to compute
the real Schur decomposition via a sequence of 2-by-2 problems. In particular, updates of the form

\[A \leftarrow J_q^* U_q A U_q \]

are repeatedly performed, where \(J_q \) is a Givens rotation in the \((p, q)\) plane. With each update the Frobenius norm of the off-diagonal portion of \(A \) is strictly reduced. By choosing the rotation indices \((p, q)\) carefully it is possible to introduce significant amounts of parallelism.

Applications

- In certain optimization algorithms one would like to translate the system \(Ax = b \) so that the solution is suitably bounded. In particular, we are given \(A = A^1 \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, \) and \(\delta > 0 \) and we seek \(\sigma \geq 0 \) such that the solution \(x(\sigma) \) to \((A + \sigma I)x = b\) satisfies \(||x(\sigma)||_2 \leq \delta\). This problem transforms to an equivalent diagonal problem via the symmetric Schur decomposition:

\[(D + \sigma I)y(\sigma) = \delta \text{ subject to } ||y(\sigma)||_2 \leq \delta.\]

Since \(y(\sigma) = \tilde{y}_i(\lambda_i + \sigma) \) the optimum \(y \) is readily found.

- The maximization of \(r(x) \) over a subspace is the largest eigenvalue of \(U^* A U \) where the columns of \(U \) are an orthonormal basis for the subspace.

Further reading

2.16 Orthogonal tridiagonalization

Theorem. If \(A \in \mathbb{R}^{n \times r} \) is symmetric, then there exists an orthogonal \(Q \in \mathbb{R}^{n \times n} \) such that \(Q^* AQ = T \) is tridiagonal, i.e., \(t_i = 0 \) if \(|i-j| > 1 \).

Mathematical notes

If \(T \) has no zero subdiagonal elements, then \(A \) has no repeated eigenvalues. Let \(T_r = T(1, r, 1, r) \) denote the leading \(r \times r \) principal submatrix of

\[
T = \begin{bmatrix}
\alpha_1 & \beta_1 & \cdots & 0 \\
\beta_1 & \alpha_2 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \beta_{n-1} & \alpha_n
\end{bmatrix}
\]

and define the polynomials \(p_i(x) = \det(T_r - xI), r = 1, \ldots, n \). A simple determinan-
tal expansion can be used to show that
\[p_r(x) = (a_n - x) p_{r-1}(x) - \beta_{r-1}^2 p_{r-2}(x) \]
for \(r = 2:n \) if we define \(p_0(x) = 1 \).

Algorithmic and numerical notes

For dense problems, \(Q \) is usually computed as a product of Householder transformations: \(Q = Q_n \cdots Q_2 \). The resulting algorithm is backwards stable.

The method of Lanczos is a technique for computing \(T \) without resorting to updates of \(A \), see Section 2.19.

Because the polynomial \(p_r(x) \) can be evaluated in \(O(n) \) ops, it is feasible to find its roots by using the method of bisection.

Applications

- Given a general symmetric matrix \(A \), it is customary to tridiagonalize it first before applying the QR iteration for eigenvalues.
- Some of the applications of the Hessenberg decomposition (Section 2.14) can be solved via tridiagonalization if \(A \) is symmetric. For example, if we must solve symmetric systems of the form \((A - \sigma I)x = b \) for many different \(\sigma \) and \(b \).

Further reading

The tridiagonalization of a symmetric matrix is detailed by Golub & Van Loan [1989].

2.19. Special topic: The Lanczos and conjugate gradient algorithms

A different method for computing the tridiagonalization can be derived by comparing columns in the equation \(AQ = QT \). With the notation of the previous section and the column partitioning \(Q = [q_1, \ldots, q_n] \) we obtain
\[Aq_j = \beta_{j-1}q_{j-1} + \alpha_j q_j + \beta_j q_{j+1} \quad (\beta_j \alpha_j = 0) \]

for \(j = 1:n - 1 \). The orthonormality of the \(q_j \) implies \(\alpha_j = q_j^T A q_j \). Moreover, if \(r_j = (A - \sigma I)q_j - \beta_j q_{j-1} \) is nonzero, then \(q_{j+1} = r_j/\beta_j \), where \(\beta_j = \|r_j\| \).

Collecting these observations we obtain the Lanczos iteration:

```plaintext
rs = q_j; \beta_j = 1; q_0 = 0; j = 0
while \beta_j \neq 0
    q_{j+1} = r_j/\beta_j; j = j + 1; \alpha_j = q_j^T A q_j
    r_j = (A - \sigma I)q_j - \beta_j q_{j-1}; \beta_j = \|r_j\|
end
```

See Golub & Van Loan [1989, p. 478]. The \(q_j \) are called Lanczos vectors.
Notice that the matrix A is involved only through matrix-vector multiplication. This is important in large sparse problems because the Householder approach can lead to an unacceptable level of fill-in. If $i_j = 0$ then q_1, \ldots, q_k define an invariant subspace for A associated with the eigenvalues of $T(1,j,1:j)$. Unfortunately, the computed Lanczos vectors are usually far from orthogonal and a great deal of research has been devoted to handle this problem. On the positive side, the extreme eigenvalues of $T(1,j,1:j)$ tend to be very good approximations of A's extreme eigenvalues even for relatively small j making the Lanczos procedure very attractive in certain settings.

The Lanczos procedure can also be used to solve sparse symmetric positive definite systems $Ax = b$. Indeed the sequence of vectors x_j produced by the iteration

$$r_0 = b; \beta_0 = \|b\|_2; \quad q_0 = 0; \quad j = 0; \quad x_0 = 0$$

while $\beta_j \neq 0$

$$q_{j+1} = r_j / \beta_j; \quad j = j + 1; \quad a_j = q_j^T A q_j$$

$$\beta_j = \|a_j\|_2; \quad q_j = (I - a_j q_j^T) r_j; \quad r_j = q_j^T r_j$$

if $j = 1$

$$d_1 = q_1; \quad c_1 = q_1; \quad p_1 = \beta_0 c_1; \quad x_1 = p_1$$

else

$$\mu_{j-1} = d_{j-1}^T q_{j-1}; \quad \delta_j = a_j - \beta_{j-1} d_{j-1}$$

$$c_j = q_j - \mu_{j-1} c_{j-1}; \quad p_j = -\mu_{j-1} d_j - \delta_j / \delta_j$$

$$x_j = x_{j-1} + p_j c_j$$

end

end

have the property that they minimize $\phi(x) = \|x^T A x - b^T b\|_2$ over $\text{span}(q_1, \ldots, q_k)$, it follows that $Ax = b$ since $x = A^T b$ is the global minimizer of ϕ. However, it turns out that x_j tends to be a very good approximate solution for relatively small j. This method, known as the method of conjugate gradients, has found wide applicability. (The above specification is taken from Golub & Van Loan [1983, p. 497].)

A technique known as preconditioning is often crucial to the process. The precondtioned conjugate gradient algorithm is very similar to the above iteration only during each step, a vector z_j defined by $Mz_j = e_j$ must be computed. M is the preconditioner and it must satisfy two constraints:

- M must approximate A either in the norm sense or in the sense that $M^{-1} A$ has low rank.

Further reading

Good 'global' references for the Lanczos algorithm include Parlett [1980], Cullum & Willoughby [1985a,b], and Golub & Van Loan [1989]. The rapid
convergence of the Lanczos process is discussed by Kaniel [1966], Paige [1971, 1980], and Saad [1986]. Practical details associated with the implementation of the Lanczos procedure are discussed by Parlett & Nour-Omid [1985], Parlett, Simon & Stringer [1982], and Scott [1979].

Interesting papers that pertain to the method of conjugate gradients include Axelsson [1985], Concus, Golub & Meurant [1985], Concus, Golub & O'Leary [1976], and Golub & Meurant [1983]. Representative papers that are concerned with preconditioning include Elnan [1986], Manteuffel [1979], Meijerink & Van der Vorst [1977], and Rokity & Wolitzer [1984]. The idea of adapting the method to unsymmetric problems is explored by Saad [1981], and Faber & Manteuffel [1984]. Implementation strategies for high performance computers are set forth in Meurant [1984], Poole & Ortega [1987], Seager [1986], and Van der Vorst [1982a,b]. The GMRES scheme due to Saad & Schultz [1986] is one of the most widely used sparse unsymmetric system solvers. The survey by Saad [1989] is recommended for further insight into GMRES and related Krylov subspace methods.

2.20. The singular value decomposition

Theorem. If \(A \in \mathbb{R}^{m \times n} \) then there exists an orthogonal \(U \in \mathbb{R}^{m \times m} \) and \(V \in \mathbb{R}^{n \times n} \) such that \(U^TAV = \Sigma \) is diagonal. The diagonal elements of \(\Sigma \) are the singular values and the columns of \(U \) and \(V \) are left and right singular vectors.

Mathematical notes

If \(\sigma_i > \sigma_j > 0 \), then \(r = \text{rank}(A) \). If \(U = [u_1, \ldots, u_r] \) and \(V = [v_1, \ldots, v_r] \) are column partitionings, then \([u_1, \ldots, u_r] \) is an orthonormal basis for \(\text{null}(A) \) and \([v_1, \ldots, v_r] \) is an orthonormal basis for \(\text{ran}(A) \). Moreover, if

\[
A_r = \sum_{i=1}^{r} \frac{u_i v_i^T}{\sigma_i},
\]

then \(A = A_r \), and \(B_{\text{opt}} = A_r \) minimizes \(\|A - B\|_2 \) subject to \(\text{rank}(B) = r \in r \)

Algorithmic and numerical notes

A variant of the symmetric QR algorithm is the standard means for computing the SVD of a dense matrix. A is first reduced to bidiagonal form (see Section 2.21) and then the symmetric QR iteration is implicitly applied to the tridiagonal matrix \(A' \).

Jacobi procedures also exist. These involve solving a sequence of 2-by-2 SVD problems which make \(A \) progressively more diagonal.

Applications

* The rank deficient least squares problem is handled nicely through the SVD. If \(u_i = U(:,i) \) and \(v_i = V(:,i) \), then
\[x_{rs} = \sum_{i=1}^{u_i} \frac{a_i b_i}{d_i}, \quad r = \text{rank}(A) \]

- In exact arithmetic, if \(r = \text{rank}(A) \), then \(\sigma_1 > \sigma_2 > \ldots > \sigma_r = 0 \). However, this is an unworkable criterion in the face of fuzzy data and inaccurate arithmetic. So a more realistic approach to numerical rank determination is to choose a parameter \(\epsilon \) and then say \(A \) has \(\varepsilon \)-rank \(k \) if

\[\delta_i > \delta_{i+1} \geq \varepsilon, \]

where the 'hats' designate computed quantities.

- Given \(A, B \in \mathbb{R}^{n \times p} \) the problem

\[
\begin{align*}
\text{minimize} & \quad \| A - BQ \|_F \\
\text{subject to} & \quad Q^TQ = I_p
\end{align*}
\]

is solved by \(Q = UV^T \) where \(U^T V \) is the SVD of \(C = B^T A \).

- Suppose \(A \in \mathbb{R}^{m \times n} \) and \(B \in \mathbb{R}^{m \times p} \) are given and that we want to compute an orthonormal basis for \(\text{null}(A) \cap \text{null}(B) \). Using the SVD, first compute a matrix \(V_c \), whose columns are an orthonormal basis for \(\text{null}(A) \). Then use the SVD again to compute a matrix \(V_c \) whose orthonormal columns span the null space of \(C = BV_c \). The columns of \(V_c \) can be shown to span the required null space.

- Suppose the columns of \(Q_1 \in \mathbb{R}^{m \times n} \) and \(Q_2 \in \mathbb{R}^{m \times p} \) are orthonormal and define a pair of subspaces \(S \) and \(T \). The singular values of \(C = Q_1^T Q_2 \) are situated in \([0, 1]\) and so we may write \(\sigma_i = \cos(\theta_i) \) for \(i = 1, \ldots, n \). Then \(\delta_i \) is the angle between the subspaces \(S \) and \(T \). If \(0 = \delta_1 < \delta_2 < \ldots < \delta_n \) and \(U^T V = \Sigma \) is the SVD, then \(\text{ran}(V(1, \cdot)) \cap \text{ran}(U(\cdot, \cdot)) = S \cap T \).

- If error is also present in the 'data matrix' \(A \), then instead of solving the ordinary least squares problem it may be more natural to consider the problem

\[
\min_{E \in \mathbb{R}^{m \times r}, r \in \mathbb{R}} \| D[E + E_{\text{err}}]T \|_F, \quad E \in \mathbb{R}^{m \times r}, r \in \mathbb{R},
\]

where \(D = \text{diag}(d_1, \ldots, d_n) \) and \(T = \text{diag}(t_1, \ldots, t_n) \) are nonsingular. This problem is referred to as the total least squares (TLS) problem. If \(U^T CV = \Sigma \) is the SVD of \(C = D[A \ b]T \), then \([D_{\text{err}} r_{\text{err}}] = -[a_{n+1}^T, b_{n+1}^T, \ldots, a_n^T, b_n^T] \) and

\[x_{\text{TLS}} = V(1:n, n+1)/V(n+1, n+1) \]

is the total least squares fit.
Further reading.

All aspects of the SVD are discussed by Golub & Van Loan [1989]. The standard means for computing the SVD is a modification of the symmetric QR algorithm for eigenvalues. Appropriate references include Chan [1982], Golub & Kahan [1965], and Golub & Reinsch [1970].

A modification of the symmetric Jacobi algorithm can also be used. See Brent, Luk & Van Loan [1985], Forsythe & Henrici [1960], Kogbetlian&z [1955], and Van Dooren & Van Der Auwera [1986].

Using the SVD to solve the canonical correlation problem was originally proposed by Björck & Golub [1973].

The TLS problem is discussed by Golub & Van Loan [1980], and Van Huffel [1987, 1988]. If some of the columns of A are known exactly, then it is sensible to force the TLS perturbation matrix E to be zero in the same columns. Aspects of this constrained TLS problem are discussed by Van Huffel & Vandewalle [1989].

2.21. Orthogonal bidiagonalization

Theorem. If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and orthogonal $V \in \mathbb{R}^{n \times n}$ such that $U^TAV = B$ is upper bidiagonal.

Mathematical notes

A and B have the same singular values. If A is rank deficient, then B has at least one zero on its diagonal. Note that V tridiagonalsizes $A^T A$ and U tridiagonalsizes $A A^T$.

Algorithmic and numerical notes

The standard method for bidiagonalization uses Householder transformations. The reduction is backwards stable and requires $2mn^2 + n^3$ flops.

2.22. The CS decomposition

Theorem. If

$$Q = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \begin{bmatrix} h \\ j \end{bmatrix}$$

is orthogonal with $l \geq j$, then there exist orthogonal matrices $U_1, V_1 \in \mathbb{R}^{l \times l}$ and orthogonal matrices $U_2, V_2 \in \mathbb{R}^{n \times n}$ such that

$$\begin{bmatrix} U_1 & 0 \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \begin{bmatrix} V_1 & 0 \\ 0 & V_2 \end{bmatrix} = \begin{bmatrix} L_{l \times l} & 0 & 0 \\ 0 & C & S \\ 0 & -S & C \end{bmatrix}.$$

where
\[
C = \text{diag}(c_1, \ldots, c_r) \in \mathbb{R}^{m \times r}, \quad c_i = \cos(\theta_i),
\]
\[
S = \text{diag}(s_1, \ldots, s_r) \in \mathbb{R}^{n \times r}, \quad s_i = \sin(\theta_i),
\]
and \(0 \leq \theta_1 \leq \theta_2 \leq \cdots \leq \theta_r \leq \frac{1}{2} \pi\).

Mathematical notes
Paige & Saunders [1981] have explored a variation of the above concerned with the SVDs of the blocks of
\[
Q = \begin{bmatrix} Q_1^T \\ Q_r^T \end{bmatrix},
\]
where \(Q\) has orthonormal columns. No assumption that \(Q_i\) be square is required.

Algorithmic and numerical notes
Algorithms for the CS decomposition algorithm may be found in Stewart [1983], and Van Loan [1985a]. SVDs and QR factorizations are involved. They are all backwards stable.

Applications
- The CS decomposition is useful in the analysis of many problems that involve distances between subspaces.
- Some generalized SVD problems can be solved using the Paige–Saunders variant, see Section 2.24.

Further reading
The CS decomposition has many applications associated with subspace nearness. See Davis & Kahan [1970].

2.23. Generalized SVD

Theorem. If we have \(A \in \mathbb{R}^{m \times n}\) with \(m > n\) and \(B \in \mathbb{R}^{p \times n}\), then there exist orthogonal \(U \in \mathbb{R}^{m \times m}\) and \(V \in \mathbb{R}^{p \times p}\) and an invertible \(X \in \mathbb{R}^{n \times n}\) such that

\[
U^TA = C = \text{diag}(c_1, \ldots, c_r), \quad 1 \geq c_1 \geq \cdots \geq c_r \geq 0
\]

and

\[
V^TBX = S = \text{diag}(s_1, \ldots, s_p), \quad z_1 > 0, s_1^2 + \cdots + s_p^2 = 1.
\]

where \(q = \min(p, n)\).
Algorithmic and numerical notes

A sequence of carefully chosen QR factorizations and SVDs can be used to compute the generalized SVD. For stability it is sometimes better to compute \(X^{-1} \) rather than \(X \), see Section 2.24.

Applications

- Consider the least squares problem with quadratic inequality constraint (LSQI):

\[
\begin{align*}
\text{minimize} & \quad \| Ax - b \|_2, \\
\text{subject to} & \quad \| Rx - d \|_2 < \alpha,
\end{align*}
\]

where \(A \in \mathbb{R}^{m \times n} \) (\(m > n \)), \(b \in \mathbb{R}^m \), \(B \in \mathbb{R}^{p \times n} \), \(d \in \mathbb{R}^p \), and \(\alpha > 0 \). The generalized singular value decomposition sheds light on the solvability of the LSQI problem. Indeed, if

\[
\begin{align*}
U^T A X &= \text{diag}(\alpha_1, \ldots, \alpha_n), & U^T U &= I_m, \\
V^T B X &= \text{diag}(\beta_1, \ldots, \beta_n), & V^T V &= I_p, \quad q = \min\{ p, n \}
\end{align*}
\]

is the generalized singular value decomposition of \(A \) and \(B \), then the original LSQI problem transforms to

\[
\begin{align*}
\text{minimize} & \quad \| D_{xy} - \tilde{b} \|_2, \\
\text{subject to} & \quad \| D_{xy} - \tilde{d} \|_2 < \alpha,
\end{align*}
\]

where \(\tilde{b} = U^T b \), \(\tilde{d} = V^T d \), and \(y = X^{-1} x \). The simple diagonal form of the objective function and the constraint equation facilitate the analysis of the LSQI problem. Here, \(r = \text{rank}(B) \).

- The problem of finding nontrivial solutions to the generalized eigenvalue problem \(A' A - \lambda B^T B \) is called the generalized singular value problem. It is easy to show that if we have the above generalized SVD, then the \(\lambda \) we seek are the zeros of \(\det(\mathbf{C} - \lambda \mathbf{B}) = \Pi_{i=1}^{n}(\lambda_i - \lambda) \).

Further reading

2.24. Special topic: Avoiding inverses and cross-products

We have seen several instances where the avoidance of explicit inverse computation results in methods with superior numerical properties. We would like to expand upon this critical point as it is a symbol of intelligent matrix
computations. We consider a problem that arises in signal processing, see Speiser & Van Loan [1984].
Suppose $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times n}$ with $m, n \gg p$ and that
$$\text{null}(A) \cap \text{null}(B) = \{0\}. $$
This condition can be relaxed but with a loss of clarity. Suppose
$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0 $$
are the generalized eigenvalues of $A^\top A - \lambda B^\top B$. We wish to find an orthonormal basis for the subspace
$$S_{\text{min}} = \{x: A^\top Ax - \lambda B^\top Bx = 0\}. $$
This is the subspace associated with smallest generalized singular value of the pair (A, B). If
$$U^\top AX = C = \text{diag}(c_1, \ldots, c_q), \quad 0 \leq c_1 \leq \cdots \leq c_q, $$
$$V^\top BX = S = \text{diag}(s_1, \ldots, s_p), \quad s_1 \geq \cdots \geq s_p \geq 0 $$
is the generalized SVD with $c_1^2 + s_1^2 = 1$ and
$$c_1 = \cdots = c_q < c_{q+1}, $$
then
$$S_{\text{min}} = \text{span}\{x_1, \ldots, x_q\}, $$
where $X = [x_1, \ldots, x_q]$ is a column partitioning of X. Thus, our problem is solved once we obtain the QR factorization of $X(:, 1:q)$.

We proceed as follows. First we compute the QR factorization
$$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R, $$
where Q_1 and Q_2 have the same size as A and B, respectively. Because A and B have trivially intersecting nullspaces, we know that R is nonsingular.

We then compute the Paige–Saunders CS decomposition
$$\begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} Z = \begin{bmatrix} C \\ S \end{bmatrix}, $$
where $C = \text{diag}(c_i)$ and $S = \text{diag}(s_i)$. Assume that the c_i and s_i are ordered as
above. It follows that

\[\begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} C \\ S \end{bmatrix} Z^T R, \]

and so \(X = R^{-1}Z \).

Now one approach is to compute the QR factorization of an explicitly formed \(X(:,1:q) \). This involves solving \(RX(:,1:q) = Z(:,1:q) \) and is thus subject to great error if \(R \) is ill-conditioned, i.e., if the nullspaces of \(A \) and \(B \) nearly intersect. However, we can avoid the inversion of \(R \) as follows:

Form \(W = Z^T R \). Note that \(W = X^{-1} \) and that all we have here is a stable orthogonal matrix times matrix multiplication.

Compute an orthogonal \(Y \) such that \(WY = T \) is upper triangular. This can be accomplished by a minor modification of the Householder QR process in which the rows of \(W \) are zeroed bottom-up via Householder matrices.

Since \(X = W^{-1} = (TY^T)^{-1} = YT^{-1} \) we see that the first \(q \) columns of \(Y \) define the required orthogonal basis.

This example is typical of many applications in control theory and signal processing where calculations are put on a much sounder footing through the use of stable matrix factorizations.

3. High performance matrix computations

New computer architectures have brought about a change in how efficient matrix algorithms are designed. We are now compelled to pay as much attention to the flow of data as to the amount of arithmetic. A ramification of this is that flop counting is no longer adequate as a mechanism for anticipating performance. A careless implementation of Gaussian elimination (for example) can be ten times slower than one is organized around the careful control of memory traffic.

Our goal is to delineate the scope of the memory management problem in high performance matrix computations. By 'high performance' we mean any computer whose speed when performing an operation is a strong function of data locality. This applies to a multiprocessor where one processor may be forced into idleness as it waits for data that happens to reside somewhere else in the network. But it is also an issue in a uniprocessor with hierarchical memory. The schematic in Figure 1 depicts such a memory system. Movement of data between two levels in the hierarchy represents a communication overhead. A submatrix that climbs its way to the top of the hierarchy should be involved in as much constructive computation as possible before it returns to its niche farther down in the memory system.
From the standpoint of clarifying these issues, matrix-matrix multiplication and the fast Fourier transform are great teaching algorithms. Both procedures can be arranged in numerous ways and this enables one to resolve many of the computational dilemmas that typify high performance matrix manipulation. However, in this section we have chosen to frame the discussion in terms of the Cholesky factorization, which is simple mathematically and can be organized in several ways like matrix multiplication and the FFT.

Much of what we say carries over to other matrix factorizations and to general scientific computing as well. By the end of the discussion the reader should acquire a practical intuition about high performance computing. We start by deriving several versions of the Cholesky procedure. These highlight the issues of stride and data re-use and motivate four different parallel implementations. The parallel versions of Cholesky that we discuss are chosen for what they reveal about algorithmic thinking in multiprocessor environments.

Before we begin it should be stressed that memory traffic has been a central concern in matrix computation for many years. For example, one can find papers written in the early 1950s that are concerned with the 'out of core' solution of linear systems. However, a hallmark of the current situation is that we must pay attention to memory traffic even for relatively small, dense problems.

3.1 A 'point' derivation of Cholesky

One way to derive the Cholesky algorithm is to compare entries in the equation \(A = GG'\). If \(i \geq j \), then

\[
a_i = \sum_{k=1}^{i-1} e_k e_k',
\]

and so

\[
e_i' e_j = a_j = \sum_{k=1}^{i-1} e_k e_k' = s_j.
\]
Thus, $g_i = s_i/G_i$ if $i > j$ and $g_i = \sqrt{g_j}$ if $i = j$. By computing the lower triangular matrix G row-by-row we have:

Algorithm 1.

for $i = 1:n$
for $j = 1:i$
for $k = 1:j - 1$
 $s = G(i, k)G(j, k)$
end
if $j < i$
 $G(i, j) = s/A(j, j)$
else
 $G(j, j) = \sqrt{s}$
end
end
end

A flop count reveals that this implementation of Cholesky involves $\frac{1}{2}n^2 + O(n^3)$ flops.

3.2. Level-1 operations

Notice that the k-loop in Algorithm 1 oversees an inner product between subrows of G. To highlight this and the fact that the lower triangular portion of A can be overwritten with the lower triangular portion of G, we rewrite the algorithm as follows.

Algorithm 1'.

for $i = 1:n$
for $j = 1:i$
 $s = A(i, j) - A(i, 1:j - 1)A(j, 1:j - 1)^T$
if $j < i$
 $A(i, j) = s/A(j, j)$
else
 $A(j, j) = \sqrt{s}$
end
end
end

As inner product is an example of a level-1 linear algebra operation. Level-1 operations involve $O(n)$ work and $O(1)$ data. Inner products, vector scaling, vector addition, and saxpy's are level-1 operations. (A saxpy is a vector operation of the form $y = ax + y$ where x and y are vectors and a is a scalar.) It is important to be able to identify level-1 operations. A class of processors
known as vector processors are often able to execute level-1 operations faster than what would be expected from consideration of individual, ‘free-standing’ scalar operations. For example, the successful vectorization of a length n vector addition $x \leftarrow x + y$ would require much less time than an n-fold increase in the time for a single $x \leftarrow x + y$ operation.

The philosophy of vector processing is identified with the philosophy of an automobile assembly line whose mission is the production of car(1), . . . , car(n). It is much more efficient to pipeline the assembly than to assign all the workers (functional units) to car(1), then to car(2), etc.

3.3. Stride

Arrays are stored in column major order in Fortran. Thus means that the entries that define an array column are contiguous in memory while those within a row are not. For example, if A is a matrix stored in a 100-by-50 array, then $A(4, 2)$ is the 100 memory units "beyond" $A(4, 1)$.

Now observe that the vectors which define the inner product in Algorithm 1' are not contiguous in memory because both of the vectors involved in the operation, i.e., $A(i, 1:j-1)$ and $A(j, i:j-1)$, are matrix subrows. If A is stored in an array with row dimension lda, then we say that lda is the stride of these vectors. Unit stride code organization can enhance performance because the cost of accessing n contiguous memory locations that house a vector may be much less than the cost of accessing n individual scalars. To make an analogy, suppose a file cabinet contains a thousand folders. It is easy for a human being to extract adjacent folders 101 through 200 than non-adjacent folders 2, 12, 22, . . . , 982, 992.

3.4. A vector derivation

Notice that the nonunit stride problem in Algorithm 1' would be solved if either i or j was the inner loop variable. To derive such a procedure we compute jth columns in the equation $A = GG^T$ and get

$$A(:, j) = \sum_{k=1}^{i} G(:, k)G(j, k).$$

Focusing on components j through n in this vector equation we obtain

$$G(j:n, j)G(j, j) = A(j:n, j) - \sum_{k=1}^{i} G(j:n, k)G(j, k) = u(j:n).$$

Since $G(j, j) = \sqrt{\nu(j)}$ it follows that $G(j:n, j) = u(j:n)\sqrt{\nu(j)}$ and so with overwriting we have the following specification of the Cholesky process.
Algorithm 2:

for $j = 1:n$

$v(j:n) \leftarrow A(j:n, j)$

for $k = 1:j - 1$

$v(j) \leftarrow v(j) - G(j, k)G(j, k)$

$G(j:n, j) \leftarrow v(j:n) \sqrt{v(j)}$

end

Notice that as i ranges from j to n, the kth column of A is accessed in the inner loop. Thus, Algorithm 2 is a unit stride Cholesky procedure. From the flop point of view, it is identical to Algorithm 1.

3.5. Level-2 operations

Recognize that the inner two loops in Algorithm 2 oversee a matrix-vector product. Indeed, from the derivation of the algorithm we see that

$$v(j:n) = A(j:n, j) - \begin{bmatrix} G(j, 1) \cdots G(j, j - 1) \\ \vdots \\ G(n, 1) \cdots G(n, j - 1) \end{bmatrix} \begin{bmatrix} G(j, 1) \\ \vdots \\ G(j, j - 1) \end{bmatrix}^T$$

$$= A(j:n, j) - G(j:n, 1:j - 1)G(j, 1:j - 1)^T.$$

Substituting this observation into Algorithm 2 gives:

Algorithm 2∗:

for $j = 1:n$

$v(j:n) \leftarrow A(j:n, j) - A(j:n, 1:j - 1)A(j:1:j - 1)^T$

$A(j:n, j) \leftarrow v(j:n) \sqrt{v(j)}$

end

Matrix-vector multiplication is a level-2 operation. Such operations are characteized by quadratic work and quadratic data, e.g., for m-by-n matrix-vector multiplication, $O(mn)$ data and $O(mn)$ flops are involved.

From a certain standpoint, a matrix-vector product is ‘just a bundh’ of level-1 saxpy operations. Indeed, the computation of

$$u \leftarrow u + Av = u + \sum_{j=1}^{n} v(j)A(:, j)$$

has the form:
for } j = 1 : n \\
\quad u \leftarrow u + v(j)A(; j) \\
end

However, one should think of } u \text{ as a vector accumulator. It is a running vector sum which can be built up in a vector register without any waiting to lower level memory until the summation is complete. Thus, there are } n + 1 \text{ vector reads and only one vector write. In contrast, if each saxpy is executed without an awareness of the overall mission of the loop, then } 2n \text{ vector reads and } 2n \text{ vector writes are involved.}

A matrix-vector product is referred to as a gakpy operation. Use of the term tacitly implies vector accumulation as discussed above.

3.6. An inductive derivation

Consider the following blocking of the matrix equation } A = GG^T:

\[
\begin{bmatrix}
\alpha & w^T \\
w & B
\end{bmatrix} \begin{bmatrix}
\beta & 0 \\
0 & G_1
\end{bmatrix} \begin{bmatrix}
\beta & 0 \\
0 & G_1
\end{bmatrix}^T.
\]

Here } \alpha, \beta \in \mathbb{R}, w, v \in \mathbb{R}^{n-1}, \text{ and } B, G_1 \in \mathbb{R}^{(n-1) \times (n-1)}. \text{ We illustrate a third 'methodology' for developing a matrix factorization algorithm by equating entries in the above:}

\[
\begin{align*}
\alpha &= \beta^2 \\
w &= \beta v \\
b &= vv^T + G_1G_1^T \quad \Rightarrow \quad G_1G_1^T = B - vv^T.
\end{align*}
\]

It can be shown that the symmetric matrix } B - vv^T \text{ is positive definite and so by induction on } n \text{ we can find its Cholesky factor } G, \text{ as required above.}

Note that } G(2:n, 2) = G_1(1:n - 1, 1). \text{ Thus, repetition of the square root, the scaling, and the update of } B \text{ lead to yet another formulation of Cholesky:}

Algorithm 3.

\begin{algorithmic}
\For{k = 1 : n}
\State \text{G}(k:n, k) \leftarrow \sqrt{A(k:n, k)}/\sqrt{A(k, k)}
\EndFor
\For{j = k + 1 : n}
\For{i = j : n}
\State \text{A}(i, j) \leftarrow \text{A}(i, j) - \text{G}(i, k)\text{G}(j, k)
\EndFor
\EndFor
\EndFor
\end{algorithmic}
The inner loop oversees a unit stride saxy. The overall procedure involves exactly the same amount of floating point arithmetic as Algorithms 1 and 2.

3.7. Outer product

The inner two loops of Algorithm 3 feature a level-2 operation referred to as an outer product. If \(A \in \mathbb{R}^{m \times n} \), \(u \in \mathbb{R}^m \), and \(v \in \mathbb{R}^n \), then an update of the form \(A \leftarrow A + uv^T \) is an outer product update. Notice that this involves \(2m \) vector reads and \(2n \) writes. Each column is an outer product update is a saxy \(A(:, j) \leftarrow A(:, j) + v(j)u \) and there is no opportunity for vector accumulation in contrast to the saxy operation.

Algorithm 3 features a symmetric outer product update, i.e., an update of the form \(B \leftarrow B + uu^T \) where \(B = B^T \). To emphasise this we rewrite Algorithm 3 and incorporate overwriting:

Algorithm 3.

\[
\begin{align*}
\text{for } k & = 1:n \\
u(k) & = A(k, k) / \sqrt{A(k, k)} \\
A(k, k) & = u(k) \\
A(k + 1:n, k + 1:n) & = A(k + 1:n, k + 1:n) - u(k + 1:n)u(k + 1:n)^T
\end{align*}
\]

We assume that symmetry is exploited during the symmetric outer product update of the submatrix \(A(k + 1:n, k + 1:n) \).

3.8. Loop reorderings

Algorithms 1, 2, and 3 are identical with respect to arithmetic but different with respect to the ordering of the three loops. For example, Algorithm 1 can be through of as \(ijk \) Cnlesky and Algorithms 2 and 3 are the \(jki \) and \(kji \) variants, respectively. There are actually three other versions: \(ijk \) (via permutation of the first two loops is Algorithm 1), \(jik \) (the row-by-row analog of Algorithm 2), and \(kij \) (which compiles the outer product update by row in Algorithm 3). Each loop ordering features certain linear algebraic operations and has distinct memory reference patterns. In general, the \(jki \) version (Algorithm 2) has the best attributes in terms of stride and the potential for vector accumulation.

3.9. Recursion

The notion of a recursive procedure is increasingly important in matrix computations. Roughly speaking, a recursive procedure is able to call itself.
Recursion makes the specification of some matrix algorithms particularly concise. Here is a recursive version of Algorithm 3 stated in quasi-Matlab style:

```matlab
function G = chol(A, n)
G(1, 1) = sqrt(A(1, 1))
if n > 1
    q = G(2:n, 1) / G(1, 1)
    G(2:n, 2:n) = chol(A(2:n, 2:n) - G(2:n, 1) * q');
end
end chol
```

Leading examples of recursion in matrix computations include Strassen matrix multiply, cyclic reduction, and the Cuppen-Dongarra-Sorensen divide and conquer algorithm for the symmetric tridiagonal eigenproblem. These procedures are all discussed by Golub & Van Loan [1989].

3.10. Level-3 operations

For many architectures, matrix—matrix multiplication is the operation of choice. There are two reasons for this: it is a highly parallelizable computation and it has a favorable 'computation-to-communication' ratio. The latter aspect needs additional comment. Consider the n-by-n matrix multiplication $C = AB$. This computation involves the reading and writing of $O(n^2)$ data. However, $2n^2$ flops are expended. Thus, in a loose manner of speaking, the ratio of arithmetic to data movement is $O(n)$. As n grows the overhead associated with the accessing of data diminishes. This explains the current interest in block matrix algorithms by which we mean algorithms that are rich in matrix multiplication. Matrix operations that involve $O(n^3)$ data and $O(n^2)$ work are referred to as level-3 operations. Matrix multiplication updates of the form $C = \alpha AB + \beta C$ and the multiple triangular system solve $C = \alpha T^{-1} C$ are examples of frequently occurring level-3 operations. (Here, α and β are scalars and T is triangular.) See Golub & Van Loan [1989] for a discussion of the latter problem and why it is rich in matrix multiplication.

In many computing environments, level-3 operations can be executed at near peak speed in contrast to matrix/vector computations at the first and second level. Thus, the goal of designing good block algorithms is the extraction of level-3 performance from the underlying architecture.

3.11. Block Cholesky

We show how to organize the Cholesky computation so that all but a small fraction of the arithmetic occurs in the context of matrix multiplication. This rather surprising result can be accomplished in several ways. For simplicity, we have chosen to develop a block version of Algorithm 1. Assume for clarity that
\(n = N_r \) and partition \(A \) and \(G \) into \(r \times r \) blocks as follows:

\[
A = \begin{bmatrix}
A_{11} & \cdots & A_{1N} \\
\vdots & \ddots & \vdots \\
A_{N1} & \cdots & A_{NN}
\end{bmatrix}, \quad G = \begin{bmatrix}
G_{11} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
G_{N1} & \cdots & G_{NN}
\end{bmatrix}.
\]

Comparing \((i, j)\) blocks in the equation \(A = GG^T \) with \(i > j \) gives

\[
A_{ij} = \sum_{k=1}^{j} G_{ik}G_{jk}^T,
\]

and so

\[
G_{ij}G_{ji}^T = A_{ij} - \sum_{k=1}^{i-1} G_{ik}G_{jk}^T = S_{ij}.
\]

Corresponding to the derivation of Algorithm 4 we see that \(G_{ij} \) is the solution of \(XG_{ij} = S_{ij} \) if \(i > j \) and \(G_{ij} \) is the Cholesky factor of \(S_{ij} \). We therefore obtain:

Algorithm 4.

```
for i = 1:N
  for j = 1:i
    S = A_{ij} - \sum_{k=1}^{i-1} G_{ik}G_{jk}^T
    if j < i
      Compute the Cholesky factorization \( S = G_{ij}G_{ji}^T \)
    end
    else
      Solve \( G_{ij}G_{ji}^T = S \) for \( G_{ij} \)
    end
  end
end
```

Notice again that each subdiagonal block is the solution of a multiple right-hand side triangular system while the diagonal blocks are obtained as \(r \times r \) Cholesky factorizations. Most importantly, the matrix \(S \) is the consequence of a matrix–matrix product

\[
S_{ij} = A_{ij} - \sum_{k=1}^{i-1} G_{ik}G_{jk}^T \sum_{k=1}^{i-1} G_{ik}G_{jk}^T.
\]

Algorithm 4 involves the same number of flops as Algorithms 1, 2, and 3. The only flops that are \textit{not} level 3 flops are those associated with the computation of the \(r \times r \) Cholesky factors \(G_{ij}, \ldots, G_{Nj} \). This accounts for approxi-
mately \(N^{7/3} \) flops. Thus, the fraction of flops that are associated with level-3 computation is given by:

\[
L_3 = 1 - \frac{N^{7/3}}{N^{7/3}} = 1 - \frac{1}{N}.
\]

We say that \(L_3 \) is the level-3 fraction associated with Algorithm 4.

A tacit assumption in all this is that the block size \(r \) is large enough so that true level-3 performance is extracted during the computation of \(S \). Intelligent block size determination is a function of algorithm and architecture and typically involves careful experimentation.

3.12. Block algorithm development: The LAPACK Project

The search for good block algorithms is an active area of current research. Block algorithms that are rich in matrix multiplication like the above Cholesky procedure have been found for

- The LU factorization with or without partial pivoting.
- The Bunch-Kaufman and Aasen factorizations.
- The QR factorization with and without pivoting. [Bischof & Van Loan, 1987; Bischof, 1988.]

The best block algorithm for the Hessenberg reduction has a level-3 fraction equal to one-half. However, with some regrouping of the Householder transformations significant improvements to the standard level-2 procedure can be realized. To date, no effective block algorithms (in the level-3 sense) have been found for the QR family of iterations (QR, SVD, QZ, etc.) although again, it is possible to improve upon level-2 performance via some clustering of the matrix–vector operations.

The mission of the LAPACK Project is to develop a library of level-3 algorithms for the LINPACK and EISPACK codes. These packages handle linear systems and the eigenproblem, respectively. The efficient implementation of this block library on a particular machine requires an optimized level-3 BLAS library. BLAS stands for Basic Linear Algebra Subprograms. Level-1 and 2 BLAS libraries exist as well. Details may be found in Dongarra, du Croz, Hammarling & Hanson [1988a,b], Dongarra, du Croz, Duff & Hammarling [1988], Lawson, Hanson, Kincaid & Krogh [1979a,b], and Kågström, Ling & Van Loan [1991].

Further elaboration of the notion of 'level' and what it means for the design of efficient matrix code is discussed by Dongarra, Gustavson & Karp [1984], Gallivan, Jalby & Meier [1987], Gallivan, Jalby, Meier & Sameh [1988], and Kågström & Ling [1988].

The high-level LAPACK code for things like Cholesky are written in terms of these BLAS and 'automatically' perform well if the underlying level-3 fraction is close to 1 and the level-3 BLA routines are fine-tuned to the underlying architecture.
3.13. Parallel computation

We next discuss the parallel computation of the Cholesky factorization. Two types of multiprocessors are considered: those with shared memory and those with distributed memory. In either case, an individual processor (sometimes called a node) comes complete with processing units and its own local memory. In a shared memory machine such individual processor is able to read and write to a typically large global memory. This enables one processor to communicate with another. A distributed memory machine has no global memory. Instead, each node is connected to some subset of the remaining nodes. The overall distributed network supports communication via the routing of messages between nodes.

Throughout the remainder of this section, \(p \) will stand for the number of processors in the system. For us, the act of designing a parallel algorithm is the act of designing a node algorithm for each of the participating processors. We suppress very important details such as (a) the downloading of data and programs into the nodes, (b) the subscripts computations associated with local array access, and (c) the formatting of messages. We designate the \(\mu \) processor by \(\text{Proc}(\mu) \). For example, in the \(n \times n \) matrix-vector problem product problem \(y = Ax \), \(\text{Proc}(\mu) \) might be assigned the computation of \(y(\mu; p; n) = A(\mu; p; n; 1)z \).

To illustrate the differences and similarities between shared and distributed memory computing and the crucial role of block matrix notation, we consider the two-processor calculation of the \(n \times n \) matrix multiply update \(C \leftarrow C + AB \). Assume \(n = 2m \) and consider the block matrix equation

\[
\begin{bmatrix}
C_1 & C_2 \\
C_3 & C_4
\end{bmatrix} = \begin{bmatrix}
C_1 & C_4 \\
C_3 & C_4
\end{bmatrix} + \begin{bmatrix}
A_1 & A_4 \\
A_3 & A_4
\end{bmatrix} \begin{bmatrix}
B_{11} & B_{12} \\
B_{31} & B_{32}
\end{bmatrix},
\]

where we assume \(A_1, A_2, C_1, C_4 \in \mathbb{R}^{m \times m} \) and \(B_{11}, B_{12}, B_{31}, B_{32} \in \mathbb{R}^{m \times m} \) are situated in global memory. A shared memory implementation can be organized as follows:

Proc(1):

- \(C_{11} \leftarrow C_1
- A_{11} \leftarrow A_1
- B_{11} \leftarrow B_{11}
- C_{11} \leftarrow C_{11} + A_{11}B_{11}
- A_{11} \leftarrow A_1
- B_{11} \leftarrow B_{11}
- C_{11} \leftarrow C_{11} + A_{11}B_{11}
- C_1 \leftarrow C_{11}

Proc(2):

- \(C_{31} \leftarrow C_3
- A_{31} \leftarrow A_3
- B_{31} \leftarrow B_{31}
- C_{31} \leftarrow C_{31} + A_{31}B_{31}
- A_{31} \leftarrow A_3
- B_{31} \leftarrow B_{31}
- C_{31} \leftarrow C_{31} + A_{31}B_{31}
- C_4 \leftarrow C_{31}

The "loc" subscript is used to indicate local arrays. Notice that each processor
has 5 global-to-local matrix reads, two matrix multiplies, and a single local-to-
global matrix write.

A distributed memory procedure is similar. However, instead of data flowing
back and forth between the local memories and the global memory, it moves
along the channels that connect the processors themselves. The primitives send
and recv are used for this purpose and they have the following syntax:

\[
\text{send}((\text{matrix}), (\text{destination node})) \quad \text{recv}((\text{matrix}), (\text{source node}))
\]

If a processor invokes a send, then we assume that execution resumes
immediately after the message is sent. If a recv is encountered, then we assume
that execution of the node program is suspended until the requested messages
arrives. We also assume that messages arrive in the same order that they are
sent.

Now in our \(p = 2 \) problem let us assume that for \(j = 1:2 \), Proc\((j)\) has sizes \(C_j \), \(A_j \), and

\[
\begin{bmatrix}
B_{1j} \\
B_{2j}
\end{bmatrix}
\]

in the local arrays \(C_{\text{loc}}, A_{\text{loc}}, \) and \(B_{\text{loc}} \). We then have:

Proc1:

\[
C_{\text{loc}} \leftarrow C_{\text{loc}} + A_{\text{loc}}B_{\text{loc}}(1:m, :) \\
\text{send}(A_{\text{loc}}, 2) \\
C_{\text{loc}} \leftarrow C_{\text{loc}} + A_{\text{loc}}B_{\text{loc}}(m + 1:n, :) \\
\text{recv}(A_{\text{loc}}, 2) \\
\text{send}(A_{\text{loc}}, 2) \\
C_{\text{loc}} \leftarrow C_{\text{loc}} + A_{\text{loc}}B_{\text{loc}}(1:m, :) \\
\text{recv}(A_{\text{loc}}, 1)
\]

Proc2:

\[
C_{\text{loc}} \leftarrow C_{\text{loc}} + A_{\text{loc}}B_{\text{loc}}(m + 1:n, :) \\
\text{send}(A_{\text{loc}}, 1) \\
C_{\text{loc}} \leftarrow C_{\text{loc}} + A_{\text{loc}}B_{\text{loc}}(1:m, :) \\
\text{recv}(A_{\text{loc}}, 1)
\]

The last send/recv is executed so that upon completion, \(A \) is distributed in its
original manner. This could be avoided with the introduction of additional
local workspaces. However, one tends to be stingy with work spaces in
distributed environments because local memory is often limited.

Notice that in the distributed memory case, each processor has two sends,
two receive, and two matrix multiplies.

We now make a few comments about parallel computations in general using
the above parallel algorithms for illustration. We say that a parallel procedure
is load balanced if each processor has roughly the same amount of arithmetic
and communication. The above procedures have this property. However, this
would not be the case if \(B_{0j} = 0 \) for although both processors would be equally
loaded, the \(B_{0j} \) computations are superfluous. Hence, a revision of the node
programs would be required so that each node had equal amounts of meaningful
work and communication.
The speed-up associated with a parallel program is a quotient:

\[
\text{speed-up} = \frac{\text{time required by the best single-processor program}}{\text{time required for the } p \text{-processor implementation}}
\]

In this definition we do not just set the numerator to be the \(p = 1 \) version of the parallel code because the best uniprocessor algorithm may not parallelize. Ideally, one would like the speed-up for an algorithm to equal \(p \). In the above 2-processor example, speed-up will approach 2 as the communication overhead is reduced compared to the time required for the actual matrix multiplication.

In particular, if the time for communication is proportional to \(O(n^2) \), then speed-up approaches 2 as \(n \) gets large.

At times it is sufficient to quantify communication overheads in an order of magnitude sense. On other occasions we need a little more precision. To that end we assume that the communication of a length \(r \) floating point vector requires \(a + \beta r \) seconds. Here, \(a \) represents a start-up overhead and \(\beta \) reflects the rate of transmission. The communication may be between local and global memory, between main memory and a disk, or between two neighbor processors in a distributed network. The values of \(a \) and \(\beta \) relative to computation speed have a great effect on the design of a parallel matrix code.

Before we go on to illustrate Cholesky in shared and distributed memory environments, we mention that in practice one often has to work with a system that embodies a mixture of these multiprocessor designs. However, our goal is to paint the parallel matrix computation picture with broad strokes capturing just the central ideas. Nothing much is lost by considering the purely shared and purely distributed systems.

For additional overviews of the parallel matrix computation area, see Dongarra & Sorensen [1986], Gallopoulos, Plemmons & Sameh [1990], Heller [1978], Hockney & Jesshope [1988], and Ortega & Van Loan [1986]. See also Golub & Van Loan [1989, Chapter 6].

3.14 Shared memory computation

A schematic of a shared memory multiprocessor is given in Figure 2. During execution, data flows back and forth between the nodes and the global memory. All computation takes place on data situated in the node.

Two shared memory implementations of the Cholesky factorization are

![Fig. 2. A 4-processor shared memory system.](image-url)
given. Is the first each processor's portion of the overall computation is determined in advance. This is an example of static scheduling. The strategy in the second implementation is different in that the overall computation is broken down into a sequence of tasks with no a priori assignment of tasks to processors. A queue of remaining tasks is then maintained during the computation. When a processor finishes a task it goes to the queue and obtains (if possible) the next available task. This is an example of the pool-of-tasks approach to dynamic scheduling.

3.15. Shared memory Cholesky with static scheduling

Suppose \(B = B^T \in \mathbb{R}^{n \times n} \) and \(v \in \mathbb{R}^n \) reside in a global memory that is accessible to \(p \) processors and that we wish to overwrite \(B \) with \(B - vv^T \). One way to approach the parallel computation of this symmetric outer product update is to have \(\text{Proc}(\mu) \) update the columns designated by the integer vector \(\mu: p\mu:p\mu \):

\[v_{\mu \mu} \leftarrow v \]

\[\text{for } j = \mu:p\mu:p\mu \]

\[b_{\mu \mu}(j:j) \leftarrow B(j:j, j) \]

\[b_{\mu \mu}(j:j) \leftarrow b_{\mu \mu}(j:j) - v_{\mu \mu}(j)v_{\mu \mu}(j) \]

\[B(j:j, j) \leftarrow b_{\mu \mu}(j:j) \]

\[\text{end} \]

A few comments are in order. Each processor needs a copy of \(v \) and this is accomplished outside the loop with the local to global assignment \(v_{\mu \mu} \leftarrow v \). Within the \(j \)-loop we see repetition of the following activity:

- The global to local reading of the original \(B(j:j, j) \) into \(b_{\mu \mu}(j:j) \).
- The local computation of the sassy \(b_{\mu \mu}(j:j) = b_{\mu \mu}(j:j) - v_{\mu \mu}(j)v_{\mu \mu}(j) \).
- The local to global writing of \(b_{\mu \mu}(j:j) \) into \(B(j:j, j) \).

This 3-step pattern of reading from global memory, local computation, and writing to global memory is typical. The reading and the writing represent communication overheads and hence, one tries to design shared memory procedures so that the amount of local computation is significant compared to the amount of data that goes back and forth between the local memories and shared memory.

Our parallel outer product update is load balanced. To see this, assume \(m = pM \) for clarity and note that \(j \)-th sassy involves \(2(m - j + 1) \) flops. Thus, \(\text{Proc}(\mu) \) must perform

\[\sum_{j=p-M}^{p-M} 2(m - j + 1) = \frac{m^2}{p} - m \left(3 + \frac{2(1 - \mu)}{p}\right) = \frac{m^2}{p} \]

flops, i.e., one \(\mu \)-th of the arithmetic.

\(\text{Proc}(\mu) \)'s communication overhead is proportional to
\[a \frac{2m}{p} + b \left(\frac{m^2}{p} + m \left(\frac{2(1 - \mu)}{p} + 1 \right) \right) = \alpha \frac{2m}{p} + b \left(\frac{m^2}{p} \right), \]

where \(a \) and \(b \) capture the nature of communication between local and global memory. Because this is independent of \(\mu \) we see that the overall procedure is load balanced from the communication point of view.

Note that we could not make three loading balancing claims if \(\text{Proc}(\lambda) \) is assigned the update of contiguous columns, i.e., \(B(j;m, j) \) for \(j = (\mu + 1)M + 1: \mu M \). This is because the work and communication associated with the \(j \)th saxpy is a decreasing function of \(j \).

We now apply these ideas to the design of a shared memory version of outer product Cholesky (Algorithm 3). Recall that this algorithm is structured as follows:

\[
\text{for } k = 1:n \\
\quad \text{Perform a square root and a vector scale} \\
\quad \text{Perform a symmetric outer product update of } A(k + 1:n, k + 1:n) \\
\text{end}
\]

Our strategy is to let a single designated processor handle the square root and the scaling and to let all the processors participate in the outer product updates as discussed above. However, some synchronization is necessary so that the correct Cholesky factor emerges:

- A processor cannot begin \(k \) share of the \(k \)th outer product update until the \(k \)th column of \(G \) is available.
- The computation of \(G(k + 1:n, k + 1) \) should not begin until the \(k \)th outer product update is completed.

To ensure that these ‘rules’ are enforced we use the \textbf{barrier} construct in the following algorithm.

\begin{algorithm}
\textbf{Algorithm 5.}
\textbf{for } k = 1:n \\
\quad \text{if } \mu = 1 \\
\quad \quad g_{\text{out}}(k;n) \leftarrow A(k;n, k) \\
\quad \quad g_{\text{in}}(k;\lambda) \leftarrow g_{\text{out}}(k;n) / g_{\text{in}}(k) \\
\quad \quad A(k;\lambda, k) \leftarrow g_{\text{in}}(k;\lambda) \\
\quad \text{end} \\
\textbf{barrier} \\
\textbf{for } j = (k + \mu);p:n \\
\quad \quad a_{\text{out}}(j;n) \leftarrow A(j;n, j) \\
\quad \quad a_{\text{in}}(j;\lambda) \leftarrow a_{\text{out}}(j;n) - a_{\text{in}}(j;\lambda) \cdot v_{\text{in}}(j) \\
\quad \quad A(j;\lambda, j) \leftarrow a_{\text{in}}(j;\lambda) \\
\quad \text{end} \\
\textbf{barrier} \\
\textbf{end}
\end{algorithm}
This procedure overwrites the lower triangular portion of A (in global memory) with the lower triangular portion of G.

Here is how the barrier construct works. When a processor encounters a barrier during the execution of its code program, computation is suspended. It resumes as soon as every other processor reaches its barrier. In that sense the barrier is like a stream to be traversed by p hikers. For safety, no one proceeds across the stream until all p hikers arrive at its edge. In Algorithm 5, the first barrier ensures that the kth outer product update does not begin until $G(k+1,n, k)$ is ready. The second barrier forces all the processors to wait until the kth update is completely finished before work commences with the next update.

Algorithm 5 is load balanced for the same reasons that the above outer product update algorithm is load balanced. (The square root and scaling assigned to Proc(1) do not appreciably overload this processor so long as $n > p$, a reasonable assumption.)

3.16. Shared memory Cholesky with dynamic scheduling

For some simple computations static scheduling is adequate. However, it is important to recognize that a barrier forces global idleness and therefore incurs a certain inefficiency. For this reason, dynamic scheduling using the pool-of-task paradigm is often attractive. This style of shared memory programming begins with an identification of computational tasks. The tasks are then executed in a prescribed order by the individual processors. Various synchronization problems must typically be solved along the way.

We illustrate this by implementing Algorithm 4, block Cholesky. We refer to the computation of the Cholesky block G_k as task(i, j). Following the order of G_k resolution in Algorithm 4, we perform the tasks in the following order:

$$(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), \ldots, (N, 1), \ldots, (N, N-1), (N, N).$$

We assume the existence of a function next.task that is invoked by a processor whenever it wants to acquire a new task. A pair of special pointers row and col is updated with each call, i.e.,

```
function (i, j) = next.task(c)
    col ← col + 1
    if col ≠ N + 1
        row ← row + 1; col ← 1
    end
    i ← row; j ← col
end next.task
```
If we assume that row = 1 and col = 0 at the start and that at any instant only one processor can be executing next-task, then we can structure each node program as follows:

\[(i, j) \rightarrow \text{next-task}()\]

while \(i < N\)

Perform task\((i, j)\)

\[(i, j) \rightarrow \text{next-task}()\]

end

The assumption that only one processor at a time can be executing next-task ensures that each task is assigned to exactly one processor. A node program terminates as soon as row has value \(N + 1\). This happens when a task is requested after task\((N, N)\) is assigned. Thus, all node programs eventually terminate.

Now returning to the development of a parallel version of Algorithm 4, recall that task\((i, j)\) requires the computation of

\[S_j = A_{ij} - \sum_{k=1}^{i-1} G_k G_k^T .\]

Note that a simple summation of the form

\[S_{\text{new}} \leftarrow A_{ij}\]

\[B_{\text{new}} \leftarrow A_{jk}\]

\[C_{\text{new}} \leftarrow A_{ik}\]

\[S_{\text{new}} \leftarrow S_{\text{new}} - B_{\text{new}} C_{\text{new}}^T\]

end

is not guaranteed to work since we have no way of knowing that \(A_{ik}\) and \(A_{jk}\) actually house \(G_k\) and \(G_j\) at the time they are requested from global memory. For this reason we assume the existence of a function get-block\((q, r)\) which returns the contents of \(A_p\) only if it houses \(G_p\). If \(G_p\) is not available, then the invoking processor is placed in a state of idle waiting to be broken only when the requested block is available. When this happens the requested \(G\) block is read into local memory and execution resumes with the next statement in the node program.

One way to implement this scheme is for get-block to maintain a binary scoreboard \(\text{done}(1:N, 1:N)\) with the convention that \(\text{done}(q, r)\) is zero or one depending upon the availability of \(G_p\).

We are not quite ready to specify the overall procedure in that we have yet to indicate how the scoreboard is updated. Once a processor has computed the matrix \(S_j\) at \(S_i\), it proceeds with the computation of \(G_j\). If \(i = j\) then \(G_j\) is the Cholesky factor of \(S_j\) and a local computation ensues. If \(j < i\) then \(G_j\) is
required for the resolution of $G_l G_l^T = S_l$ and `put.block` must be invoked. In either case once G_l is computed it can be written to global memory. For this process we need another function `put.block(i, j, (local matrix))` which writes the specified local matrix to a shared memory block A_{ij}. In addition, `put.block` updates the scoreboard by changing the value of `done(i, j)` from a zero to one.

Combining all these ideas and assuming that A is to be overwritten by G in global memory, we obtain the following node program:

```
Algorithm 6.
(i, j) ← next.task();
while i ≤ N
    $S_{i, j} ← A_{i, j}$
    for $k = 1:j - 1$
        $B_{i, k} ← \text{get.block}(i, k)$
        $C_{i, k} ← \text{get.block}(j, k)$
        $S_{i, j} ← S_{i, j} - B_{i, k} C_{j, k}$
    end
    if $j < i$
        $B_{j, i} ← \text{get.block}(j, i)$
        Solve $XB_{i, j} = S_{i, j}$ for $X_j$; $B_{i, j} ← X_j$
    else
        Compute the Cholesky factorization $XX^T = S_{i, j}$; $B_{i, j} ← X$
    end
    $A_{i, j} ← \text{put.block}(i, j, B_{i, j})$
    $(i, j) ← \text{next.task}()$
end
```

As with the updating of the task indices `row` and `col` in shared memory, the updating of the scoreboard must be carefully controlled. In particular, we must never allow the scoreboard to be manipulated by more than one processor at a time. These restrictions coupled with the ability of `get.block` and `put.block` to purposely delay an invoking processor imply that these functions are more than just functions in the sense of sin(θ). The 'computer science' aspects associated with the design of these synchronization tools (and the `barrier` as well) are discussed by Andrews & Schneider [1983], and Boyle, Butler, Diaz, Blickfield, Lusk, Overbeck, Patterson & Stevens [1987].

3.17. Comments

We have stepped through the design of two shared memory Cholesky procedures. While we have depicted the kind of logic associated with shared memory computing, we are a long way from being able to predict performance. Although we can model the rate of floating point arithmetic and the time required for local–global communication, we suppressed a number of important hardware factors such as the bandwidth between local and global
memory. Without knowledge of the local/global memory interface we cannot anticipate what happens when two nodes wish to access global memory at the same time.

We also have made no attempt to quantify the synchronization overheads, i.e., the cost of invoking the barrier’s in Algorithm 5 and the ‘synchronization functions’ next_task, get_block, and put_block in Algorithm 6. An understanding of these factors would most likely be acquired through intelligent experimentation.

3.18. Distributed memory computing

We now turn our attention to the design of matrix algorithms in a distributed memory environment. Of central importance is the topology of the underlying processor network, i.e., how the processors are interconnected. Popular schemes include the ring, the mesh, the tree, the torus, and the hypercube. In this section we consider the implementation of Cholesky on a ring. In this situation, each processor has a left and a right neighbor (see Figure 3). For notational convenience we assume the existence of local integer variables left and right so that commands of the form

\[\text{send}((\text{local matrix}), \text{left}) \]

\[\text{send}((\text{local matrix}), \text{right}) \]

instruct the executing node to send the named local matrix to the left and right neighbors, respectively. (Similarly for recv.) Thus, if \(p = 4 \) and Proc(2) executes \(\text{send}(A_{100}, \text{left}) \), then a copy of \(A_{100} \) is sent to Proc(1). (Proc(2) retains a copy of \(A_{100} \).)

The distributed Cholesky procedures that we are about to develop involve only nearest-neighbor communication meaning that whenever a message is sent, it is always to a neighbor in the network. This minimizes reliance on the routing algorithms that overcome the message passing and generally helps to control communication overheads.

For any network topology there are usually several natural distributed data
structures for matrices and vectors. Consider the storage of
\[A = [A_1, \ldots, A_n], \text{ } A_i \in \mathbb{R}^{n_i \times n}, \text{ } n_1 + \cdots + n_n = n, \]
on a p-processor ring. With a \textit{wrap block column} data structure Proc(\mu) houses block columns \(A_{\mu} \), where \(i = \mu \cdot p \cdot N \). Note that if \(N = p \), then each processor houses a contiguous set of columns, namely, the columns of \(A_{\mu} \). If \(N > p \), then \(A \) has a \textit{wrap column} distribution.

3.19. Distributed memory Cholesky on ring

We now develop a ring implementation of Algorithm 2. Recall that is that version of Cholesky, the generation of \(G(j:n, j) \) requires the computation of
\[s_j = A(j:n, j) - \sum_{k=1}^{j-1} G(j:n, k)G(j, k), \]
followed by the scaling \(G(j:n, j) \leftarrow s_j / \sqrt{s_j} \).

Assume for clarity that \(n = p \cdot N \) and that Proc(\mu) initially houses \(A(i:n, i) \) for \(i = \mu \cdot p \cdot N \) in a local array \(A_{\mu} \). The mission of Proc(\mu) in our ring Cholesky procedure is to overwrite this array with the nonzero portion of \(G(\mu \cdot p \cdot n) \). This involves using the columns of \(A_{\mu} \) as running vector sums for building up the \(s_j \) that are to be used locally.

Notice that a G-column generated by one processor is generally needed by all the other processors. So suppose Proc(\mu) generates \(G(j:n, j) \). This vector is then circulated around the ring in merry-go-round fashion "stopping" at Proc(\mu + 1), Proc(\mu + 1), Proc(1), \ldots, Proc(\mu - 1) in turn. At each stop the visiting G-column is incorporated into all the local \(s_j \) for which \(k \geq j \).

By counting the number of received G-columns a processor can determine whether or not it is ready to take its turn in G-column generation. For example, if Proc(\mu) has received \(k - 1 \) G-columns and \(k \in \{\mu, \mu + p, \ldots, \mu + (N - 1) \cdot p\} \), then it "knows" that it is time to generate \(G(k:n, k) \).

Here is the program to be executed by Proc(\mu). It assumes that the local variables left and right contain the indices of the left and right neighbor and that \(n = p \cdot N \).

\begin{algorithm}
\begin{algorithmic}
\State \(k \leftarrow 0; \ j \leftarrow 0 \)
\State \(\text{last} \leftarrow \mu + (N - 1) \cdot p \)
\State \(j \leftarrow 1 \)
\While {\(j \neq \text{last} \)}
\If {\(k + 1 \in \{\mu, \mu + p, \ldots, \mu + (N - 1) \cdot p\} \)}
\State \(j \leftarrow k + 1 \)
\EndIf
\State Generate \(G(j:n, j) \) and copy into \(g_{\mu}(j:n) \) and \(A_{\mu}(j:n, j) \)
\EndWhile
\end{algorithmic}
\end{algorithm}
if $j < n$
 send($B_{\mu}(j:n), \text{right}$)
 Update $A_{\text{loc}}(\cdot, j+1:N)$
 $k \leftarrow k + 1$
end

else
 recv($B_{\mu}(k:n), \text{left}$)
 if $k \leq (\text{right} + 1 + \ldots + (N-1)p)$
 send($B_{\mu}(k:n), \text{right}$)
 end
 $k \leftarrow k + 1$
 Update $A_{\text{loc}}(\cdot, j:N)$
end

We make a few observations about this node program:

- The number of received G-column updates is maintained in the variable k.
 Note that k is incremented when a G-column is received and when a G-column is
 locally generated.
- The index of the last locally generated G-column is maintained in j. If
 $j = \text{last}$, then there is nothing left for Proc(μ) to do.
- j points to the next column of A_{loc} that will produce a G-column.
- A circulating G-column is not sent to Proc(right) if Proc(right) is the
 generator of the G-column.

Notice that when early g-columns circulate, the local computation associated
with each message is of order $O(n^2/p)$. However, as the algorithm proceeds the
selecting g-columns get shorter and there are fewer local columns to update.
Thus, towards the end of the algorithm, $O(1)$ flops are performed per received
g-column of length $O(1)$. The unfavorable computation/communication balance
approximation is improved by implementing a block column version of the above.

The messages are now block columns of G and local computation is more
nearly level-3.

Additional details on ring factorization procedures may be found in Geist &
M.T. Heath [1986], Ipsen, Saad & Schultz [1988], Biethof [1988], Golub & Van
Loan [1989, Chapter 6], and Geist & Heath [1985]. An important related topic
is the parallel solution of triangular systems. See Romine & Ortega [1990],
Heath & Romines [1988], Li & Coleman [1988], and Eisenstat, Heath, Henkel
& Romines [1988].

Acknowledgement

The research was partially supported by the U.S. Army Research Office
through the Mathematical Sciences Institute, Cornell University.
References

Ch. 6. A Survey of Matrix Computations

