Remembering Ralph Byers

Q. Then R. Then What? The PhD Thesis of an Original Thinker

Charles F. Van Loan

Schooling Highlights

- **1977** Graduates from McGill. Math Major. (Nearly) Straight-A.
- Entered Cornell PhD program in Applied Mathematics.
- Took 2-semester sequence in Matrix Computations from Frank Luk.
- I become Ralph's PhD Advisor
- Begins work on Hamiltonian Problems
- Thesis: Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation

Table Of Contents

- Chapter 1 Preliminaries
- Chapter 2 Symplectic and Hamiltonian Matrices
- Chapter 3 Condition
- Chapter 4 Previous Work
- **Chapter 5** The Hamiltonian QR Algorithm
- Chapter 6 Square-Reduced Hamiltonian Matrices
- Chapter 7 Hybrid Method
- Chapter 8 Conclusions

Table Of Contents

Chapter 1	Preliminaries
Chapter 2	Symplectic and Hamiltonian Matrices
Chapter 3	Condition \implies sep, structured perturbations
Chapter 4	Previous Work
Chapter 5	The Hamiltonian QR Algorithm
Chapter 6	Square-Reduced Hamiltonian Matrices
Chapter 7	Hybrid Method \implies matrix sign function
Chapter 8	Conclusions

The 2-by-2 Block Players

The Symplectics:

$$S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \implies S^{-1} = \begin{bmatrix} S_{22}^T & -S_{12}^T \\ -S_{21}^T & S_{11}^T \end{bmatrix}$$

The Hamiltonians:

$$H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \implies H_{22} = -H_{11}^T, \ H_{12}^T = H_{12}, \ H_{21}^T = H_{21}$$

The Transformers

General Orthogonal Symplectics:

$$Q = \begin{bmatrix} Q_1 & Q_2 \\ -Q_2 & Q_1 \end{bmatrix}$$

Householder Symplectics:

$$Q = \begin{bmatrix} I - 2uu^T & 0 \\ 0 & I - 2uu^T \end{bmatrix}$$

Givens Symplectics:

$$Q = \begin{bmatrix} \operatorname{diag}(c_i) & \operatorname{diag}(s_i) \\ -\operatorname{diag}(s_i) & \operatorname{diag}(c_i) \end{bmatrix}$$

Wanted

A structure-preserving QR iteration to compute the Hamiltonian Schur Decomposition:

$$\begin{bmatrix} Q_1 & Q_2 \\ -Q_2 & Q_1 \end{bmatrix}^T \begin{bmatrix} A^T & G \\ F & -A \end{bmatrix} \begin{bmatrix} Q_1 & Q_2 \\ -Q_2 & Q_1 \end{bmatrix} = \begin{bmatrix} T^T & G \\ 0 & -T \end{bmatrix}$$

Wanted

A structure-preserving QR iteration to compute the Hamiltonian Schur Decomposition:

$$\begin{bmatrix} Q_1 & Q_2 \\ -Q_2 & Q_1 \end{bmatrix}^T \begin{bmatrix} A^T & G \\ F & -A \end{bmatrix} \begin{bmatrix} Q_1 & Q_2 \\ -Q_2 & Q_1 \end{bmatrix} = \begin{bmatrix} T^T & G \\ 0 & -T \end{bmatrix}$$

Ralph figured this out for the case rank(F) = 1, a.k.a., the single input optimal control case.

Symplectic Q. Then Symplectic R.

$$\begin{bmatrix} Q_1 & Q_2 \\ -Q_2 & Q_1 \end{bmatrix}^T \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} = \begin{bmatrix} T^T & G \\ 0 & -T \end{bmatrix}$$

Then What?

Hamiltonian QR Iteration:

$$Q^{T} \left[(H + \sigma I)(H - \sigma I)^{-1} \right] = R$$
$$H \leftarrow Q^{T} H Q$$

Ralph worked out:

- How to reduce H to condensed form.
- How to get Q without forming the symplectic $(H + \sigma I)(H \sigma I)^{-1}$.
- How to choose shifts.
- How to deflate and reorder.

Classical Ralph

"I have something to show you. It may even be new."

-1981

Other Quotes

1977

"I have been able to apply my theoretical mathematics to write algorithms to solve real problems and analyze the results. I have also been able to use the computer to gain insight into theoretical problems."

"My first love is "pure" mathematics. However, there is a common ground between "pure" mathematics and the practical world in applied mathematics. I hope to contribute to that field."

1981

"I am now engaged in thesis research on the computation of matrix functions. One of my goals is a hopefully) stable algorithm for the calculation of a matrix logarithm. This problem arises in control theory (in the area of systems identification) and in the social sciences (in the study of Markov Models). *I have come to have some understanding* of the fundamental sensitivity of this problem."

1983

	n = 5	n = 10	n = 20
Laub's Method	41	223	1445
Hamiltonian- Schur Decomposition	48	178	965

(Time in Milleseconds)

"For larger problems, the advantage of the Hamiltonian-Schur decomposition is unmistakable."