Lecture 9: Introduction to Functions

· So far our programs have been written in script files. We can also save an m-file as a function.

· Functions make the process of building complex programs easier for several reasons:

1.) Independent building and testing of subtasks.

We can build and test a piece of a program on its own by defining it as a function.

2.) Reusable code.

We can build a function to use in a specific program. In future programming projects, we can reuse the function.

3.) Isolation from unintended side effects.

The variables in the input argument list and the output argument list are the only ways a function interacts with other programs and the workspace.

· General form of a function:

Function [outArg1, outArg2,…] = fcnName(inArg1, inArg2, …)

% H1 comment line

% Other comment lines

…

(Executable code)

…

· The outArg’s are output variables. If there is only one of these, the square brackets can be dropped.

· The inArg’s are input variables.

· The lookfor function searches the text in the H1 comment line.

· The help function prints out all the comment lines in the function before the first non-comment line.

· Example

function rev = reverse(string)

% Returns string backwards

% INPUTS: string is any character array

% OUTPUTS: rev is string reversed

rev = string(end:-1:1);

We can reference this function in other functions, script files, or at the command window:

>> myString = 'computer science';

>> backwards = reverse(myString)

backwards =

ecneics retupmoc

This use of our reverse function stored the value ‘ecneics retupmoc’ in the variable backwards in the workspace.

· When Matlab runs a function, it creates a special, independent workspace for the execution of that function. In this workspace, the function uses the input arguments.

Any variables that are created in the function only exist in the function’s workspace. They are deleted after the function is executed.

The outputs of the function can then be used.

· The local workspace that a function is run in makes the piecing together of programming subtasks easier. If a variable name is used in a function, that variable name can also be used in other functions or programs, even ones that use that particular function. Matlab will not get the functions confused.

If coding is done in script files, then all variables are stored in the workspace, and Matlab might mix them up if names are reused.

· Example

function total = cornerSum(M)

% Adds the values in the 4 corners of the matrix M

% INPUTS: M is a matrix

% OUTPUTS: total

total = M(1,1) + M(1,end) + M(end,1) + M(end,end);

myString = ‘Hello’;

The following commands store the sum of the four corners of M in the variable myGlobalVar. Note that the variables total and myString exist only in the function’s workspace. The creation of myString is useless since it is not used inside of the function.

>> M=round(10*rand(5))

M =

 1 9 4 7 6

 4 5 9 7 2

 7 9 1 9 3

 7 3 3 6 8

 1 7 6 7 4

>> myGolbalVar = cornerSum(M)

myGolbalVar =

 12

· We will usually define functions, test them on their own, and then call them in other programs

· A more complex example:

This function is stored in passing.m:

function numPass = passing(m,p)

% Counts the number of entries in m that are >= p

% INPUTS: m is a vector of entries between 0 and 1 (final course grades).

% p is the minimum passing grade, 0<=p<=1.

%

% OUTPUTS: numPass is the number of students with passing grades.

count = 0;

for ii = 1:length(m)

 if m(ii) >= p

 count = count + 1;

 end

end

numPass = count;

This function is stored in numAs.m

function num = numAs(m,p)

% Counts the number of entries in m that are >= p

% INPUTS: m is a vector of entries between 0 and 1 (final course grades).

% p is the minimum A grade, 0<=p<=1.

%

% OUTPUTS: num is the number of students with a grade of A.

count = 0;

for ii = 1:length(m)

 if m(ii) >= p

 count = count + 1;

 end

end

num = count;

This script file is stored in grades.m. It uses the above two functions.

% Marcel Blais CS99 Lecture 9 grades.m

% This program computes the number of passing, failing, and A students

% using a matrix of grades.

% INPUTS: passGrade

% Agrade

% OUTPUTS: Prints results

%

% The rows of marks are organized as follows:

% Col 1 - col 3: Exam grades

% Col 4: Class participation grade

% Col 5: Project grade

marks = round(100*rand(100,5));

[m,n] = size(marks);

% Get the passing grade from the user

goodInput = 0;

while goodInput == 0

 passGrade = input('What is the passing grade for the course? ');

 if passGrade >= 0 & passGrade <= 100

 goodInput = 1;

 else

 disp('This must be a number between 0 and 100.');

 end

end

% Get the cutoff for an A from the user.

goodInput = 0;

while goodInput == 0

 Agrade = input('What is the cutoff for an A in the course? ');

 if Agrade >= 0 & Agrade <= 100

 goodInput = 1;

 else

 disp('This must be a number between 0 and 100.');

 end

end

% Compute the final grades

finalGrades = .2*(marks(:,1)+marks(:,2)+marks(:,3))+.1*marks(:,4)+.3*marks(:,5);

% Get the number of passing, failing, and A students using

numPassing = passing(finalGrades,passGrade);

failing = m - numPassing;

excellents = numAs(finalGrades, Agrade);

fprintf('The class has %d A students, ’, excellents);

fprintf(‘%d passing students, ',numPassing);

fprintf(' and %d failing students.',failing);

Here is some sample output:

>> grades

What is the passing grade for the course? 25

What is the cutoff for an A in the course? 85

The class has 1 A students, 99 passing students, and 1 failing students.

· Task 1:
A matrix is symmetric if it is equal to its transpose. Write a function that takes a matrix and returns true if that matrix is symmetric and false if the matrix is not symmetric.

· Task 2:
Write a function that accepts two points in the xy-plane and returns the Euclidean distance between them.

· Task 3:
Write a function called twoMax that accepts a vector and returns the two maximum values in the vector.

