Lecture 3: Program Design & Algorithms

· So far the programs we have written have been sequential programs. This means that we run the program, and Matlab executes each line of code in the m-file in order.

· In general, our programs should be able to:

1.) Repeat certain sections of code.

2.) Selectively move from one section of code to another.

To prepare ourselves to write programs that can do these things, we need to look at the big picture of program design.

Algorithms

· An algorithm is a step-by-step procedure for finding the solution to a problem.

· Like a recipe.

· The language of algorithms is pseudocode. Pseudocode is a hybrid mixture of code and English. It is structured like Matlab in that we write a separate line for each idea or piece of code, but each of these lines is written in English. Each line should plainly describe its idea.

· Example:

Here is an algorithm that checks whether or not an integer inputted by the user is an even number:

Prompt the user to input an integer, n

m (n/2
% we use an arrow to emphasize that this is an assignment & not a check for equality.
Check if m is an integer

If m is an integer, then n is even, otherwise, n is odd

· It is often useful to work through an example by hand before trying to come up with an algorithm to solve the general problem.

Program Design

· We will use the idea of Top-down design.

· Top-down design is the process of starting with a large task and breaking it up into smaller subtasks.

Program Design Process

1.) Clearly state the problem you are trying to solve.

To write a program successfully, you need to have both a clear statement of the problem, and you need to understand what it is you are trying to accomplish.

2.) Define the inputs required by the program and the outputs to be produced by the program.

Is there a specific format that the inputs or outputs need to be in?

3.) Design the algorithm you intend to implement in the program.

- This is where the top-down design comes into play.

> Look for logical divisions within the problem & divide the problem up into subtasks. These subtasks should be simpler than the overall problem.

> If necessary, divide these subtasks into sub-subtasks.

> Stop when you have many small, relatively simple tasks, each of which does a clearly understandable job.

- For each task, successively write in pseudocode what the program piece should do until you have something that can be easily turned into Matlab statements. This process is called successive refinement.

4.) Turn the algorithm into Matlab statements.

· Since you will be coding one task at a time, it helps to regularly test your code as you go to make sure that it is working. Doing this can save large amounts of time in step 5.

· Put all of your code together to make a working Matlab program.

5.) Test your program.

- Try to find and fix any errors (bugs) in your program.

· Make sure to test the program for all possible inputs. Try to make it fail. Fix it accordingly.

