
 
Cornell University 

Department of Computer Science 
 

CS 99:  Fundamental Programming Concepts 
Summer 2000 

 
Preliminary Examination #2 

July 25, 2000 
 

 
 
New/Updated Instructions: 
 

• = Again, this is a difficult exam.  Remember that the entire course will be curved at the end of the 
term. 

• = There are 7 problems on this exam.  The number of points each problem is worth is listed in 
brackets before the problem.  Partial credit will be awarded if you provide your reasoning. 

• = Do not begin reading the rest of the exam until instructed to begin.  When you start, make sure that 
you have all 10 pages of the exam. 

• = You may use the abbreviation println for System.out.println (and the same for print 
and System.out.print). 

• = Correctness is our primary concern, not style.  No comments are necessary in your code.  
Indentation is not an important issue.  However, unreadable code may be penalized. 

 
Old Instructions: 
 

• = You will have one hour to complete the exam. 
• = Write all your answers on the exam itself.  If you run out of space on a problem, write OVER on 

the front side of the page, and use the back side to continue your answer. 
• = This is a closed book exam.  You may not use any materials, including calculators, during the 

exam other than the exam handout and writing instruments. 
• = If you feel a question is ambiguous, stay in your seat, raise your hand, and someone will come to 

help you.  If you still feel the question is ambiguous, state some reasonable assumptions and solve 
the problem accordingly. 

• = If you finish before the last 10 minutes of the exam, you may leave quietly.  If you finish in the 
last ten minutes of the exam, please remain in your seat until the end of the exam.  Do not take out 
any additional materials. 

• = Write your 4-digit secret number (from the student questionnaire you filled out on the first day of 
the class – probably the last 4 digits of you student ID number) below.  You may also write your 
name, if you wish, or we will look it up based on your number after we grade your exam. 

 
 
 
 
 
Name or secret number:  _________________________________________________



   2

 
 
 
 

Problem Points Score 
1 20  
2 25  
3 10  
4 15  
5 10  
6 15  
7 35  

Total 130  
 
 
 
General Comments: 
 

1. Don’t put I/O in a class unless it is specified 
2. Primitive types are not classes, and therefore you cannot invoke a method on a 

primitive variable.  That means it is impossible to use .equals() on a 
primitive; you must use ==. 

3. Variables declared inside a method are only in scope until the end of the method 
REGARDLESS of what modifiers with which the method is declared.  Local data 
is always local, even if the method is static. 

4. The meaning of static is different for methods than for fields.  Many people 
confuse the two.  All methods are always in scope throughout an entire class, 
whether they are static or not. 

5. void means no return value, not no return type.  The return type of main, for 
example, is void. 



   3

1. True/False.  [20 points, each correct answer is worth 2 points, each answer left 
blank is worth 1 point, each incorrect answer is worth 0 points] 

 
 

 

         F a. Bounds checking refers to Java’s built-in checks to make 
sure you don’t assign an out-of-range value to a variable. 

 
   T       b. Using two references to the same object is called aliasing. 

 
   T       c. The final keyword is used to declare constants. 

 
   T       d. static fields are in scope throughout all methods in a 

class. 
 

         F e. The last element of an array named list can be indexed as 
list[list.length]. 

 
   T       f. It is not possible to change the size of an array object once it 

is created. 
 

         F g. Loop index variables are declared inside a loop body. 
 

   T       h. Instance data should be declared using the private 
keyword. 

 
   T       i. A sentinel value can be used to obtain an unknown amount 

of input. 
 

         F j. An infinite loop results in a compile-time error. 
 



   4

2. Short Answer.  [25 points] 
 

a. [2] What is the difference between a pre-test and a post-test loop?  Give an 
example of each in Java (just the keyword for the loop will suffice). 

 
 

A pre-test loop (e.g., while or for) checks its condition before 
executing the body; a post-test (e.g., do), after.   

 
 
 
 
 
b. [3] Since while loops can always be rewritten as for loops, and vice-

versa, why are both included in Java?  (Hint: when should you use one 
instead of the other?) 

 
 

Both are included so that fixed and variable repetition constructs are 
available. 

 
 
 
 
 
 
c. [2] What is the default value of reference variables? 

 
 

null
 
 

d. [2] What are the two kinds of members of a class? 
 
 

fields and methods 
  NOT public/private or static/non-static 
 

e. [2] Give one of the two meanings of default constructor: 
 
 

The constructor that Java generates automatically if you supply none, or a 
constructor with an empty parameter list.  Defining constructor was not 
worth any points. 



   5

f. [4] Consider the following code: 
 

int k = 0;
for (int i = 0; i < 4; i++) {

for (int j = 0; j < 10; j++) {
System.out.println(i+j);

}
}

 
How many lines of output are produced by the code? 
 
40 
 
What is the final value printed by the code? 
 
12 
 
 
 

g. [10] The header for main is given below.  Identify the purpose of each 
component. 

 
public static void main(String[] args)

 
 

public: Makes the method visible from outside of its class. 

static: Method is associated with entire class, not a particular object. 

void: Method returns nothing.

main: Name of method, first method invoked in a program. 

String[]: Array of strings, type of args.

args: Command-line arguments supplied to program.
 
 
 



   6

3. Program output.  [10 points]  For each of the following program fragments, 
provide the exact output produced by the fragment.  Use the box below the 
program to provide the output. 

 
a. [5] The list of values that the user will enter (if prompted enough times) is: 

 
42, 0, 1000, 1, 999, 50 
 
int c = Console.readInt();
while (c != 999) {

if (c > 0) {
System.out.println(c);

}
c = Console.readInt();

} 
 
 
 
 
 
 
 
 
 
b. [5] 

class Averager {

static double avg2(int i, int j,
double avg) {

avg = (double) i / j;
return avg;

}

public static void main(String[] args) {
int a = 1, b = 2;
double average = 0;
avg2(a, b, average);
System.out.println(average);

}
} 

 

42 
1000 
1 
 

0.0 



   7

4. Using Loops. [15 points] 
 
 

a. [5] Rewrite this for loop as a while loop: 
 
for (int i = 0; i <= LIMIT; i += 2) {

foo(i);
}

 
int i = 0;
while (i <= LIMIT) {

foo(i);
i += 2;

}
 
 
 

b. [5] Input an integer.  Perform data validation to enforce that it is in the 
range 1 to 100, inclusive. 

 
int i;
boolean valid = false;
do {

System.out.println(“Enter an integer (1-100): ”);
i = Console.readInt();
if (1 <= i && i <= 100) {

valid = true;
} else {

System.out.println(“Must be between 1 and”
+ “100.”);

}
} while (!valid);

 
  -3 for just using an if and not looping 
 

c. [5] Write a method named minValue to find the minimum element of an 
array of integers and return its value.   

 
int minValue(int[] a) {

int min = a[0];
for (int i = 0; i < a.length; i++) {

if (a[i] < min) {
min = a[i];

}
}
return min;

}
 

  No credit for just finding the element at the minimum index (a[0]). 



   8

5. Using Arrays. [10 points] 
 

a. [3] Declare and create an array of twenty doubles named times. 
 
 

double[] times = new double[20];
 
 
 
b. [2] Assign the 5th element of times the value 5.56. 

 
 

times[4] = 5.56
 
 
 

c. [2] Assign x the sum of the first and last elements of times. 
 

x = times[0] + times[19];
or 
x = times[0] + times[times.length-1]

 
 
 

d. [3] Assume that you have a method named sumArray that calculates the 
sum of all the values in an array.  You do not need to write the method as 
part of this problem.  Using this method, assign x the sum of the values in 
times. 

 
 

x = sumArray(times);
 
  You had to pass an array to the method to receive full credit. 



   9

6. Using Classes.  [15 points] The following questions use the Rectangle class. 
The class includes the following methods: 

 
Rectangle(int w, int l)
int area()
boolean equals(Rectangle r)

 
You do not need to write the above methods as part of this problem. 
 

a. [2] Declare a reference to an object of class Rectangle.  You may pick 
your own name for the reference variable. 

 
Rectangle rect;

 
 

b. [2] Create an object of class Rectangle, with a width of 5 and a length 
of 7, and assign it to the reference you created above.  Do not redeclare the 
reference. 

 
rect = new Rectangle(5, 7);

 
 

c. [3] Using the area()method, write code to print out the area of the 
rectangle you created in part b. 

 
System.out.println(rect.area());

 
 
 

d. [3] Given two objects of class Rectangle, r1 and r2, write code that 
prints a message stating whether the objects are equal or not.   

 
if (r1.equals(r2)) {

System.out.println(“Equal”);
} else {

System.out.println(“Not equal”);
} 

 
e. [5] What specific problem(s) would occur if the area() method were 

made static? (You may wish to do problem 7 first.) 
 

It would not be able to access any instance data – the length and width 
fields wouldn’t be in scope. 



   10

7. [35 points] Write the class Rectangle.  You should provide the following 
public methods, and any private members that you wish to include.   

 
Rectangle() // init. to width=1, length=1
Rectangle(int w, int l)
int area()
boolean isSquare()
boolean equals(Rectangle r)

 
The class also has the following private methods that you DO NOT need to write.  
They validate the width and length of a rectangle.  Use them as appropriate in the 
code that you write.  Each accepts a potential value, and returns a validated value 
(e.g., if the potential value were out-of-range, the method would return a default 
in-range value). 
 

int validateWidth(int w)
int validateLength(int l)

class Rectangle { // 1 point
private int width, length; // 4 points

public Rectangle() { // 6 points
width = length = 1;

}

public Rectangle(int w, int l) { // 8 points
width = validateWidth(w);
length = validateLength(l);

}

public int area() { // 4 points
return width * length;

}

public boolean isSquare() { // 4 points
return width == length;

}
// 8 points

public boolean equals(Rectangle r) {
return this.width == r.width

&& this.length == r.length;
}

}


	Preliminary Examination #2
	July 25, 2000

