
3 MAPLE LANGUAGE

Sections

• 3.1 Introduction

• 3.2 Language Elements

• 3.3 Operators

• 3.4 Names

• 3.5 Reserved Words

• 3.6 Statements

• 3.7 Expressions

• 3.8 Assignments

• 3.10 Worksheet Management

• 3.11 Evaluating Expressions

• 3.12 Application: Engineering Economics

• Summary

• Key Terms

• Problems
32

3.1 Introduction
Objectives

After reading this chapter, you should be able to:

• Distinguish elements of the Maple language

• Use Maple operators in accordance with operator precedence and associativity

• Choose Maple names according to variable-naming conventions

• Classify the kinds of Maple statements

• Decompose expressions into expression trees

• Manage variable assignments

• Unassign previously assigned names

• Describe Maple’s rules for automatic simplification and full evaluation

3.1 Introduction

Understanding how Maple interprets commands will greatly assist your work. This section

introduces key features of the Maple language that you will use to solve a variety of problems

throughout this text and, hopefully, in your studies.

3.1.1 Language

Maple commands constitute a written language. A written language provides a means to

communicate concepts using combinations of symbols in a defined and “universally” accepted

fashion. For instance, the English language combines words and punctuation to form sentences.

Grammar dictates the rules for constructing sentences. From properly constructed sentences,

readers may then hopefully extract meaning, assuming the writer was not incompetent or crazy.
Introduction to Maple 33

3.2 Language Elements
3.1.2 Maple Language

When speaking of Maple, consider Maple’s words as commands, functions, and other symbols

formed from standard keyboard characters. As with other languages, other symbols punctuate

Maple’s “sentences.” To write useful commands in Maple, the user must still consider grammar

and meaning, often referred to as syntax and semantics, respectively:

• Syntax governs the structure of commands and command entry

• Semantics govern how the program understands and acts upon commands

For example, refreshing a worksheet involves a one-word “sentence” composed of a known

command (restart) punctuated by a semicolon (;):

Step 25: Restart Maple

As discussed in this chapter, you build expressions using elements of Maple’s language.

3.2 Language Elements

Using a set of characters to write Maple commands, you use the following items which comprise

the written-language elements of Maple: tokens, token separators, and escape characters.

> restart; Refresh the current worksheet by erasing all current assignments.
Introduction to Maple 34

3.2 Language Elements
3.2.1 Characters

Maple’s “alphabet” uses standard keyboard characters:

• Uppercase letters: A B C D E F G H I J K L M N O P Q R S T U V W X

Y Z

• Lowercase letters: a b c d e f g h i j k l m n o p r s t u v w x y z

• Digits: 0 1 2 3 4 5 6 7 8 9

• Miscellaneous characters: @ # $ % ~ _ | ^ * + - = & , . ? ! : ; " ' ‘

\ / () [] { } < > space

If you are unfamiliar with some of the character names, you should review Appendix A. This

“alphabet” provides the characters used to build the language elements, discussed below.

3.2.2 Tokens

Maple’s tokens form many of the language’s “words,” which help you build commands, as you

would construct a sentence out of words. Table 3-1 summarizes the kinds of tokens Maple uses.

From these elements, you may construct all kinds of important expressions, as demonstrated

throughout this text. This chapter provides an overview of operators, names, reserved words, and

some punctuation. Chapter 4 delves further into integers, punctuation, and strings by showing you

how to build expressions with these elements.
Introduction to Maple 35

3.2 Language Elements
3.2.3 Token Separators

Besides punctuation, Maple distinguishes language elements with token separators that include

spaces and new lines:

• Enter spaces by pressing the spacebar on your keyboard.

• Enter new lines by pressing Enter or Return (↵).

Use as many token separators as you wish, but never break apart an element, like the assignment

operator (:=)!

3.2.4 Escape Characters

Escape characters shown in Table 3-2 resemble tokens but serve a different purpose. An escape

character tells Maple to perform a task “away from” the command line. Maple “leaves” the

command line, activates or initiates the required task, and then “returns.” For instance, Maple

evaluates commands after the prompt until encountering a #, which tells Maple to treat all

proceeding characters as inert commentary.

Table 3-1 Maple Tokens

Token Definition Reference

Operator symbol that performs mathematical tasks ?operator

Name
label for functions, mathematical variables, and system
variables

?name

Reserved
Word

reserved and unassignable command names ?keyword

Integer
whole numbers that use the digits 0, 1, 2, 3, 4, 5, 6 , 7,
8, and 9

?integer

Punctuation symbol that separates tokens: ; : , () {} []
?; or ?:, ?,,

?list

String characters enclosed by double quotes ("") ?string
Introduction to Maple 36

3.3 Operators
3.3 Operators

This section focuses on the operator token. An operator is a mathematical symbol that performs

tasks on zero or more expressions, as shown in this section.

3.3.1 Arithmetic

Maple uses the common notation for arithmetic operations shown in Table 3-3. For instance, the

expression combines the integers 1 and 2 with the addition operator, the plus sign (+).

Table 3-2 Escape Characters

Character Some Uses Example Reference

?
invoke help,
find help on topic

?sqrt ?help, ??

skip comments # hello ?comment

\
continue line, insert
control character

‘a+\nb‘ ?backslash, ?\

!
execute operating
system command

!ls ?escape

Practice!

1. Identify the following pieces of input in terms of Maple-language elements: 1, +, TEST,

sin, and, :, (), "Test Plot".

2. Does the input A := 1 produce an error message?

3. Why does the input A : = 1 produce an error message?

1 2+
Introduction to Maple 37

3.3 Operators
Elements acted upon by operators are called operands. For instance, try an expression that uses

addition and division:

Step 26: Arithmetic

Consult ?arithop for more information on arithmetic operations.

3.3.2 Read Me!

Suppose you wish to multiply a by b. Never forget to specify operators! Never enter ab. Never

enter a(b) or (b)a or (a)(b). Never even think of entering a times b. However, do enter

a*b or b*a. As discussed below, you can also specify parentheses, as in (a)*b, a*(b),

(a)*(b), and (a*b).

3.3.3 Functional Syntax

Occasionally you might see an alternative syntax that Maple allows for operators using a

functional form. For instance, rather than entering 1+2, you may enter ‘+‘(1,2). In general,

> 1 + 1/2; Add fractions together. Remember to press ↵ from now on!

Maple added to , which produces .

Table 3-3 Arithmetic Operators

Operation Symbol Standard
Math

Maple
Notation

Exponentiation ^ and **
2^3
2**3

Multiplication * 2*3

Division / 2/3

Addition + 2+3

Subtraction - 2-3

3
2
--- 1 1

2
--- 3

2

2
3

8=

2 3× 6=

2 3÷ 2
3
---=

2 3+ 5=

2 3– 1–=
Introduction to Maple 38

3.3 Operators
the functional syntax is ‘operator‘(operands). Why should you bother? This syntax helps

you form expression trees, which are discussed in Section 3.7.2.

3.3.4 Miscellaneous Operators

Consult ?index[expression] or ?operator for a complete operator list. Consult

?operators[binary], ?operators[unary], and ?operators[nullary] for

listing according to operator type. Consult ?define to create custom operators.

3.3.1 Operator Precedence

Beware of operator precedence. Operator precedence dictates that certain operators always act

upon expressions before other operators do. For example, multiplication and division precede

addition and subtraction. Perhaps you don’t believe me? Suppose you incorrectly enter the

expression such that you ignore the rules of operator precedence:

Step 27: Treat Operators with Care!

Practice!

4. In Maple Notation, determine the operators that the expression employs.

5. Assign to a the value 1. Assign to b the value 2. Multiply a and b. Now, enter ab.

Compare the output for entering a*b and ab.

6. Enter and into Maple. Compare the output from both inputs. Hint: Consult

?inequality.

> 1/2+3; Attempt to solve the problem .

1– 2
3

+

4 5≤ 5 4≥

1
2 3+

1
2 3+

Introduction to Maple 39

3.3 Operators
The expression 1/2+3 first evaluates 1/2 and then adds 3 to the result! Instead, you must

surround 2+3 with parentheses to ensure Maple’s evaluation of :

You may always surround ambiguous expressions with parentheses, but never use square brackets

([]) , curly braces ({}), or angle brackets (<>) when you need parentheses! Consult

?operators[precedence] and ?syntax for more information.

3.3.2 Operator Associativity

Operator associativity resolves the treatment of operators that have equivalent precedence. Many

operations are left associative, like subtraction (-), which means that they compute left to right.

For instance, the expression evaluates to because will be calculated before

reaching . To demonstrate, enter the input without parentheses:

Step 28: Operator Associativity

Next, change the order of Maple’s operations by surrounding 2-3 with parentheses:

Why does Maple not produce ?

> 1/(2+3); Use parentheses to solve the problem .

Now you have the correct answer!

> 1-2-3; Subtract three numbers. Which order does Maple pick for the operations?

Maple automatically evaluates by default.

> 1-(2-3); Subtract three numbers. Deliberately supply parentheses.

Maple now evaluates .

7
2
--- 1

5

1
5

1
2 3+

1
5

1 2– 3– 4– 1 2–

3–

4– 1 2–() 3– 4–=

2 1 2 3–()– 2=
Introduction to Maple 40

3.4 Names
Some operators, like exponentiation (^), require parentheses if the operators are used in

conjunction with another operator. For instance, you must enter 2^(-2) to express . These

kinds of operators are called non-associative.

3.4 Names

Equations, like , use letters as variables that represent “changeable” quantities. Maple

expressions are often constructed from such variables. This section reviews variable naming

conventions using the name token.

Practice!

7. What Maple input will produce the following output:

?

8. What happens if you enter sin((a+b); ? What correction should you make?

9. Will [1+3]/4 produce the same output as (1+3)/4? Why or why not?

10. Is 1^2^3 acceptable Maple input? Hint: Consult ?operators[precedence].

2
2–

a
2

A
1
a
---+

y mx b+=
Introduction to Maple 41

3.4 Names
3.4.1 Symbols

Maple’s language defines the most basic form of a variable as a symbol, which follows these

rules:

• You may construct symbols using lowercase letters (a-z), uppercase letters (A-Z), digits

(0-9), and the underscore character (_).

• You never use a digit as the first character of symbol.

• Maple is case sensitive. Consult ?type[symbol] for more information.

3.4.2 Name

When speaking symbolic mathematics, a Maple name typical serves the role of a variable. A

name is a symbol with the additional property of indexing, as discussed in Chapter 4. Maple

already uses many names to label functions and constants. You will use names to build and assign

expressions. Examples of valid names include A, A1, A11, A1A, A_1, a, and alpha. As a brief

example, enter an unassigned name, which Maple evaluates as just the name you entered:

Step 29: Names

Consult ?name or ?symbol, ?type[name], and ?indexed. for a complete set of rules and

more information.

3.4.3 Protected names

Maple does not allow you to use every possible name. Imagine the potential chaos if you decided

sqrt should not perform a square root! To prevent you from making potentially disastrous

assignments, Maple predefines certain names, called protected names, for library functions,

> Name; Check the value of name .

 has no assigned value, so Maple reports the name.

Name

Name Name
Introduction to Maple 42

3.4 Names
variables, and constants. Maple prevents protected names from assignments. You have already

seen examples of other protected names, such as sin and sqrt. For a list of what you cannot

assign, investigate ?ininames and ?inifcn. You should also avoid trying to reassign

keywords, as discussed in Section 3.5.

Rather than skimming multitudes of Help windows, a user typically, and inadvertently,

discovers protection during a session:

Step 30: Check for Protected Names

Otherwise, you may check for protection with type(name,protected):

Also, try entering ?name to see if Maple already uses name for a function or command name.

If you really, really want to use a protected name for an assignment, investigate ?protect or

?unprotect (but don’t tell anyone I told you).

3.4.4 Backquotes

To create more descriptive names, surround characters with backquotes, as in ‘A‘. You will

usually find the backquote (‘ or ‘) on the same keyboard key with a tilde (~). Backquotes help you

create names that Maple would normally consider illegal, such as `1A`, and `Even I am a

name!`. Such names are also available for assignments:

Step 31: Assign Backquote Names

> D := 1; Attempt to assign .

Error, attempting to assign to `D` which is protected Maple reports an error.

> type(D,protected); Check if Maple protects from assignment.

Maple confirms that is protected.

> ?D Maple opens a Help window on .

> ‘Variable 1‘ := 10; Assign a backquoted name to another.

D

D

true D

D

Introduction to Maple 43

3.4 Names
In general,

• Do not use forwards quotes (’, ’, or '), which are found on the same key with a double

quote (“, ”, or ").

• You may backquote some reserved words, but should avoid doing so.

• For an unprotected name or unreserved word, Maple automatically replaces that name

with the actual name written without backquotes.

For further rules, consult ?name.

3.4.5 Miscellaneous

After you have become familiar with Maple, you will likely encounter many items related to

Maple names. These items include local, global, and environment variables; programming

variables; indexed names; aliases; assumptions; labels; variables with assumptions; and

spreadsheet variables. You will discover these items as you work through this book.

Maple reports your assignment.

Practice!

11. Which of the following is a valid Maple name, 1 and/or ‘1‘? Hint: Enter

type(expr,name).

12. What input will generate as output?

13. Are the Maple names and equivalent? Why or why not?

14. Is protected? Hint: Refer to the symbol palette.

Variable 1 10:=

Success Practice Patience+:=

Ira ira

γ

Introduction to Maple 44

3.5 Reserved Words
3.5 Reserved Words

Maple does not consider reserved words, also called keywords, as protected names. Unlike a

protected name, Maple never allows you to change a reserved word’s meaning because the word

forms an important element of the Maple language. For instance, some reserved words include

operators, like and and union. Many reserved words are used for programming, as

demonstrated in Appendix E. Consult ?keyword for a listing of Maple’s reserved words. If you

attempt to assign a reserved word, you will receive an error message:

Step 32: Reserved Words

As discussed in ?name, you may backquote a reserved word to give a semblance of an assignable

name, but I do not recommend doing so.

3.6 Statements

Recall the language analogy for a moment. In a written language, a portion of text called a

sentence usually ends with a punctuation character, as in ending an English sentence with a

period. Well, Maple’s sentences are called statements. A statement combines tokens to form a

meaningful portion of input terminated by a semicolon (;) or colon (:). Continuing the analogy,

you might even wish to think of a worksheet as a “book,” with a collection of “sentences.”

> and := 10; Attempt to assign reserved word .

Error, reserved word `and` unexpected Maple reports an error.

Practice!

15. Are in and or reserved words?

16. Can you assign values to in and or?

and
Introduction to Maple 45

3.6 Statements

Table 3-4

Statem nce

expres ing

assign

empty

quit
-4

selecti
ry,

ix E

repetit
ix E

save
ix C

read
ix C
Maple processes each statement in succession, where each statement instructs Maple to

perform a task. Overall, Maple classifies eight categories of statements described briefly in Table

3-4. For a majority of this text, you will concentrate on expression and assignment statements. In

later studies, you will need the selection and repetition statements which help you develop

programs. Investigate ?index[statement] for a listing help topics and commands that deal

with statements.

Maple Statements

ent Definition Example Refere

sion
Entering an expression instructs Maple to
evaluate the expression.

> sqrt(4); ?enter

ment
Maple will evaluate expr and store the
results in name.

> x := sqrt(4); ?:=

Maple will do nothing and skip to the next
statement.

> ;
?;,
?empty

GUI: You will exit from a worksheet.
Command-line: You will exit from Maple.

> quit;
?quit,
Figure 1

on Choose a statement based on a condition.
> x := 1: if x <= 1
> then x:=2; end if;

?if, ?t
Append

ion Repeat a statement.
> for i from 1 to 3 do
> i; end do;

?do,
Append

Save variable assignments into a file. > save "work.m"
?save,
Append

Read in a file into Maple. > read "work.m"
?read,
Append

Practice!

17. Which portion of the input 1+1 is an expression? statement?
Introduction to Maple 46

3.7 Expressions
3.7 Expressions

This section elaborates further on the structure and construction of expressions. Later sections

rely on your understanding of how Maple interprets expressions, so study this section carefully.

3.7.1 Expression Elements

Recall that you build an expression using Maple-language elements called tokens, which are built

from Maple’s character set. Generally, Maple expressions are built from names, operators,

integers, and some punctuation. For instance, consider the mathematical expression, .

The Maple expression sqrt(1+1/10) uses the function name sqrt along with operators (+

and /) that connect the integers 1 and 10. Parentheses () punctuate this expression. Note that

including a terminator as sqrt(1+1/10); creates an expression statement, a portion of input

you enter that Maple will evaluate. For even more interesting expression “building-blocks” that

Maple provides, check out Chapter 4. Consult ?syntax and ?index[expression] for

more information.

18. Why is an assignment not an expression?

19. Why does Maple allow multiple input statements in one paragraph?

20. How does Maple classify restart?

1 1
10
------+
Introduction to Maple 47

3.7 Expressions
3.7.2 Expression Trees

Figure 3-1 demonstrates how to draw an expression, like

, as an expression tree, as shown in Figure 3-1. (In

computer science, trees tend to appear upside-down.) Following

syntax rules, like operator precedence and associativity, Maple

parses, or “splits,” the expression into subexpressions. For this

example, some subexpressions include and .

Maple continues parsing the subexpressions until reaching tokens. Names, operators, and integers

form the nodes on the expression tree.† The branches indicate which elements are acted upon, or

connected to, a particular node. Advanced students might wish to investigate

?packages[types] for related information.

3.7.3 Expression Palette

If you need help entering expressions, refer to Sections 2.5.1-2.5.3 for information.

†. More formally, Maple types form the nodes of an expression tree. The notion of expression type is explored
in Chapter 4.

Practice!

21. Draw an expression tree for the expression .

22. Which of the following Maple inputs x=10, x, 10, and sqrt(10+x/(10-x)) is an

expression? Hint: Consult ?equation for x=10.

23. Is the input x:=10 an expression?

sqrt

1

1 10

/

+

Figure 3-1 Expression Tree for

1 1
10
------+

1 1 10⁄+

1 1 10⁄+ 1 10⁄

1

a b 2.1+

Introduction to Maple 48

3.8 Assignments
3.8 Assignments

You have already seen expression statements which help you perform calculations in an

interactive session. However, what if you wish to reuse previous input or split long expressions in

a series of smaller inputs? Rather than having you retype, cut, and paste expressions all the time,

Maple conveniently provides for you assignment statements to clarify and ease your work. This

section expands the overview from Chapter 2 and demonstrates the rules and tips for assigning

expressions. Students interested in using assignments for programming should review

Appendix E.

3.8.1 Assignment Syntax

Maple’s general assignment statement name:=expression evaluates expression and

stores the result inside name. After entering an assignment, Maple replaces each instance of

name with the results of expression. For example, store the value 1 in the name :

Step 33: Assignment

Note that you should never enter assignments in reverse order, e.g., 1:=A! When used for

assignment, a Maple name is sometimes called a variable because the name represents a quantity

that can change in value. Maple provides different kinds of variables, as discussed in Appendix E.

Consult ?:= and ?assign for more rules of syntax.

24. What does the input sqrt(‘+‘(1,‘/‘(1,10))) generate? Hint: See Section 3.3.3.

> A := 1; Assign to the name the value .

Maple evaluates your assignment.

A

A 1

A 1:=
Introduction to Maple 49

3.8 Assignments
Professional Success: The Language of Assignments

How should you read name:=expr? Sometimes Maple references will say, “assign name to

expr,” or, “assign to name the value of expr.” (Refer to ?:=.) I tend to choose the latter, but

many languages actually say, “assign expr to name,” which might seem backwards. Why

backwards? When you make an assignment, your software calculates expr first and then stores

the result in name. Some books will even write to indicate an assignment. With

Maple, you type := because there is no arrow character ←, and you may actually talk about an

assignment in any of the preceding ways. But, to avoid confusion, I suggest you say “name gets

expr” or “store expr in name.”

3.8.2 Assigning Expressions

The expression that you assign does not have to be numerical. You may assign any expression,

including other names:

Step 34: Assigning other names

Eventually, might obtain a value, which will change the value of , as discussed in

Section 3.11. For now, imagine the possibilities of assigning more complicated and exotic

expressions, as in y:=m*x+b, z:=x^2/sqrt(y), and even p:=plot(exp(x),x=1..2)!

3.8.3 Using Assignments

After assigning a name, Maple replaces all future occurrences of the name with the assigned

value. Therefore, you may enter name as an expression statement to check the value assigned to

name:

> Name1 := Name2; Assign to the name the “value” .

Maple evaluates your assignment.

name expr←

Name1 Name2

Name1 Name2:=

Name2 Name1
Introduction to Maple 50

3.8 Assignments
Step 35: Check Assignment

By entering Var as an expression statement, Maple evaluated the expression represented by Var.

You will discover more about how Maple performs that evaluation in Section 3.11. Also, until you

reassign or remove the value of , Maple uses only the assigned value 1 in place of :

Step 36: Maple Remembers Assignments!

How long will Maple remember your assignment? Until you enter restart or quit Maple, as

discussed in Section 3.10. You should also consult ?assigned, ?anames, and ?unames for

checking assignments.

3.8.4 Assign and Equal are Different!

Expressions built with the equals sign (=) are called equations, not assignments! Equations are a

specific type of expression, as discussed in Chapter 4. So, what happens if you enter equals (=)

instead of the assign operator (:=)?

Step 37: Equations are not Assignments!

It may look like Maple assigned , but it didn’t! Check the value of as proof:

> Var := 1; Assign to the name the value .

Maple evaluates your assignment.

> Var; Check the value assigned to .

Maple evaluates which produces the value .

> Var+2; Form an expression using .

Maple replaced with the value .

> test = 1; The input test=1 is an expression, not an assignment.

Maple evaluates the expression.

> test; Check the value of .

Maple did NOT assign .

Var 1

Var 1:=

Var

1 Var 1

Var Var

Var

3 Var 1

test 1=

test test

test

test test
Introduction to Maple 51

3.8 Assignments
If you wanted to assign , you should have entered test:=1 instead. Check ?equation to

learn more about the proper use of =.

3.8.5 Unassigning Variables

Once assigned, a name remains assigned until the name gains another value, or the name is

cleared. Unassigning removes any previously assigned expression stored in a name. Unassign

name by surrounding name with forward quotes, as in name := ’name’:

Step 38: Unassign a name

You might wonder why entering Var:=Var will not unassign Var. When you review Section

3.11.2, you will discover why the forward quotes work. You should also consult ?unassign and

?evaln for alternative approaches to unassigning names.

> Var:=1; Assign to the name the value .

Maple evaluates the assignment.

> Var:=’Var’; Unassign the name .

Unassigning removed the stored expression.

> Var; Is still assigned to any value?

No: Unassigning cleared its value.

Practice!

25. Explain the difference between the input statements J=72 and J:=72.

26. All in one statement, evaluate the expression and assign the result to the name

.

27. Store the expression in . Assign to the value 1. Then, store the value of

in . What expression does now store? Why?

test

Var 1

Var 1:=

Var

Var Var:= Var

Var

Var Var

1 4b+

dis

a b+ c b c 1+

d d
Introduction to Maple 52

3.9 Maple Quotes
3.9 Maple Quotes

By now, you have seen a variety of Maple quotes which, I admit, can be quite confusing. Table

3-5 summarizes the quotes, how they may appear in Maple windows, and their uses. Refer also to

?quotes for online help.

3.10 Worksheet Management

Assigned names may conflict with other assignments on different worksheets during the same

Maple session. This section presents methods for efficient worksheet management.

3.10.1 Restart

Entering restart resets a Maple worksheet and removes all assignments and accessed library

packages. Appendix D and later chapters demonstrate the library packages.

28. Check the values of a, b, c, and d.

29. Unassign a, b, c, and d.

Table 3-5 Maple Quotes

Quote Symbols Use Example Reference

back ‘, ‘
form a symbol
surround commands

‘Hi Jenn!‘
‘+‘(1,2)

?‘

forward ', ’, ’
unassign
delay evaluation

x := ’x’
’’x’’

?’

double ", “, ” form a string "hello" ?"
Introduction to Maple 53

3.10 Worksheet Management
Step 39: Restarting a worksheet

For more information, consult ?restart.

3.10.2 Kernel Modes

During a session, opening a new worksheet does not necessarily start a new session with no

variable assignments! Two kernel modes determine how worksheets share name assignments:

• Shared-Kernel Mode: Worksheets share all assignments, regardless of where the

statements are entered. Entering restart removes all assignments from all open

worksheets.

• Parallel-Kernel Mode: Worksheets operate independently and do not share assignments

from other worksheets. Entering restart removes all assignments only in the worksheet

in which restart was entered.

Usually, Maple starts in shared-kernel mode. Consult ?configuring for more details on

choosing another mode.

3.10.3 Dittos

To avoid retyping many expressions, use dittos, which are nullary operators: %, %%, %%%. A single

ditto reissues the previously entered expression:

Step 40: Dittos

> Var:=1; Assign to the name the value .

Maple evaluates the assignment.

> restart; Restart the worksheet. All assignments are erased.

> Var; Check the value of ‘ .

All assignments were erased.

> a+b; Evaluate the expression .

Var 1

Var 1:=

Var

Var

a b+
Introduction to Maple 54

3.10 Worksheet Management
I suggest avoiding dittos until you have gained more experience managing your assignments.

Consult ?ditto and ?operators[nullary] for more information.

3.10.4 Assigned Names

To tell Maple to report all variables have been assigned during the current session, enter

anames(). For example, in a fresh worksheet, assign some variables and then ask Maple to tell

you the currently assigned variables:

Step 41: Assigned Names

For information and options, consult ?anames. You will find related information with ?unames

and ?assigned.

> %; Reissue the previously evaluated expression.

Maple evaluates again.

> restart; Refresh your worksheet.

> a:=1: b:=2: Assign variables and .

> anames(); Ask Maple to tell you the assigned names.

Maple reports the assigned names.

Practice!

30. Determine your system’s default kernel mode.

31. Run Maple in parallel-kernel mode. Open two worksheets. Enter the statement A:=1 in

one worksheet. Check the value of in both worksheets.

32. What output would you expect from the following Maple input statements?

 A:=3: B:=2: C:=1: %%%;

a b+

a b+ a b+

a b

a b,

A

>

Introduction to Maple 55

3.11 Evaluating Expressions
3.11 Evaluating Expressions

To fully use Maple’s power you need to learn how Maple interprets your input. Why? So that you

may understand how the evaluation of that input occurs. Up until now, you have seen Maple

evaluating basic input using “straightforward” commands. But, what if you saw input that looked

like the following?

If you check Maple, you will discover that the correct output is 2. If you didn’t anticipate that

result, don’t worry – I haven’t taught you how Maple evaluates expressions yet.

In general, Maple maintains exact, symbolic expressions whenever possible. Towards this

goal, Maple uses built-in rules to compute output: automatic simplification and full evaluation,

as discussed in this section.

3.11.1 Automatic Simplification

Usually, someone performing calculations wants the simplest, or “smallest” possible results. For

instance, 1/2 is simpler than 2/4. Simplification attempts to reduce expressions to smaller forms

and might require ingenuity. Maple thinks like a human being in this respect and employs

automatic simplification rules for reducing expressions. Maple applies these rules when

expression elements are “clearly” identical, as in many arithmetic operations:

Step 42: Automatic Simplification

> a:=1: x:=a+y: y:=1: a:=2: x;

> x:=’x’: Ensure is unassigned.

> x+x, x-x, x*x, x/x; Enter a sequence of expressions. See Chapter 4 for more details.

Maple automatically simplified each expression.

x

2x 0 x
2

1, , ,
Introduction to Maple 56

3.11 Evaluating Expressions
Automatic simplification also activates for “obvious” expressions, like and . For

other expressions, knowing exactly when Maple applies automatic simplification is difficult to

predict. Usually, you just have to enter your input and inspect the output. Consult ?assume for

information on functions that enhance Maple’s simplification capability. To apply further

expression-manipulation techniques, review Chapter 7.

3.11.1 Full Evaluation

When you enter an input, Maple performs full evaluation on all input expressions. Full evaluation

is a process that

• Converts expressions into trees

• Replaces all assigned names with their respective expressions, which are also converted

into trees

• Attempts to perform all possible automatic simplifications

• Performs all mathematical operations for each subexpression

Practice!

33. Does Maple automatically simplify expressions, such as ?

34. Enter such that Maple performs automatic simplification.

35. Does Maple simplify to ? Why or why not? How might you use assume to

generate from ?

0()sin 0()cos

x x+()sin

2 x y+()
4 x y+()

x
2

x

x x
2

Introduction to Maple 57

3.11 Evaluating Expressions
To fully evaluate an expression, Maple usually starts from the bottom of the entire tree and works

up until reaching the top of the tree. Maple will perform all operations and functions on all

subexpressions to calculate the final result.

For example, suppose you entered the expression sqrt(1+1/10). Maple would convert the

expression into a tree, as shown in Figure 3-1. To fully evaluate the input, Maple performs these

operations in succession: divide 1 by 10, add the result to 1, then take the square root of the entire

result.

3.11.2 Assignments

How does Maple treat assignments when fully evaluating an expression? Consider these two

Maple statements:

• expression expr: Maple fully evaluates expr, but performs no assignment.

• assignment name := expr: Maple fully evaluates expr and stores the results in name,

if name is assignable.

In either case, Maple reports the result as output if you terminated expr with a semicolon (;).

What happens when Maple encounters a name inside expr? For example, you might enter

x:=y+z. Maple needs to check whether, or not, the names and have assigned values to

evaluate and store the result in . If a name that belongs to expr is

• assigned, Maple replaces the name with the assigned expression retrieved from memory.

Maple evaluates expr with the substituted expression tree.

• unassigned, the name remains a symbolic value which Maple includes in the evaluation of

expr.

y z

y z+ x
Introduction to Maple 58

3.11 Evaluating Expressions
At no point, however, does Maple change any assignment for a name that belongs to the

expression tree. Continuing the example, suppose had you entered the following input:

In order of input statements, Maple first erases all assignments and assigns to the expression

. Since and have no assigned values, Maple stores in memory for the name .

Then, the value 1 is assigned to , but Maple does not evaluate , yet. Entering x causes Maple to

fully evaluate by retrieving the expression from memory, replacing with 1, adding 1 to

, and reporting the evaluation as output.

There are more nuances…what if you change the assignment for after entering y:=1?

What if were assigned before entering x:=y+z? Or, what if you change y and re-evaluate x?

The next two sections demonstrate these implications of assignments.

3.11.3 Example 1: Assigned Names

This example demonstrates what happens when Maple encounters an assigned name. Consider

the example of a sequence of Maple inputs and outputs shown in Table 3-6. The “Expression”

columns indicate how Maple stores each expression in memory after the input statements are

entered. Now, trace the session:

• Input ① restores variables to just their names.

• Input ② first assigns 2 to . Then, when assigning to , Maple replaces with 2

during the evaluation. Consequently, gets , and not , in memory!

• Input ③ changes . But, cannot change because has stored in memory.

• Input ④ resets . Again, does not change unless it gets another assignment.

> restart: x:=y+z: y:=1: x;

x

y z+ y z y z+ x

y x

x y z+ y

z 1 z+

y

y

m mx y m

y 2x mx

m y y 2x

m y
Introduction to Maple 59

3.11 Evaluating Expressions
Do you see the implications of assigning a variable, like m in Table 3-6, before using it another

expression? During full evaluation, Maple replaces all assigned names with their associated

expressions. So, the resulting expression (2x) no longer contains those assigned names (m) and

Maple “forgets” that you used the names previously.

3.11.4 Example 2: Unassigned Names

This example demonstrates what happens when Maple evaluates an expression that contains an

unassigned name. Consider the example of a sequence of Maple inputs and outputs shown in

Table 3-7. Now, trace the session:

• Input ① restores variables to just their names.

• Input ② assigns to the expression .

• Input ③ gives a value of 2 . During evaluation of , Maple replaces with 2 and

reports the result 2x. But, Maple does not assign the result of to , which remains as

 in memory.

• Input ④ gives a new value of 3 which Maple uses during evaluation of . But,

remains assigned to in memory.

• Input ⑤ unassigns . Again, the expression for remains .

Table 3-6 Full Evaluation (Assigned Names)

Order Input Statements Output m x y

① > restart: y;

② > m:=2: y:=m*x; 2

③ > m:=3: y; 3

④ > m:=’m’: y;

y m x y

y 2x:= x 2x

2x x 2x

2x m x 2x

y mx

m y m

2x y

mx

m y y

mx

m y mx
Introduction to Maple 60

3.11 Evaluating Expressions
Maple fully evaluates new values of for inputs ② through ⑤ , but the assignment for never

changes after input ② . Why? Inside Mape’s memory, the name remains assigned to the

expression throughout future inputs until you assign another expression, unassign , or

restart your worksheet. In this fashion, Maple mirrors the human ability to “remember” an

expression. This capability allows you to test different values in a previously assigned expression

without having to reassign that expression.

Table 3-7 Full Evaluation (Unassigned Names)

Order Input Statements Output m x y

① > restart: y;

② > y:=m*x;

③ > m:=2: y; 2

④ > m:=3: y; 3

⑤ > m:=’m’: y;

Practice!

Predict the output from the following input statements and then test your prediction with

Maple:

36. restart: A:=1: B; B:=A: B; A:=2: B;

37. restart: B:=A: B; A:=1: B; A:=2: B;

38. restart: x:=y: y:=x: y; x;

y m x y

y mx:= m x mx

2x x mx

3x x mx

mx m x mx

y y

y

mx y

>

>

>

Introduction to Maple 61

3.11 Evaluating Expressions
3.11.1 Execution Groups

Maple evaluates input inside an execution group from left to right, and then, from top to bottom.

So, the top input line is evaluated from left to right. The next input line is evaluated from left to

right, and so forth. Note that pressing ↵ anywhere inside an execution group enters the entire

group as input, starting at the top of the group.

3.11.2 Unevaluation

To delay full evaluation, surround an expression with forward quotes, such as ’expr’. What

does it mean to “delay” Maple? Delaying evaluation is called unevaluation, which is a process

that involves two steps after you enter ’expr’:

• stripping the input ’expr’ of the forward quotes (’’)

• attempting automatic simplification on expr

No further evaluation occurs on expr! For instance, try delaying the evaluation of sqrt(4):

Step 43: Unevaluation

Now do you see why entering name:=’name’ unassigns a name? Maple first strips

’name’ of the forward quotes, which leaves name:=name as input. Hence, name is assigned to

> sqrt(4); First, evaluate without delay!

Without quotes, Maple fully evaluates the expression.

> expr:=’sqrt(4)’; Now, delay the evaluation of .

Maple stripped sqrt(4) of its quotes..

> expr; Now, fully evaluate .

Without quotes, Maple fully evaluates .

4

2

4

expr 4:=

expr

2 expr
Introduction to Maple 62

3.11 Evaluating Expressions
itself using the literal symbol for name without any value.Consult ?uneval and ?eval for

more information.

Professional Success: Managing Assignments

Have you found how Maple “remembers” assignments a bit confusing? Worksheets show only

input and output without an indication of when computations were entered. So, you need to keep

track of statement order! The following example demonstrates the danger of forgetting statement

order.

Initiate a small Maple session and create four empty execution groups. Next, type these input

lines without entering the statements:

A := 1: #1

A := ’A’: #2

B := A: #3

B; #4

What input order will assign to the value 1? By moving your cursor up and down, enter

statements in the order #2, #3, #1, and #4.

Practice!

39. How does Maple compute ? What answer do you obtain?

40. Unassign the variable x without using restart.

41. Does Maple simplify the input ’1+2’? Hint: Consult ?uneval.

2
2

4

>

>

>

>

B

Introduction to Maple 63

3.12 Application: Engineering Economics
Such situations might arise when you forget your statement entry order. Since Maple stores

the most recent assignment, unexpected results often arise when one does not keep track of this

order. If Maple reports bizarre results, check for missing assignments or unassignments. If you

still lose track of assignments, try these tips:

❐ Select Edit→Execute→Worksheet to enter all input statements from top to bottom.

❐ Enter anames() to see a list of all currently assigned variables.

❐ Frequently check the current values of your names.

❐ Unassign names before assigning new expressions.

❐ Look for case-sensitive names and missing operators.

❐ Use the parallel-kernel mode.

❐ Delete everything, and enter restart, only as a last result, of course.

3.12 Application: Engineering Economics

This section demonstrates how Maple and its language elements assist solving an engineering-

economics problem.

3.12.1 Background

Engineers must often choose alternative plans based on economic decisions. In this section, you

calculate an item’s annual worth (AW), which is a “leveled” annual payment that represents the

item’s yearly income and cost. AW converts single payments, like the present purchase price

and future salvage value , into an equivalent annual amount . Assuming a yearly

interest rate over an item’s life cycle , calculate annual worth is calculated as

P

P() SV() A()

i n
Introduction to Maple 64

3.12 Application: Engineering Economics
, (3-1)

where

(3-2)

and

. (3-3)

• The factor converts a present value into an annual cash flow .

• The factor converts an future value into an annual cash flow .

• The lone in Eq. 3-1 indicates annual operating costs that do not need conversion.

3.12.2 Problem

Determine the annual worth of a machine that has a purchase price of $72000, an annual

maintenance and labor cost of $1000, and a salvage value of $14000, given an interest rate 12%

over a 10-year life cycle. Calculate the percent difference of annual worth for a purchase price of

$65000. Percent difference is defined as

(3-4)

3.12.3 Methodology

First, distinguish the cash-flow values between negative cost and positive income. Use an

execution group to label important variables and parameters as text:

Step 44: Economics – Restate

> restart: Refresh your worksheet.

AW P() A P⁄ i n, ,() SV() A F⁄ i n, ,() A+ +=

A P⁄ i n, ,() i() 1 i+()n

1 i+()n
1–

---------------------------=

A F⁄ i n, ,()
i

1 i+()n
1–

---------------------------=

A P⁄ i n, ,() P A

A F⁄ i n, ,() F A

A

percent difference
original changed–

original
--- 100×=
Introduction to Maple 65

3.12 Application: Engineering Economics
Before calculating specific quantities, assign the formulas from Eqs. 3-1 and 3-2 in symbolic

form. Because of Maple’s full evaluation rules, you will be able to assign different parameters

without changing how Maple stored the formulas:

Step 45: Economics – Model

Now, assign the cash-flow values:

Step 46: Economics – Separate

You can now evaluate the annual worth simply by entering the variable name. Full evaluation will

take care of variable substitution because you made your assignments after assigning the formula

for annual worth.

Step 47: Economics – Solve and Report

To produce only a certain amount of decimal places, enter evalf(expr,d), where d is the

number of digits you want Maple to use in a calculation:

To compute the percent difference for a different purchase price,

Outflow: P (initial price) = -72000, A (annual cost) = -1000
Inflow: SV (salvage value) = +14000
Parameters: i (interest rate) = 12%, n (life cycle) = 10 years

> AgivenP:=(i*(1+i)^n)/((1+i)^n-1): Assign .

> AgivenF:=(i)/((1+i)^n-1): Assign .

> ‘Annual Worth‘ := (P)*AgivenP + (SV)*AgivenF + A; Assign Eq. 3-1.

Check your formula!

> P:=-72000: A:=-1000: SV:=14000: Assign cash flows.

> i:=0.12: n:=10: Enter i as a decimal percent.

> AW1:=‘Annual Worth‘; Evaluate the annual worth.

Store the result in .

> evalf(%,7); Evaluate the previous expression with 7 digits.

You could also enter evalf(AW1,7).

A P⁄ i n, ,()

A F⁄ i n, ,()

Annual Worth
Pi 1 i+()n

1 i+()n
1–

SVi

1 i+()n
1–

--------------------------- A+ +:=

AW 1 13663.08199–:= AW1

13663.08–
Introduction to Maple 66

3.12 Application: Engineering Economics
assign a new value and re-enter ‘Annual Worth‘:

Use abs(expr) to take the absolute value of expr:

3.12.4 Solution

The annual worth of the machine is $-13663.08. The percent difference in annual worth from

lowering the purchase price to $65000 is about 9%. If you’re curious about Maple’s some built-in

functions, check out ?finance.

> A:=-65000: AW2:=‘Annual Worth‘; Evaluate the annual worth.

Store the result in .

> pdiff := abs((AW1-AW2)/AW1)*100): Percent difference = .

> evalf(pdiff,4); Round the result.

The answer is about 9%.

P

AW 2 12424.19284–:= AW2

old new–
old

------------------------ 100×

9.078
Introduction to Maple 67

3.12 Application: Engineering Economics
Summary

• The Maple language constructs expressions with tokens, which include names, operators,

reserved words, integers, punctuation and strings.

• Operator precedence and associativity determine the order that Maple chooses operators

when evaluating expressions.

• Maple names act as variables to which you may assign expressions.

• Reserved words and protected names are tokens that Maple has already defined and should

be avoided for assignments.

• Commands for Maple to act upon, like expressions and assignments, are called statements.

• Maple converts an expression into an expression tree that divides the expression into

individual tokens.

• An assignment statement evaluates an expression and stores the result in an assignable

name for later use.

• Maple evaluates expressions using full evaluation and automatic simplification.

• Automatic simplification is Maple’s built-in methods of calculating “obvious”

expressions.

• Full evaluation decomposes an expression into a tree and evaluates each subexpression.

• Full evaluation leaves unassigned names as symbolic values and replaces assigned names

with their respective expressions.

• To unassign a name, enter name := ’name’, which works because of unevaluation due

to the forward quotes.
Introduction to Maple 68

3.12 Application: Engineering Economics
Key Terms

automatic simplification

dittos

expression

expression tree

full evaluation

integer

language

name

operand

operator

operator associativity

operator precedence

parallel-kernel mode

protected names

punctuation

reserved word

semantics

shared-kernel mode

statements

string

symbol

syntax
Introduction to Maple 69

3.12 Application: Engineering Economics
tokens

unassigning

unevaluation

variable

Problems

1. Name four elements of the Maple command language.

2. Explain the difference between a mathematical expression and a Maple expression that

you enter as a statement.

3. How do Maple names and symbols differ?

4. How do protected names and reserved words differ?

5. Explain how Maple elements make up expressions.

6. Give an example of an expression that employs addition and division with integers.

7. Assume you discover the expression inside another textbook. Enter the

expression in Maple as input using Maple Notation. Should you avoid square brackets?

Why or why not?

8. Produce the Maple output ‘I am a string that includes backquotes‘ using a Maple name as

input. Hint: Consult ?name.

9. Draw an expression tree for the expression . (Hint: Do this by hand!)

10. Explain the difference between shared- and parallel-kernel modes.

11. Demonstrate Maple input that will produce the following output.

11a. 11g.

x y z+()[]

a b+()sin

A x
y
z
--+
Introduction to Maple 70

3.12 Application: Engineering Economics
12. Evaluate the following expressions using Maple. Hints: Be careful with operator

precedence and associativity. Do not worry if Maple produces a fractional result.

13. Can you assign to the name the value with the input statement 1:=A? Why or why

not? Demonstrate with Maple.

14. Perform the following tasks:

11b. 11h.

11c. 11i.

11d. 11j.

11e. 11k.

11f. 11l.

12a. 12g.

12b. 12h.

12c. 12i.

12d. 12j.

12e. 12k.

12f.
12l.

A 1+
x
z
-- y+

A
1
a
---+ A x 1+:=

A
2 A B≤

A
3 1

2
---+ A B=

x y+
z

------------ x()sin

1 2 3+ +
1
2
--- 

  3
4
---– 

 

1
2
--- 3+ 2

3
1 4+
------------ 

 

1 2– 3– 2
3

1 2 3+()– 2
1–()

1 2 3×× 2
2 4–()

2 3÷
2

1–

5 4
3
---+

A 1
Introduction to Maple 71

3.12 Application: Engineering Economics
14a. Assign to the name the value of 1.

14b. Assign to the name the value of 2.

14c. Check the values of both names and .

14d. Unassign the name .

14e. Unassign the name .

15. Enter the following input statements:

16. Why does Maple not produce the output of 5? Correct the input statements so that Maple

does. Show the corrected input with its corresponding output.

17. Assign to the value 10. Next, store the value of in . Now, change the value of to

20. Is the current value of 10 or 20? Explain and demonstrate your answer with Maple.

18. Assign to the value 123. Next, assign to the same value. Are the values of and

the same? Why or why not? Demonstrate your results and conclusions with Maple.

19. Fill in the missing information inside Table 3-8. Hint: Refer to Tables 3-6 and 3-7.

> restart: y=mx+b: m=1: b=2: x=3: y;

Table 3-8 Full Evaluation (Problem 19)

Order Input Statements Output m x

① > x:=’x’: y:=’y’:

② > x:=10;

③ > y:=x+5;

④ > x:=20: y;

⑤ > x:=’x’: y;

A

a

A a

A

a

a a b a

b

C c C c
Introduction to Maple 72

3.12 Application: Engineering Economics
20. Ceramics mix metallic and non-metallic compounds and have found wide-ranging use in

many branches of technology. A type of ceramic called spinel has the chemical compound

. Express the spinel compound using Maple names for each individual element.

Hints: Use Maple input. For names with an index, use square brackets, as discussed in

?name. For instance, enter B[1] to express .

21. If you invert the factor will you determine the factor

?

Why or why not? Demonstrate with Maple.

22. Many ingredients, such as cement, water, sand, and coarse aggregate (rocks), compose

standard structural concrete. Assuming the proper vibration to remove entrapped air, you

can approximate the total volume of concrete for a pour using the following densities:

cement = 195 pcf (pound-mass per cubic foot), water = 62.4 pcf, and aggregate

(includes rocks and sand) = 165 pcf. Suppose that you can mix a batch of concrete that

contains 250 lbm (pound-mass) of gravel, 150 lbm of sand, 100 lbm of cement, and 50

lbm of water. How many batches of concrete do you need to fill a rectangular wall with

dimensions ? Assume no volume loss due to rebar reinforcement. Hint:

Both gravel and sand make up aggregate, so add their weights together.

22a. Restart Maple.

22b. Assign the densities. For instance, rho[w]:=62.4*l6m/ft^3.

22c. Calculate the volume of each component: Volume = Density (lbm/ft3) × Mass

(lbm).

MgAl2O4

B1

A F⁄ i n, ,()

F A⁄ i% n, ,() 1 i+()n
1–

i
---------------------------=

ρc ρw

ρa

20 ft 5 ft 1 ft××
Introduction to Maple 73

3.12 Application: Engineering Economics
22d. Calculate the total volume in one batch. Hint: Sum the volumes in the previous

step.

22e. Calculate the required volume of concrete, i.e., the volume of the wall.

22f. Calculate the number of batches: Batches = Volume of wall ÷ Volume of

Batch .

23. Assume an elastic bar is axially loaded with a force , as shown in Figure 3-9.

Engineering strain is defined as a body’s change of length divided by the original

length . The engineering stress on the bar uniformly divides the load by the

original area before deformation. Thus,

 and . (3-5)

Assuming a linear relationship between stress and strain, solve these problems:

23a. Assign to the stress the expression . is called Young’s Modulus. Hint:

Refer to Appendix A and the symbol palette for entering Greek names.

23b. Assuming fundamental units of force and length, what units do stress, strain, and

Young’s Modulus have? Hint: Consider the formulas for and .

23c. Plot stress versus strain for Young’s Modulus for .

Table 3-9 Elastic Axial Bar

ft
3()

ft
3

batch⁄()

P

P
P

L

A

σ P

ε ∆

L σ P

A

ε ∆
L
---= σ P

A
---=

σ Eε=

σ Eε E

ε σ

E 10= 0 ε 1≤ ≤
Introduction to Maple 74

3.12 Application: Engineering Economics
23d. Substitute the expression for stress and that for strain into the

relationship . You can do this by hand, but type the results as text in

Maple. You should determine that .

23e. Assign to the name the entire expression determined in the above problem.

Your assignment should have the form EQN:=expr1=expr2. Hints: Include the

equal sign (=)! This expression is called an equation.

23f. Solve for using Maple. Hints: Investigate ?solve. Your input should have the

form solve(EQN,something). Your output should be .

23g. Hooke’s Law for a spring states that . Relate this equation to your results

in the above step. You should be able to show a formula for in terms of , ,

and . Compare and contrast the equations.

P A⁄ ∆ L⁄

σ Eε=

P A⁄ E∆ L⁄=

EQN

P

E∆A L⁄

P K∆=

K E A

L

Introduction to Maple 75

	3 Maple Language
	Sections
	Objectives
	3.1 Introduction
	3.1.1 Language
	3.1.2 Maple Language

	3.2 Language Elements
	3.2.1 Characters
	3.2.2 Tokens
	Table 3�1 Maple Tokens
	3.2.3 Token Separators
	3.2.4 Escape Characters
	Table 3�2 Escape Characters

	3.3 Operators
	3.3.1 Arithmetic
	Table 3�3 Arithmetic Operators
	3.3.2 Read Me!
	3.3.3 Functional Syntax
	3.3.4 Miscellaneous Operators
	3.3.1 Operator Precedence
	3.3.2 Operator Associativity

	3.4 Names
	3.4.1 Symbols
	3.4.2 Name
	3.4.3 Protected names
	3.4.4 Backquotes
	3.4.5 Miscellaneous

	3.5 Reserved Words
	3.6 Statements
	Table 3�4 Maple Statements

	3.7 Expressions
	3.7.1 Expression Elements
	3.7.2 Expression Trees
	Figure 3�1 Expression Tree for
	3.7.3 Expression Palette

	3.8 Assignments
	3.8.1 Assignment Syntax

	Professional Success: The Language of Assignments
	3.8.2 Assigning Expressions
	3.8.3 Using Assignments
	3.8.4 Assign and Equal are Different!
	3.8.5 Unassigning Variables

	3.9 Maple Quotes
	Table 3�5 Maple Quotes

	3.10 Worksheet Management
	3.10.1 Restart
	3.10.2 Kernel Modes
	3.10.3 Dittos
	3.10.4 Assigned Names

	3.11 Evaluating Expressions
	3.11.1 Automatic Simplification
	3.11.1 Full Evaluation
	3.11.2 Assignments
	3.11.3 Example 1: Assigned Names
	Table 3�6 Full Evaluation (Assigned Names)
	3.11.4 Example 2: Unassigned Names
	Table 3�7 Full Evaluation (Unassigned Names)
	3.11.1 Execution Groups
	3.11.2 Unevaluation

	Professional Success: Managing Assignments
	3.12 Application: Engineering Economics
	3.12.1 Background
	3.12.2 Problem
	3.12.3 Methodology
	3.12.4 Solution

	Summary
	Key Terms
	Problems
	Table 3�8 Full Evaluation (Problem 19)
	Table 3�9 Elastic Axial Bar

