5 Functions

Sections

- 5.1 Maple Functions
- 5.2 Polynomials
- 5.3 Trigonometry
- 5.4 Powers and Roots
- 5.5 Miscellaneous
- 5.6 Functional Notation
- 5.7 Application (TBD)
- Summary
- Key Terms
- Problems

Objectives

After reading this chapter, you should be able to:

- Identify the syntax of Maple functions
- Distinguish between function inputs and output
- Find functions from the Maple libraries
- Simulate functions with assignments
- Use functions for polynomials, trigonometry, logarithms, and more
- Develop customized Maple functions using functional notation

Professional Success: Understanding Functions

Introductory courses in engineering and science provide tools for later study. However, mathematical tools seem to fixate on apparently unimportant theories and concepts. Many students often complain, "Why are we learning this? How on earth will this ever help us?"

Knowing how underlying theories reflect physical principles helps to motivate study. Consider, for instance, why we really need functions. Functions provide realistic physical models, as demonstrated in the following example.

Consider the experiment shown in Figure 5-1. A weight \(w \) hangs from an unstretched spring and is slowly released. The final displacement \(u \) is then measured and plotted. Different weights yield different displacements, as shown in Figure 5-2. Numerous experiments eventually develop a pattern, which is a line drawn through the individual points.

Figure 5-1 Experiments
5.1 Maple Functions

One of Maple’s most common expressions is the function. You have already used some of Maple’s wealth of predefined functions to assist your work. This section reviews further aspects of Maple functions. Inspect \texttt{?inifcn} and \texttt{?index[function]} for a multitude of Maple library functions. Also, consult Appendix C for methods on finding, loading, and viewing functions.

5.1.1 Terminology

A Maple function has the general syntax \texttt{expr(exprseq)}. Usually,

- \texttt{expr} will be a name which labels the function.
- \texttt{exprseq} will be an expression sequence \texttt{expr1, expr2, ...}.

Because \(w \) is chosen for arbitrary values, \(w \) is called an \textit{independent variable} and is plotted on the horizontal axis. Independent variables are not measured during the experiment. The displacement \(u \) depends on the choice of \(w \). Experimentally measured variables are called \textit{dependent variables} and are plotted on the vertical axis.

![Figure 5-2 Measured Results](image)

Each weight causes a unique displacement. Thus, \(u \) is a function of \(w \).

In mathematical terms, \(u = f(w) \). From Figure 5-3, the relationship appears to be linear. So, you may express the slope as \(\frac{1}{k} \), where \(k \) is the stiffness of the spring. Using \(k \), you may express \(u \) as \(u = \frac{w}{k} \) or just \(w = ku \).

![Figure 5-3 Ideal Results](image)

Why choose a function? Consider the fake model shown in Figure 5-4. This model predicts that one weight can yield different displacements! Remember the “vertical-line test” for functions? This fake relationship fails that test.

![Figure 5-4 Fake Results](image)

This example shows that rules for defining functions are crucial for building accurate and realistic models. Now, consider other mathematical theories. Very often mathematical definitions and theories grow from desires to solve certain problems. Though the reasons might seem obscure, have faith that many of your early studies truly have importance!
Each expr inside exprseq is called an argument or parameter. Consult \texttt{function} and \texttt{type[function]} for further discussion.

5.1.2 Input/Output

Arguments and parameters serve as function inputs, which are quantities upon the function acts. Some functions, like \texttt{plot(x^2,x=1..2)}, require multiple arguments, whereas functions like \texttt{anames()} can accept zero arguments. Though not required, many functions produce output based on the evaluation of the input. For instance, entering \texttt{sqrt(4)} produces the output of 2 from the input 4. You may assign the result of the function’s evaluation to a variable:

Step 95: Output from a Function

\begin{verbatim}
> Result := sqrt(4);

Result := 2
\end{verbatim}

Sometimes programmers refer to evaluating a function as calling a function. You may think of the inputs as messages you pass when making the “call.” Then, the function returns your “call” with an output value. In Step 95, the output was then assigned to a name for later use.

5.1.3 Nested Functions

Functions are yet another Maple type that form expressions. You can enter functions into one another as nested functions, which are functions that employ functions as arguments. Why bother with nesting? Well, you can either enter expressions the long way, as in Step 96:

Step 96: Tedious Method for Many Functions

\begin{verbatim}
> A:=Pi/6: B:=sin(A): sqrt(B);

sqrt(sin(Pi/6))

\end{verbatim}

To save time typing, use the notion that functions are expressions. Since, each input to a function is an expression, you may input another function, as in \texttt{func1(func2(expr))}. The result of \texttt{func2(expr)} becomes the input for \texttt{func1}. For example, repeat Step 96 by nesting your functions:

Step 97: Nested Functions

\begin{verbatim}
> sqrt(sin(Pi/6));

1/2
\end{verbatim}

Maple permits nesting of functions to many levels, as in \texttt{func(func(func(\ldots)))}. You do not need to insert extra spaces as in Step 97, though doing so makes your code easier to read. You should also ensure that your parentheses “match.”

\textit{Introduction to Maple} 104
5.1.4 Operators

You may combine and manipulate functions as you would with other expressions. In general, operators should be entered after the right parenthesis (“)”) that terminates a function. For instance, to evaluate \(\sin^2(x) \) (the square of the sine of \(x \)), you would enter \(\sin(x)^2 \), but not “\(\sin^2(x) \)” or “\(\sin(x^2) \)”!

Step 98: Functions and Powers

\[
> \sin(\pi/4)^2;
\]

\[
\frac{1}{2}
\]

Remember that Maple performs full evaluation and automatic simplification on expressions composed of functions.

5.1.5 Assignments

You may use assignments to simulate functions by entering the statement \(\text{name} := \text{expr} \). Maple then replaces each instance of \(\text{name} \) with \(\text{expr} \):

Step 99: Simulated Function Assignment

\[
> y := 2*x+1;
\]

\[
y := 2x + 1 \quad \text{Assign to the variable } y \text{ the expression } 2x+1.
\]

\[
> x := 1; y;
\]

\[
3 \quad \text{Maple replaced } x \text{ with 1 inside } 2x+1, \text{ which produces } 3.
\]

However, you must never enter \(f(x) = mx + b \) as “\(f(x) := mx+b \)” to express \(f(x) \):

Step 100: Incorrect Function Assignment

\[
> x := 'x';
\]

\[
> f(x) := 2*x+1;
\]

\[
f(x) := 2x + 1 \quad \text{The function appears OK but is really incorrect!}
\]

\[
> f(1);
\]

\[
f(1) \quad \text{Maple does not evaluate } f(x) \text{ because you used the incorrect notation.}
\]

Maple does permit valid functional notation \(f(x) \) syntax, which is explained in Section 5.6.
5.2 Polynomials

Polynomials are incredibly common functions because they help approximate intricate models. This section demonstrates many functions for operating on and manipulating polynomials. For an extensive overview of all of these functions, consult *Mathematics...Algebra...Polynomials...* in the Help Browser.

5.2.1 Definition

Polynomials contain sums of terms with integer exponents:

\[(\text{term})^0 + (\text{term})^1 + (\text{term})^2 + \ldots + (\text{term})^n\]

(5-1)

where each term represents virtually any name or constant. Not all terms and powers must be present. For example, both \(x + 1\) and \(x^2 + y + 30\) are polynomials. If you are unsure, you may confirm whether or not the expression is a polynomial:

Step 101: Check Polynomial Type

```maple
> x:='x': y:='y':
> type(x^2+y+30,polynom);
true
```

For more information on polynomial types, consult `?polynom, ?content, ?ratpoly, ?type[polynom], and ?type[monomial].`

5.2.2 Arithmetic

You may use Maple operators and functions on polynomials. Beware that sometimes Maple will not simplify the resulting expression! To demonstrate, try the following steps:

Step 102: Assign Polynomials

```maple
> P1 := x^2+3*x+2;
```

Assign to \(P1\) a polynomial \(x^2 + 3x + 2\).
Step 103: Polynomial Addition

> P1+P2;

\[x^2 + 4x + 6 \]

Maple was able to add common terms. But, what about multiplication?

Step 104: Polynomial Multiplication

> P1*P2;

\[(x^2 + 3x + 2)(x + 4) \]

Chapter 7 discusses how to simplify these results.

5.2.3 Expanding

Are you wondering why Maple did not produce \(x^3 + 7x^2 + 14x + 8 \) Step 104? Maple does not prefer to multiply all terms because you might need automatic simplification for division operation in further evaluations. (See Practice Problems, below.) If you wish to force the multiplication, enter `expand(P1*P2)`:

Step 105: Expand Polynomials

> expand(P1*P2);

\[x^3 + 7x^2 + 14x + 8 \]

According to `expand`, `expand(expr)` distributes products over sums. The next chapter demonstrates further uses of `expand`.

5.2.4 Factoring

You may “reverse” the effects of expand by using `factor(polynom)`. The `factors` of a polynomial are the smallest divisible polynomials whose product yields the polynomial. For the polynomials \(P1 \) and \(P2 \), try to find their factors:

Step 106: Factor Polynomials

> factor(P1); factor(P2);

\[(x + 2)(x + 1) \]

\[(x + 4) \]

\[(x + 2)(x + 1) = x^2 + 3x + 2 = P1 \]

\[(x + 4) \text{ is the only factor of } x + 4. \]
Maple simply returns the polynomial as the sole factor when no factorization is possible. For related functions and more information, consult \texttt{?factor}, \texttt{?ifactor}, and \texttt{?roots}.

\begin{center}
\textbf{Practice!}
\end{center}

5. Determine whether or not the following statements produce a polynomial:
\begin{verbatim}
> a := \textquote{a} \colon x := \sin(a) \colon \text{poly} := x^2 + 2;
\end{verbatim}

6. Unassign \(x\). Now, store \(x^2 - 1\) in \(A\). Store \(x^2 + 3x + 2\) in \(B\).

7. Evaluate \(A^2 + AB\). Assign to \(C1\) the result.

8. Evaluate \(\frac{A}{B}\). Assign to the result \(C2\).

9. Enter \texttt{expand} and/or \texttt{factor} to simplify \(C1\) and \(C2\).

\subsection*{5.2.5 Division}

Given two expressions \(a\) and \(b\), you can divide \(a\) by \(b\) by specifying \(a \div b\) or \(a/b\). The division of \(a\) by \(b\) produces a quotient \(q\) and a remainder \(r\) such that
\[
a = b q + r.
\]

For instance, \(5 \div 3\) yields \(a = 5\), \(b = 3\), \(q = 1\), and \(r = 2\), where \(5 = 3(1) + 2\). In general, to divide \(a\) by \(b\), you may enter either \texttt{quo}(\(a, b, \text{term,}'r'\)) or \texttt{rem}(\(a, b, \text{term,}'q'\)). You may supply \(r'\) or \(q'\) as arguments to \texttt{quo} or \texttt{rem}, respectively, to automatically assign a remainder \(r\) or quotient \(q\) value:

\textbf{Step 107: Divide Polynomials}

\begin{verbatim}
> q := \text{quo}(P1,P2,x,'r');
> q, r;
\end{verbatim}

\begin{verbatim}
\text{\textcolor{red}{\texttt{x}}-1, 6}
\end{verbatim}

Divide \(a\) by \(b\) such that \(a = bq + r\).

Report the quotient \(q\) and remainder \(r\).

For more information, consult \texttt{?rem} or \texttt{?quo}, \texttt{?divide}, \texttt{?mod}, \texttt{?gcd}, \texttt{?lcm}, \texttt{?evala}, and \texttt{?irem} or \texttt{?iquo}.

\subsection*{5.2.6 Root Finding}

Factorable polynomials have \textit{roots} that equate polynomials to zero when the roots are substituted back into the polynomial. For instance, \(x^2 + 3x + 2\) factors into \((x + 2)(x + 1)\) with roots.
Many equations rely on trigonometry to transform physical models into different coordinate systems. After all, nature knows no axes! Trigonometry helps model a variety of problems throughout all branches of engineering and science. This section introduces basic trigonometric functions in Maple.

4.1 Warning! Use Radians for Angles

Many programs, including Maple, require angles to be entered in terms of radians. Use the conversion

\[
\frac{\text{radians}}{2\pi} = \frac{\text{degrees}}{360^\circ}\n\]

Practice!

10. Evaluate the quotient \(q\) and remainder \(r\) in Step 107 with \(\text{rem}\).

11. Confirm that your quotient and remainder in the above problem are valid. Hint: Use \(\text{expand}\).

12. What are the roots of \(x^3 - 3x - 2\)? Do any roots repeat? If so, how many times?
5.4 Powers and Roots

or `convert(angle, radians)`:

Step 109: Angle Conversion to Radians

```
> convert(45*degrees, radians);
```

\[\frac{1}{4}\pi \]

Maple evaluates radians in terms of \(\pi \) when possible.

Remember to always specify \(\pi \) as `Pi` when entering angles with radians! Consult `?convert[degrees]` and `?convert[radians]` for more information.

5.3.2 Trigonometric Functions

Table 5-1 summarizes common trigonometric functions. The following example demonstrates that Maple sometimes uses automatic simplification with trigonometric functions. Note the use of radians:

Step 110: Automatic Simplification and Trig

```
> sin(0), sin(Pi/2), sin(Pi);
```

0, 1, 0

Maple used automatic simplification to find the answers.

Consult `?trig` for a full listing that includes hyperbolic functions. Inverse trigonometric functions are described in `?invtrig`.

Practice!

13. Convert 120° to radians. Convert the result back to degrees.

14. Find the secant of 30°.

15. Find the tangent of \(\frac{\pi}{2} \).

16. Assume the sine of an angle is 0.35. What is the angle in degrees?

5.4 Powers and Roots

This section reviews functions that are associated with powers and roots.
5.4 Powers and Roots

5.4.1 Exponentiation

Recall that the exponentiation operators ^ and ** operators raise an expression to a power. In the following example, try entering \(123\times10^{-2}\) without using a e or E:

Step 111: Exponentiation

\[
> 123.10^(-2);
\]

1.230000000

Yes, entering \(123.0E-2\) would be quicker.

See also

- ?arithop and ?type[arithop] for ^ and **
- ?float for scientific notation with e and E

5.4.2 Roots

You have already used \(\text{sqrt}(x)\) for \(\sqrt{x}\). In general, you can also find the \(n\)th root of \(x\) with exponentiation and fractional powers:

\[
\sqrt[n]{x} = x^{\frac{1}{n}}.
\]

(5-4)

For instance, try finding the cube root of 8:

Step 112: Roots

\[
> 8^(1/3);
\]

\[\frac{1}{3}\]

\[8^{\frac{1}{3}}\]

Maple keeps the result in exact form.

\[
> \text{simplify}(8^(1/3));
\]

2

You may also enter \(\text{evalf}(A)\) to produce a float.

Step 113: Find Numerical Roots

\[
> \text{root}(8,3);
\]

2

\[2^3 = 8\]

\(\text{root}\) actually finds the principal root, as explained in ?root. Sometimes a principal root yields complex results:
Step 115: Generate Complex Root

\[> \text{simplify}((-1)^{1/3}); \]

\[\frac{1}{2} + \frac{1}{2}i\sqrt{3} \]

Find the cube root of \(-1\).

What happened to the real root, \(-1\)? \((-1)^3 = -1\)!

The next section demonstrates how to find real roots when the principal root is complex. See also \texttt{sqrt} and \texttt{roots} for related functions.

5.4.3 Real Roots

If Maple does not generate a real root and you think one exists, try a function with a rather odd name called \texttt{surd}. Just as you would use \texttt{root}, enter \texttt{surd(expr,n)}. When \(n\) is odd, then

\[
\text{surd}(x, n) = \begin{cases}
 x^{1/n} & x \geq 0 \\
 (-x)^{1/n} & x < 0
\end{cases}.
\]

(5-5)

These equations can generate real roots, especially for odd roots of negative numbers. For instance, find the real root of \((-1)^{1/3}\):

Step 116: Real Roots

\[> \text{surd}(-1, 3); \]

\[-1 \]

Find the non-complex cube root of \(-1 = (-1)^{1/3}\).

Maple found \((-1)^{1/3} = -1\).

When no real root exists, \texttt{surd} returns a complex root. For more information, consult \texttt{surd} and \texttt{arithop}.

5.4.4 Symbolic Roots

You might encounter another interesting problem when taking roots of symbolic expressions. For instance, try taking the square root of \(x^2\). You will not obtain the obvious answer \(x\):

Step 117: Problem with Symbolic Root

\[> x:=\text{'}x\text{'}; \]

Unassign \(x\).

\[> \text{root}(x^2, 2); \]

\[\sqrt{x^2} \]

Maple does not know if \(x\) is positive or negative!

Maple does not know if \(x\) is positive or negative, so Maple cannot evaluate the input any further. To convince Maple that you really want \(x\), you must tell Maple that \(x^2\) refers to a generic symbolic value:

Step 118: Symbolic Root

\[> \text{root}(x^2, 2, \text{symbolic}); \]

Find \(\sqrt{x^2}\), assuming \(x\) is strictly symbolic.
You could also instruct Maple about properties of variables using `assume`. By entering `assume(x>=0)`, Maple “knows” that x is positive. For information on applying many kinds of properties to variables for roots and other operations, investigate `?assume`.

5.4.5 Logarithms

Consult Table 6-2 for a review of logarithms. A *natural logarithm*, $\ln x$, employs the irrational base $e = 2.71828$. . . Logarithms of a general base b can be converted to \ln form using the formula

$$\log_b y = \frac{\ln y}{\ln b}.$$

(5-6)

Maple usually expresses logarithms in terms of \ln using the conversion in Eq. 5-7. For instance, find the base-10 log of 100:

Step 119: Logarithms

```maple
> x:=log[10](100); Evaluate $\log_{10}100 = x$, where $10^x = 100$.

x := ln(100)/ln(10)
log tends to produce answers in terms of $\ln$.

> simplify(x);

Also, try `evalf` for floating-point values.

2

$10^2 = 100$.
```

For more information about logarithms, consult `log` and `ilog`.

Table 5-1 Logarithms

<table>
<thead>
<tr>
<th>Function</th>
<th>Standard Math</th>
<th>Maple Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logarithm of Base b</td>
<td>$b^x = y$</td>
<td>$\log_b y = x$</td>
</tr>
<tr>
<td>Base 10 Logarithm</td>
<td>$10^x = y$</td>
<td>$\log_{10} y = x$</td>
</tr>
<tr>
<td>Natural Logarithm</td>
<td>$e^x = y$</td>
<td>$\ln y = x$</td>
</tr>
</tbody>
</table>

5.4.6 Exponential Function

To raise the constant e to a power x, do *not* enter “e^x”! Instead enter the *exponential function* `exp(x)` which equals e^x. For instance, try the following inputs:
Step 120: Exponential Function

Although Maple outputs \(\text{exp}(\text{expr}) \) as \(e^{\text{expr}} \), you must never enter “e” or “E” to produce the exponential function. If you wish to find \(e \), enter \(\text{exp}(1) \). Also, some new Maple users sometimes confuse the exponentiation operator caret (^) with the exponential function exp. See \?exp\ for more information.

Practice!

17. Evaluate \(\sqrt[3]{-8} \). Find all real and complex roots.

18. Find \(x \) such that \(7^x = 163 \). Show your answer as a float. Check the answer that Maple produces.

19. Evaluate the exponential constant to five decimal places.

20. Find \(\ln(\exp(x)) \). Discuss the relationship between the functions \(\ln \) and \(\exp \).

5.5 Miscellaneous

Table 5-2 reviews common mathematical operations and functions you might encounter throughout your education and career in engineering and science. Procedural Maple functions, like manipulation, evaluation, solving, plotting, and programming, are reviewed in later chapters.
Table 5-2 Miscellaneous Functions and Operations

<table>
<thead>
<tr>
<th>Functions</th>
<th>Standard Math</th>
<th>Maple Notation</th>
<th>Related Functions and Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Value</td>
<td>$</td>
<td>x</td>
<td>$</td>
</tr>
<tr>
<td>Boolean</td>
<td>$x \land y$</td>
<td><code>x and y</code></td>
<td><code>?boolean, ?equation, ?evalb, ?logic</code></td>
</tr>
<tr>
<td></td>
<td>$x \lor y$</td>
<td><code>x or y</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is $x \neq y$?</td>
<td><code>evalb(x <> y)</code></td>
<td></td>
</tr>
<tr>
<td>Complex</td>
<td>$\Re(x) + \Im(x)$</td>
<td><code>Re(x) + Im(x)</code></td>
<td><code>?argument, ?conjugate, ?csgn, ?evalc, ?polar</code></td>
</tr>
<tr>
<td></td>
<td>e^{ix}</td>
<td><code>exp(I*x)</code></td>
<td></td>
</tr>
<tr>
<td>Factorial</td>
<td>$x!$</td>
<td><code>factorial(x)</code></td>
<td><code>?binomial, ?combinat, ?combinat, ?factorial, ?group</code></td>
</tr>
<tr>
<td>Floats</td>
<td>$\sqrt{2} = 1.414…$</td>
<td><code>evalf(sqrt(2))</code></td>
<td><code>?evalf, ?float, ?fsolve, ?numapprox, ?trunc</code></td>
</tr>
<tr>
<td>Integer</td>
<td>$72 = (2^3)(3^2)$</td>
<td><code>ifactor(72)</code></td>
<td><code>?arith, ?ifactor, ?integer, ?trunc</code></td>
</tr>
<tr>
<td>Inverse</td>
<td>f^{-1}</td>
<td><code>f@@(-1)</code></td>
<td><code>?@, @@, ?inverfunc, readlib(inverfunc)</code></td>
</tr>
<tr>
<td>List</td>
<td>$[x_1, x_2]$</td>
<td><code>[x[1], x[2]]</code></td>
<td><code>?list, ?member, ?select, ?sort</code></td>
</tr>
<tr>
<td></td>
<td>$[f(x_1), f(x_2)]$</td>
<td><code>map(f, [x[1], x[2]])</code></td>
<td></td>
</tr>
<tr>
<td>Piecewise</td>
<td>$f(x) = \begin{cases} e^x & 0 < x \ 0 & \text{otherwise} \end{cases}$</td>
<td><code>piecewise(0<x, exp(x))</code></td>
<td><code>?piecewise</code></td>
</tr>
<tr>
<td>Product</td>
<td>(\prod_{i=1}^{n} x_i)</td>
<td><code>product(x[i], i=1..n)</code></td>
<td><code>?mul, ?product</code></td>
</tr>
<tr>
<td>Sequence</td>
<td>x_1, x_2, x_3</td>
<td><code>seq(x[i], i=1..3)</code></td>
<td><code>?seq, ?sequence, ?$</code></td>
</tr>
<tr>
<td></td>
<td>(x[i] \mid i=1..3)</td>
<td><code>x[i] \mid i=1..3</code></td>
<td></td>
</tr>
<tr>
<td>Series</td>
<td>$\cos x = 1 - \frac{1}{2} x^2 + O(x^4)$</td>
<td><code>series(cos(x), x=0, 4)</code></td>
<td><code>?Order, ?powseries, ?series, ?taylor</code></td>
</tr>
<tr>
<td>Set</td>
<td>$x \cap y$</td>
<td><code>x intersect y</code></td>
<td><code>?intersect, ?minus, ?set, ?union</code></td>
</tr>
<tr>
<td></td>
<td>$x \cup y$</td>
<td><code>x union y</code></td>
<td></td>
</tr>
<tr>
<td>Summation</td>
<td>$\sum_{i=1}^{n} x_i$</td>
<td><code>sum(x[i], i=1..n)</code></td>
<td><code>?add, ?sum</code></td>
</tr>
</tbody>
</table>
5.6 Functional Notation

Entering assignments in the form of $y := mx + b$ provides only a shortcut for simulated functions. This section discusses how entering functions in functional notation in the form of $f(x)$ is more natural than using simulated functions.

5.6.1 Definition

Use the operator \rightarrow to create your own functions that use functional notation in the form of $\text{name}(\text{args})$. Assign the function name with the syntax $\text{name} := \text{args} \rightarrow \text{expr}$:

- name defines the function name. Avoid using protected names.
- args are function arguments.
- expr is the actual expression of the function in terms of args.

You may use zero, one, or multiple arguments in args. Table 5-3 demonstrates the syntax for a variety of examples with different amounts of arguments. For further explanation, see the sections below and investigate $?\rightarrow$ and $?\text{operators}[\text{example}]$. To use a different method other than \rightarrow, consult $?\text{unapply}$. For an alternative syntax, consult $?\text{student}[\text{makeproc}]$.

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Standard Math</th>
<th>Maple Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$f() = x$</td>
<td>$f := () \rightarrow x$</td>
</tr>
<tr>
<td>one</td>
<td>$f(x) = mx + b$</td>
<td>$f := x \rightarrow mx + b$</td>
</tr>
<tr>
<td>multiple</td>
<td>$f(x, y) = x^2 + y^2$</td>
<td>$f := (x, y) \rightarrow x^2 = y^2$</td>
</tr>
</tbody>
</table>

Practice!

21. Evaluate $|−18|$, $|0|$, and $|18|$.

22. Add the real and imaginary components of e^{ix}.

23. Generate the sequence 1, 2, 4, 8 with seq or $\$$. Assign to S the result.

25. Multiply each element of S. Hint: Consult ?product.
5.6.2 Creating Functions in Functional Notation

For instance, to create a function of one variable, like \(f(x) = x^2 \), use the syntax

\[\text{name := var-> expr;} \]

Step 121: Functional Notation with One Variable

\[> \text{f := x -> x^2;} \]

\[f := x \rightarrow x^2 \]

Maple now considers \(f \) as the functional form \(f(x) \).

Step 122: Show Values with Functional Notation

\[> \text{f(0), f(1), f(2), f(3);} \]

\[0, 1, 4, 9 \]

Do not assign \(x \) to any expression. Instead, use \(f(x) \).

Practice!

26. Create a function \(\text{dis}(x) = x^3 + x^2 + x + 1 \) using functional notation.

27. Find the value of \(\text{dis}(x) \) at \(x = -1 \) and \(x = 1 \).

28. Plot \(\text{dis}(x) \) on the interval \(-1 \leq 0 \leq 1 \).

29. Create a function \(f(x, y, z) = x + y + z \) using functional notation.

5.7 Application

[To be determined]
Summary

- Functions take input, perform a task, and produce output.
- A function is a correspondence between the input (domain) and the range (output).
- You may nest Maple functions by supplying a function call as input to another function.
- You may combine functions with operators.
- Polynomials contain sums of terms with integer exponents.
- Trigonometric functions require radians for angles.
- You may find roots with root or the operator ^.
- When using root, Maple finds the principal root, which may be complex.
- To find a real root, use surd.
- Maple expresses logarithms in terms of the natural log ln.
- Maple expresses the exponential function with exp.
- To create a function f with the notation $f(x)$, use the -> operator.

Key Terms

- argument
- exponential function
- exponentiation
- factors
- functional notation
- Maple function
- natural logarithm
- nested function
- parameter
- polynomial
- principal root
- procedural Maple function
- radian
- root

Problems

1. What is a function? How do you express functions in Maple?
2. Given $f(x) = 2x^3$, evaluate $f(-1)$, $f(0)$, and $f(1)$ using Maple using a simulated function.
3. For Problems 3a through 3c, let $P = x^2 + 6x + 7$ and $Q = x + 1$.
 3a. Evaluate $P + Q$ and $P - Q$.
 3b. Evaluate PQ, P^2Q, and $\frac{P}{Q}$. Distribute (multiply out) all products and sums.
 3c. Divide P by Q using both rem and quo. Show the quotient and remainder in both cases. Hint: For instance, enter rem(P, Q, x, 'q') for rem.
 3d. Confirm your results in Problem 3c. Hint: Try both evalb and expand.
4. Factor the polynomial \(x^4 - 2x^2 + 1 \). How many different roots does the polynomial contain? How many times does each root factorize the polynomial? Hint: Try \texttt{factor} and \texttt{roots}.

5. Evaluate \(\sqrt[3]{-72} \). Show both real and complex roots. Hints: Use \texttt{simplify} to clarify the results. Note that Maple will show fractional components.

6. Can you take the natural logarithm of a negative number? Demonstrate your answer with a plot of \(\ln x \) on \(-1 \leq x \leq 1\).

7. Evaluate the following expressions:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>(\sin^2(x))</td>
<td>7f</td>
</tr>
<tr>
<td>7b</td>
<td>(\sin \left(\frac{\pi}{4} \right))</td>
<td>7g</td>
</tr>
<tr>
<td>7c</td>
<td>(\sin^2 \left(\frac{\pi}{4} \right))</td>
<td>7h</td>
</tr>
<tr>
<td>7d</td>
<td>(\sqrt{\sin(17)}) (produce both exact and decimal results)</td>
<td>7i</td>
</tr>
<tr>
<td>7e</td>
<td>(\tan(45^\circ))</td>
<td>7j</td>
</tr>
</tbody>
</table>

8. Create a function that finds a trapezoid’s area

\[
\text{trap}(b_1, b_2, h) = h \times \left(\frac{b_1 + b_2}{2} \right)
\]

using functional notation. Evaluate \(\text{trap}(1, 2, 3) \) to test your function.

9. Snow blowing over large unblocked distances called \textit{fetch} contributes to accumulating snow drifts. Given the relationship between snow transport capacity \(\frac{Q_t}{Q_{inf}} \) and fetch \(F \) (m)

\[
\frac{Q_t}{Q_{inf}} = \left(1 - 0.14 \frac{F}{3000} \right)
\]

Compute \(F \) assuming \(\frac{Q_t}{Q_{inf}} = 0.8 \). Does transport capacity increase or decrease as fetch increases? Hints: Rearrange the equation with logarithms on both sides. Also, consider entering \texttt{assume(F>0)}.

10. [note to self - tensor transformation for angles, trig]