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Complexity of PHL

In this lecture we show the PSPACE -hardness of propositional Hoare logic (PHL). This
result was first proved in [6] by a direct encoding of arbitrary polynomial-space Turing ma-
chines. The proof given here is a simpler proof from [2] encoding the universality problem for
nondeterministic finite automata, a well-known PSPACE -complete problem [3] (see Lecture
??).

Recall from Lecture ?? that the deduction rules of PHL consist of the usual composition,
conditional, while, and weakening rules of Hoare logic, as well as the and- and or-rule

{c} p {d}, c ∈ C

{
∨

C} p {d}
{b} p {c}, c ∈ C

{b} p {
∧

C}

for any finite set C of propositions. The and- and or-rule are not part of the traditional
formulation [1] but are necessary for completeness [7]. The assignment axiom is meaningless
in PHL and is omitted. We are interested in the validity of rules of the form

{b1} p1 {c1}, . . . , {bn} pn {cn}
{b} p {c}

(19.1)

interpreted as universal Horn sentences over relational models.

We consider two related decision problems: given a rule of the form (19.1),

(i) is it relationally valid? That is, is it true in all relational models?

(ii) is it derivable in PHL?

We show that both of these problems are PSPACE -hard by a single reduction from the
universality problem for nondeterministic finite automata: given such an automaton M over
input alphabet {0, 1} with states Q, nondeterministic transition function ∆ : Q×{0, 1} → 2Q,
start states S ⊆ Q, and final states F ⊆ Q, does M accept all strings?

Intuitively, our construction simulates the subset construction for forming a deterministic
automaton from M (see for example [4, 5]). Typically, one thinks of pebbles placed on the
states of M and moved according to the transition rules of M . The pebbles keep track of all
the states that M could possibly be in after scanning a prefix of the input string. We start
at time 0 with pebbles on all the start states of M . Now say we have a set A of states of M
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occupied by pebbles at time t. If the next input symbol is a, at time t + 1 we place a pebble
on each state reachable under input symbol a from a state in A.

To encode this in PHL, let au be an atomic proposition for each state u ∈ Q. Let b be
another atomic proposition and let p be an atomic program. Let

start
def
=

∧
u∈S

au final
def
=

∨
u∈F

au.

Consider the rule

{au ∧ b} p {av} for all v ∈ ∆(u, 1), {au ∧ ¬b} p {av} for all v ∈ ∆(u, 0)

{start}while final do p {0}
(19.2)

Note that this rule is linear in the size of the description of the automaton.

Intuitively, au says that state u is occupied by a pebble, and b (respectively, ¬b) says that
the next input symbol is 1 (respectively, 0). The program p says to place pebbles on at least
all states reachable from a currently pebbled state under the next input symbol according
to the transition rules of M . The formula start says that all start states are pebbled, and
final says that at least one final state is pebbled. Other subexpressions of (19.2) have the
following intuitive meanings:

{au ∧ b} p {av} “If state u is pebbled at time t, and if the next input
symbol is 1, then there must be a pebble on state v
at time t + 1.”

while final do p “Continue updating the pebble positions as long as
there is a final state occupied by a pebble.”

The formula (19.2) says intuitively that if all start states are initially pebbled, and if in
each step the pebbles are moved such that at least those states that are reachable under the
current input symbol from a currently pebbled state are pebbled in the next step, then there
is always a pebble on a final state.

Now we proceed to the formal proof of the correctness of this construction.

Theorem 19.1 The following are equivalent:

(i) The rule (19.2) is relationally valid.

(ii) The rule (19.2) is derivable in PHL.

(iii) The automaton M accepts all strings.
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Proof. We show (ii) ⇒ (i) ⇒ (iii) ⇒ (ii). The first implication is immediate from the
soundness of PHL over relational models.

For the second implication, let x ∈ {0, 1}∗ be any input string. Build a relational model
of PHL as follows: the elements are the prefixes of x; the formula b is true at y if x = yz and
the first symbol of z is 1; the formula au is true at y if u ∈ ∆(S, y), that is, if the state u
is reachable under input string y from a start state of M ; and the program p is the relation
consisting of all pairs (y, z) for |z | = |y | + 1. An easy argument shows that all premises of
(19.2) hold in this model. By (i), the conclusion holds, thus x satisfies final, so there is a
final state reachable from a start state of M under input string x.

Finally, for the third implication, we prove (19.2) in PHL. Let

R
def
= {∆(S, x) | x ∈ {0, 1}∗} ϕ

def
=

∨
A∈R

∧
s∈A

as.

The set R is just the set of reachable states of the subset automaton. It follows in a straight-
forward way from the premises of (19.2) using the and-, or-, and weakening rules that ϕ
is an invariant of p, or in other words {ϕ} p {ϕ}. Since start → ϕ and ϕ → final, the
latter being a consequence of (iii), the conclusion of (19.2) follows from the while rule and
weakening. 2
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