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Completeness of KAT for the Hoare Theory of Relational

Models

Theorem ?? of Lecture ?? says that for any proof rule of PHL, or more generally, for any
rule of the form

{b1} p1 {c1}, . . . , {bn} pn {cn}
{b} p {c}

derivable in PHL, the corresponding equational implication (universal Horn formula)

b1p1c1 = 0 ∧ · · · ∧ bnpncn = 0 → bpc = 0 (16.1)

is a theorem of KAT. In this lecture we strengthen this result to show (Corollary 15.2) that
all universal Horn formulas of the form

r1 = 0 ∧ · · · ∧ rn = 0 → p = q (16.2)

that are relationally valid (true in all relational models) are theorems of KAT; in other words,
KAT is complete for universal Horn formulas of the form (15.2) over relational interpretations.
This result subsumes Theorem ?? of Lecture ??, since the Hoare rules are relationally valid.
Corollary 15.2 is trivially false for PHL; for example, the rule

{c} if b then p else p {c}
{c} p {c}

is not derivable, since the Hoare rules only increase the length of programs. The results of
this lecture are from [1].

To prove this result we generalize Cohen’s theorem (Lecture ??) in two ways: to handle
tests and to show completeness over relational models. The deductive completeness of KAT
over relationally valid formulas of the form (15.2) will follow as a corollary.

Let RExpP,B denote the set of terms of the language of KAT over primitive propositions
P = {p1, . . . , pm} and primitive tests B = {b1, . . . , bk}. Let r1, . . . , rn, p, q ∈ RExpP,B. Let u
be the universal expression u = (p1 + · · · + pm)∗ and let r =

∑
i ri. The formula (15.2) is

equivalent to r = 0 → p = q.

Recall the definition of the algebra RegP,B of regular sets of guarded strings over P, B
and the standard interpretation G : RExpP,B → RegP,B from Lecture ??. We showed in
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Lecture ?? that RegP,B is the free KAT on generators P, B in the sense that for any terms
s, t ∈ RExpP,B,

� s = t ⇔ G(s) = G(t). (16.3)

Note that G(u) is the set of all guarded strings over P, B.

Theorem 16.1 The following four conditions are equivalent:

(i) KAT � r = 0 → p = q

(ii) KAT∗ � r = 0 → p = q

(iii) REL � r = 0 → p = q

(iv) � p + uru = q + uru.

It does not matter whether (iv) is preceded by KAT, KAT∗, or REL, since the equational
theories of these classes coincide, as shown in Lecture ??.

Proof. Since REL ⊆ KAT∗ ⊆ KAT, the implications (i) → (ii) → (iii) hold trivially.
Also, it is clear that

KAT � p + uru = q + uru → (r = 0 → p = q),

therefore (iv) → (i) as well. It thus remains to show that (iii) → (iv). Writing equations as
pairs of inequalities, it suffices to show

REL � r = 0 → p ≤ q ⇒ � p ≤ q + uru. (16.4)

To show (15.4), we construct a relational model R on states G(u)−G(uru). Note that if
x, y, z ∈ G(u) such that xyz ∈ G(u)−G(uru), then y ∈ G(u)−G(uru). If G(u) ⊆ G(uru),
then we are done, since in that case G(p) ⊆ G(u) ⊆ G(uru) and the right-hand side of (15.4)
follows immediately from (15.3). Similarly, if G(1) ⊆ G(uru), then G(u) ⊆ G(uuru) ⊆
G(uru) and the same argument applies. We can therefore assume without loss of generality
that both G(u)−G(uru) and G(1)−G(uru) are nonempty.

The atomic symbols are interpreted in R as follows:

R(a)
def
= {(x, xaβ) | xaβ ∈ G(u)−G(uru)}, a ∈ P

R(b)
def
= {(x, x) | x = xβ ∈ G(u)−G(uru), β ≤ b}, b ∈ B.

The interpretations of compound expressions are defined inductively in the standard way for
relational models.
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We now show that for any t ∈ RExpP,B,

R(t) = {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(t)} (16.5)

by induction on the structure of t. For primitive programs a and tests b,

R(a) = {(x, xaβ) | xaβ ∈ G(u)−G(uru)}
= {(x, xαaβ) | xαaβ ∈ G(u)−G(uru)}
= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(a)},

R(b) = {(x, x) | x = xβ ∈ G(u)−G(uru), β ∈ G(b)}
= {(x, xβ) | xβ ∈ G(u)−G(uru), β ∈ G(b)}
= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(b)}.

For the constants 0 and 1, we have

R(0) = ∅
= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(0)},

R(1) = {(x, x) | x ∈ G(u)−G(uru)}
= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(1)}.

For compound expressions,

R(s + t) = R(s) ∪R(t)

= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(s)}
∪ {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(t)}

= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(s) ∪G(t)}
= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(s + t)},

R(st) = R(s) ◦R(t)

= {(x, xz) | xz ∈ G(u)−G(uru), z ∈ G(s)}
◦ {(y, yw) | yw ∈ G(u)−G(uru), w ∈ G(t)}

= {(x, xzw) | xzw ∈ G(u)−G(uru), z ∈ G(s), w ∈ G(t)}
= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(st)},

R(t∗) =
⋃
n

R(tn)

=
⋃
n

{(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(tn)}

= {(x, xy) | xy ∈ G(u)−G(uru), y ∈
⋃
n

G(tn)}

= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(t∗)}.
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We now show (15.4). Suppose the left-hand side holds. By (15.5),

R(r)
def
= {(x, xy) | xy ∈ G(u)−G(uru), y ∈ G(r)} = ∅.

By the left-hand side of (15.4), R(p) ⊆ R(q). In particular, for any x ∈ G(p) − G(uru),
(firstx, x) ∈ R(p), therefore (firstx, x) ∈ R(q) as well, thus x ∈ G(q)−G(uru). But this says
G(p)−G(uru) = G(q)−G(uru), thus G(p) ⊆ G(q)∪G(uru) = G(q +uru). It follows from
(15.3) that the right-hand side of (15.4) holds. 2

Corollary 16.2 KAT is deductively complete for formulas of the form (15.2) over relational
models.

Proof. If the formula (15.2) is valid over relational models, then by Theorem 15.1, (iv)
holds. Since KAT is complete for valid equations,

KAT ` p + uru = q + uru.

But clearly

KAT ` p + uru = q + uru ∧ r = 0 → p = q,

therefore

KAT ` r = 0 → p = q.
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