
Introduction to Kleene Algebra Lecture 14
CS786 Spring 2004 March 15, 2004

KAT and Hoare Logic

In this lecture and the next we show that KAT subsumes propositional Hoare logic (PHL).
Thus the specialized syntax and deductive apparatus of Hoare logic are inessential and can
be replaced by simple equational reasoning. Moreover, all relationally valid Hoare-style
inference rules are derivable in KAT (this is false for PHL). The results of this lecture are
from [8, 7]. In a future lecture we will show that deciding the relational validity of such rules
is PSPACE -complete.

Hoare logic, introduced by C. A. R. Hoare in 1969 [6], was the first formal system for
the specification and verification of well-structured programs. This pioneering work initiated
the field of program correctness and inspired dozens of technical articles [2, 1, 3]. For this
achievement among others, Hoare received the Turing Award in 1980. A comprehensive
introduction to Hoare logic can be found in [3].

Hoare logic uses a specialized syntax involving partial correctness assertions (PCAs) of
the form {b} p {c} and a deductive apparatus consisting of a system of specialized rules of
inference. Under certain conditions, these rules are relatively complete [2]; essentially, the
propositional fragment of the logic can be used to reduce partial correctness assertions to
static assertions about the underlying domain of computation.

The propositional fragment of Hoare logic, called propositional Hoare logic (PHL), is
subsumed by KAT. The reduction transforms PCAs to ordinary equations and the specialized
rules of inference to equational implications (universal Horn formulas). The transformed
rules are all derivable in KAT by pure equational reasoning. More generally, all Hoare-style
inference rules of the form

{b1} p1 {c1}, . . . , {bn} pn {cn}
{b} p {c}

(14.1)

that are valid over relational models are derivable in KAT; this is trivially false for PHL.

Encoding of While Programs and Partial Correctness Assertions

The encoding of the while programming constructs using the regular operators and tests
originated with propositional dynamic logic (PDL) [4]. KAT is strictly less expressive than
PDL, but is a simpler and purely equational, and is only PSPACE -complete, whereas PDL is
EXPTIME -complete. In addition, PDL interpretations are restricted to relational models.

1



Halpern and Reif [5] prove PSPACE -completeness of strict deterministic PDL, but neither
the upper nor the lower bound of the KAT PSPACE -completeness result follows from theirs.
Not only are PDL semantics restricted to relational models, but the arguments of [5] depend
on an additional nonalgebraic restriction: the relations interpreting atomic programs must
be single-valued. Without this restriction, even if only while programs are allowed, PDL is
EXPTIME -hard. In contrast, KAT imposes no such restrictions.

Hoare Logic

A common choice of programming language in Hoare logic is the language of while programs.
The first-order version of this language contains a simple assignment x := e, conditional test
if b then p else q, sequential composition p ; q, and a looping construct while b do p.

The encoding of the while program constructs in KAT is as in PDL [4]:

p ; q
def
= pq (14.2)

if b then p else q
def
= bp + bq (14.3)

while b do p
def
= (bp)∗b. (14.4)

The basic assertion of Hoare logic is the partial correctness assertion (PCA)

{b} p {c}, (14.5)

where b and c are formulas and p is a program. Intuitively, this statement asserts that
whenever b holds before the execution of the program p, then if and when p halts, c is
guaranteed to hold of the output state. It does not assert that p must halt.

For applications in program verification, the standard interpretation would be a Kleene
algebra of binary relations on a set and the Boolean algebra of subsets of the identity relation.

Semantically, programs p in Hoare logic and dynamic logic (DL) are usually interpreted
as binary input/output relations pM on a domain of computation M, and assertions are
interpreted as subsets of M [2, 10]. The definition of the relation pM is inductive on the
structure of p; for example, (p ; q)M = pM ◦ qM, the ordinary relational composition of the
relations corresponding to p and q. The meaning of the PCA (14.5) is the same as the
meaning of the DL formula b → [p]c, where → is ordinary propositional implication and
the modal construct [p]c is interpreted in the model M as the set of states s such that for
all (s, t) ∈ pM, the output state t satisfies c.

Hoare logic provides a system of specialized rules for deriving valid PCAs, one rule
for each programming construct. The verification process is inductive on the structure of
programs. The traditional Hoare inference rules are:

2



Assignment rule

{b[x/e]} x := e {b} (14.6)

Composition rule

{b} p {c}, {c} q {d}
{b} p ; q {d}

(14.7)

Conditional rule

{b ∧ c} p {d}, {¬b ∧ c} q {d}
{c} if b then p else q {d}

(14.8)

While rule

{b ∧ c} p {c}
{c}while b do p {¬b ∧ c}

(14.9)

Weakening rule

b′ → b, {b} p {c}, c → c′

{b′} p {c′}
. (14.10)

Cook [2] showed that these rules are complete relative to first-order number theory when
interpreted over the structure of arithmetic N.

Propositional Hoare logic (PHL) consists of atomic proposition and program symbols,
the usual propositional connectives, while program constructs, and PCAs built from these.
Atomic programs are interpreted as binary relations on a set M and atomic propositions are
interpreted as subsets of M. The deduction system of PHL consists of the composition, con-
ditional, while, and weakening rules (14.7)–(14.10) and propositional logic. The assignment
rule (14.6) is omitted, since there is no first-order relational structure over which to interpret
program variables; in practice, its role is played by PCAs over atomic programs that are
postulated as assumptions.

In PHL, we are concerned with the problem of determining the validity of rules of the
form

{b1} p1 {c1}, . . . , {bn} pn {cn}
{b} p {c}

(14.11)

over relational interpretations. The premises {bi} pi {ci} take the place of the assignment
rule (14.6) and are an essential part of the formulation.

3



Encoding Hoare Logic in KAT

The propositional Hoare rules can be derived as theorems of KAT. The PCA {b} p {c} is
encoded in KAT by the equation

bpc = 0. (14.12)

Intuitively, this says that the program p with preguard b and postguard c has no halting
execution. An equivalent formulation is

bp = bpc, (14.13)

which says intuitively that testing c after executing bp is always redundant.

The equivalence of (14.12) and (14.13) can be argued easily in KAT. This equivalence
was observed by Manes and Arbib [9] in a different context. Assuming (14.12),

bp = bp(c + c) by the axiom a1 = a and Boolean algebra

= bpc + bpc by distributivity

= bpc by (14.12) and the axiom a + 0 = a.

Conversely, assuming (14.13),

bpc = bpcc by (14.13)

= bp0 by associativity and Boolean algebra

= 0 by the axiom a0 = 0.

The equation (14.13) is equivalent to the inequality bp ≤ bpc, since the reverse inequality
is a theorem of KAT; it follows immediately from the axiom c ≤ 1 of Boolean algebra and
monotonicity of multiplication.

Using the encoding of while programs (14.2)–(14.4) and (14.13), the Hoare rules (14.7)–
(14.10) take the following form:

Composition rule:

bp = bpc ∧ cq = cqd → bpq = bpqd (14.14)

Conditional rule:

bcp = bcpd ∧ bcq = bcqd → c(bp + bq) = c(bp + bq)d (14.15)

4



While rule:

bcp = bcpc → c(bp)∗b = c(bp)∗b bc (14.16)

Weakening rule:

b′ ≤ b ∧ bp = bpc ∧ c ≤ c′ → b′p = b′pc′. (14.17)

These implications are to be interpreted as universal Horn formulas; that is, the variables
are implicitly universally quantified. To establish the adequacy of the translation, we show
that (14.14)–(14.17) encoding the Hoare rules (14.7)–(14.10) are theorems of KAT.

Theorem 14.1 The universal Horn formulas (14.14)–(14.17) are theorems of KAT.

Proof. First we derive (14.14). Assuming the premises

bp = bpc (14.18)

cq = cqd, (14.19)

we have

bpq = bpcq by (14.18)

= bpcqd by (14.19)

= bpqd by (14.18).

Thus the implication (14.14) holds.

For (14.15), assume the premises

bcp = bcpd (14.20)

bcq = bcqd, (14.21)

Then

c(bp + bq) = cbp + cbq by distributivity

= bcp + bcq by commutativity of tests

= bcpd + bcqd by (14.20) and (14.21)

= cbpd + cbqd by commutativity of tests

= c(bp + bq)d by distributivity.

For (14.16), by trivial simplifications it suffices to show

cbp ≤ cbpc → c(bp)∗ ≤ c(bp)∗c.

5



Assume

cbp ≤ cbpc. (14.22)

By an axiom of KA, we need only show

c + c(bp)∗cbp ≤ c(bp)∗c.

But

c + c(bp)∗cbp ≤ c + c(bp)∗cbpc by (14.22) and monotonicity

≤ c1c + c(bp)∗cbpc by Boolean algebra

≤ c(1 + (bp)∗cbp)c by distributivity

≤ c(1 + (bp)∗bp)c by monotonicity

≤ c(bp)∗c by unwinding.

Finally, for (14.17), we can rewrite the rule as

b′ ≤ b ∧ bpc = 0 ∧ c′ ≤ c → b′pc′ = 0,

which follows immediately from the monotonicity of multiplication. 2

References

[1] E. M. Clarke, S. M. German, and J. Y. Halpern. Effective axiomatizations of Hoare
logics. J. Assoc. Comput. Mach., 30:612–636, 1983.

[2] S. A. Cook. Soundness and completeness of an axiom system for program verification.
SIAM J. Comput., 7(1):70–90, February 1978.

[3] Patrick Cousot. Methods and logics for proving programs. In J. van Leeuwen, ed-
itor, Handbood of Theoretical Computer Science, volume B, pages 841–993. Elsevier,
Amsterdam, 1990.

[4] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. J. Comput. Syst. Sci., 18(2):194–211, 1979.

[5] J. Y. Halpern and J. H. Reif. The propositional dynamic logic of deterministic, well-
structured programs. Theor. Comput. Sci., 27:127–165, 1983.

[6] C. A. R. Hoare. An axiomatic basis for computer programming. Comm. Assoc. Comput.
Mach., 12:576–80, 1969.

6



[7] Dexter Kozen. On Hoare logic and Kleene algebra with tests. Trans. Computational
Logic, 1(1):60–76, July 2000.

[8] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and de-
cidability. In D. van Dalen and M. Bezem, editors, Proc. 10th Int. Workshop Computer
Science Logic (CSL’96), volume 1258 of Lecture Notes in Computer Science, pages 244–
259, Utrecht, The Netherlands, September 1996. Springer-Verlag.

[9] E. G. Manes and M. A. Arbib. Algebraic Approaches to Program Semantics. Springer-
Verlag, New York, 1986.

[10] V. R. Pratt. A practical decision method for propositional dynamic logic. In Proc. 10th
Symp. Theory of Comput., pages 326–337. ACM, 1978.

7


