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Completeness of KAT

In this lecture we show that the equational theories of the Kleene algebras with tests and
the star-continuous Kleene algebras with tests coincide. Combined with the results of the
previous lecture, this says that KAT is complete for the equational theory of relational
models and RegP,B forms the free KAT on generators P and B. This result is analogous to
the completeness result of Lecture ??, which states that the regular sets over a finite alphabet
P form the free Kleene algebra on generators P. The results of this lecture are from [5].

Theorem 15.1 Let REL denote the class of all relational Kleene algebras with tests. Let
p, q ∈ RExpP,B. The following are equivalent:

(i) KAT � p = q

(ii) KAT∗ � p = q

(iii) G(p) = G(q)

(iv) REL � p = q.

The statements (ii)–(iv) were shown to be equivalent in Theorem ?? of Lecture ??. Here
we have added (i) to the list. Thus, for the purpose of deriving identities, the infinitary star-
continuity condition provides no extra power over the finitary axiomatization KAT. However,
it does entail more Horn formulas (equational implications).

One possible approach might be to modify the completeness proof of Lecture ?? for KA
to handle tests. We take a different approach here, showing that every term p can be trans-
formed into a KAT-equivalent term p̂ such that G(p̂), the set of guarded strings represented
by p̂, is the same as R(p̂), the set of strings represented by p̂ under the ordinary interpre-
tation of regular expressions. The Boolean algebra axioms are not needed in equivalence
proofs involving such terms, so we can apply the completeness result of Lecture ?? directly.
This idea is ultimately due to Kaplan [3].

Consider the set B = {b | b ∈ B}, the set of negated atomic tests. We can view B as a
separate set of primitive symbols disjoint from B and P. Using the DeMorgan laws and the

law b = b of Boolean algebra, every term p can be transformed to a KAT-equivalent term
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p′ in which is applied only to primitive test symbols, thus we can view p′ as a regular
expression over the alphabet P ∪ B ∪ B. As such, it represents a set of strings

R(p′) ⊆ (P ∪ B ∪ B)∗

under the standard interpretation R of regular expressions as regular sets.

In general, the sets R(p′) and G(p′) may differ. For example, R(q) = {q} for primitive
action q, but G(q) = {αqβ | α, β ∈ AtomsB}.

Our main task will be to show how to further transform p′ to another KAT-equivalent
string p̂ such that all elements of R(p̂) are guarded strings and R(p̂) = G(p̂). We can then use
the completeness result of [4], since p and q will be KAT-equivalent iff p̂ and q̂ are equivalent
as regular expressions over P ∪ B ∪ B; that is, if they can be proved equivalent in pure
Kleene algebra.

Example 15.2 Consider the two terms

p = (q + b + b)∗br
p̂ = (bq + bq)∗br(b + b),

where P = {q, r} and B = {b}. There are certainly strings in R(p), qqbbbqbr for example, that
are not guarded strings. However, p and p̂ represent the same set of guarded strings under the
interpretation G, and all strings in R(p̂) are guarded strings; that is, G(p) = G(p̂) = R(p̂).
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In our inductive proof, it will be helpful to maintain terms in the following special form.
Call a term externally guarded if it is of the form α or αqβ, where α and β are atoms of
B. For an externally guarded term αqβ, define first p = α and last p = β. For an externally
guarded term α, define first p = last p = α. Define a special multiplication operation � on
externally guarded terms as follows:

rα � βs
def
=

{
rαs, if α = β,
0, if α 6= β.

This is much like fusion product on guarded strings as defined in Lecture ??, except that for
incompatible pairs of guarded strings, fusion product is undefined, whereas � is defined and
has value 0.

For any two externally guarded terms q and r, q � r is externally guarded, and q � r = qr
is a theorem of KAT; in particular,

G(q � r) = G(q) ·G(r).
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If
∑

i qi and
∑

j rj are sums of zero or more externally guarded terms, define

(
∑

i

qi) � (
∑

j

rj)
def
=

∑
i,j

qi � rj.

As above, for any two sums q and r of externally guarded terms, q � r = qr is a theorem of
KAT; in particular,

G(q � r) = G(q) ·G(r),

and q � r is a sum of externally guarded terms.

Lemma 15.3 For every term p, there is a term p̂ such that

(i) KAT |= p = p̂

(ii) R(p̂) = G(p̂)

(iii) p̂ is a sum of zero or more externally guarded terms.

Proof. As argued above, we can assume without loss of generality that all occurrences of
in p are applied to primitive tests only, thus we may view p as a term over the alphabet

P ∪ B ∪ B.

We define p̂ by induction on the structure of p. For the basis, take

p̂
def
=

∑
α,β∈AtomsB

αpβ, p ∈ P 1̂
def
=

∑
α∈AtomsB

α

b̂
def
=

∑
α≤b α, b ∈ B ∪ B 0̂

def
= 0.

In each of these cases, it is straightforward to verify (i), (ii), and (iii).

For the induction step, suppose we have terms p and q satisfying (ii) and (iii). We take

p̂ + q
def
= p + q p̂q

def
= p � q.

These constructions are easily shown to satisfy (i), (ii), and (iii).

It remains to construct p̂∗. We proceed by induction on the number of externally guarded
terms in the sum p.

For the basis, we define

0̂∗ def
= 1̂

α̂∗ def
= 1̂

̂(αqβ)∗ def
= 1̂ + αqβ, α 6= β (15.1)

̂(αqα)∗ def
= 1̂ + αq(αq)∗α. (15.2)
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For the induction step, let p = q+r, where r is an externally guarded term and q is a sum
of externally guarded terms, one fewer in number than in p. By the induction hypothesis, we

can construct q′ = q̂∗ with the desired properties. Suppose the initial atom of the externally
guarded term r is α. Then KAT |= r = αr. Moreover, the expression (rq′α)∗ is KAT-
equivalent to (r � q′ � α)∗, which by distributivity can be put into a form in which (15.1) or
(15.2) applies, yielding a term q′′ satisfying (ii) and (iii).

Reasoning in KAT,

p∗ = (q + r)∗

= q∗(rq∗)∗ by the denesting rule

= q′(rq′)∗

= q′ + q′rq′(rq′)∗ by unwinding and distributivity

= q′ + q′rq′(αrq′)∗

= q′ + q′(rq′α)∗rq′ by the sliding rule

= q′ + q′q′′rq′

= q′ + q′ � q′′ � r � q′,

which is of the desired form. 2

Theorem 15.4

KAT |= p = q ⇔ G(p) = G(q).

In other words, the equational theories of the Kleene algebras with tests and the star-continuous
Kleene algebras with tests coincide.

Proof. The forward implication is immediate, since RegP,B is a Kleene algebra with tests.

For the reverse implication, suppose G(p) = G(q). By Lemma 15.3(i) and Theorem ??
of Lecture ??, G(p̂) = G(q̂). By Lemma 15.3(ii), R(p̂) = R(q̂). By the completeness of KA
(Lecture ??), KA |= p̂ = q̂. Combining this with Lemma 15.3(i), we have KAT |= p = q. 2

Since we have shown that the equational theories of the Kleene algebras with tests and
the star-continuous Kleene algebras with tests coincide, we can henceforth write |= p = q
unambiguously in place of KAT∗ |= p = q or KAT |= p = q.

Decidability

Once we have Theorem 15.1, the decidability of the equational theory of Kleene algebra with
tests follows almost immediately from a simple reduction to Propositional Dynamic Logic
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(PDL). Any term in the language of KAT is a program of PDL (after replacing Boolean terms
b with PDL tests b?), and it is known that two such terms p and q represent the same binary
relation in all relational structures iff

PDL |= <p>c ↔ <q>c,

where c is a new primitive proposition symbol [1] (see [2]). By Theorems 15.1 and 15.4, this
is tantamount to deciding KAT-equivalence.

PDL is known to be exponential time complete [1, 6], thus the equational theory of KAT is
decidable in no more than exponential time. It is at least PSPACE -hard, since the equational
theory of Kleene algebra is [7].

We will show in Lecture ?? by different methods that the equational theory of KAT is
PSPACE -complete.
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