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Models of KAT

In this lecture we show that the equational theories of KAT, KAT™ (the star-continuous
Kleene algebras with tests), and relational Kleene algebras with tests coincide. We also
introduce a family of language-theoretic models consisting of regular sets of guarded strings,
which play the same role in KAT that the regular sets play in Kleene algebra. These results
are from [2].

The Language of Kleene Algebra with Tests

Let P and B be disjoint finite sets of symbols. Elements of P are called primitive actions and
elements of B are called primitive tests. Terms and Boolean terms are defined inductively:
e any primitive action p is a term
e any primitive test b is a Boolean term
e 0 and 1 are Boolean terms

if p and ¢ are terms, then so are p+ ¢, pg, and p™ (suitably parenthesized if necessary)

if b and ¢ are Boolean terms, then so are b + ¢, be, and b (suitably parenthesized if
necessary)

e any Boolean term is a term.

The set of all terms over P and B is denoted RExpp g. The set of all Boolean terms over B
is denoted RExpg.

An interpretation over a Kleene algebra with tests K is any homomorphism (function
commuting with the distinguished operations and constants) defined on RExpp g and taking
values in K such that the Boolean terms are mapped to elements of the distinguished Boolean
subalgebra.

If K is a Kleene algebra with tests and [ is an interpretation over K, we write K, F ¢
if the formula ¢ holds in K under the interpretation I according to the usual semantics of
first-order logic. We write KAT E ¢ (respectively, KAT™ E ¢) if the formula ¢ is a logical



consequence of the axioms of KAT (respectively, KAT*). The only formulas we consider are
equations or equational implications (universal Horn formulas).

We write KAT F ¢ if the formula ¢ is a logical consequence of KAT, i.e. if ¢ holds under
all interpretations over Kleene algebras with tests. We write KAT™ E ¢ if ¢ holds under all
interpretations over star-continuous Kleene algebras with tests.

Guarded Strings

Let P and B be disjoint finite sets of symbols. Our language-theoretic model of Kleene
algebras with tests is based on the idea of guarded strings over P and B. Guarded strings
were introduced in [1].

We obtain a guarded string from a string € P* by inserting atoms interstitially among
the symbols of . An atom is a Boolean expression representing an atom (minimal nonzero
element) of the free Boolean algebra on generators B.

Formally, an atom of B = {by,...,b;} is a string of literals c¢;cs - - - ¢, where each ¢; €
{b;,b;}. This assumes an arbitrary but fixed order b; < by < --- < by, on B; for technical
reasons, we require the literals in an atom to occur in this order. There are exactly 2* atoms,
and they are in one-to-one correspondence with the truth assignmens to B. We denote atoms
of B by a, 3, aq,.... The set of all atoms of B is denoted Atomsg. The set Atomsg will turn
out to be the multiplicative identity of our language-theoretic model Regp g.

If b € B and « is an atom of B, we write o < b if b occurs positively in a and o < b if b
occurs negatively in «. This notation is consistent with the natural order in the free Boolean
algebra generated by B.

Intuitively, the symbols of P can be thought of as instructions and atoms as conditions
that must be satisfied at some point in the computation. If o < ¢;, then « asserts that c¢;
holds (and ¢; fails) at that point in the computation.

Definition 13.1 A guarded string over P and B is any element of (AtomsgP)™*Atomsg; that
18, any string

QoP1Q1P2 - POy, 1 2 0,
where each «; is an atom of B and each p; € P. Note that a guarded string begins and ends

with an atom. If x is the guarded string above, we define first x o g and last x o Q. In
the case n =0, x is just a single atom, and first x = last x.

The set of all guarded strings over P and B is denoted GSpg, or just GS when P and B
are understood.

Let B = {b | b € B}. We denote strings in (P U B U B)*, including guarded strings, by
the letters x,y, z, 1, ... .



The analog of concatenation for guarded strings is fusion product.

Definition 13.2 The fusion product operation - is a partial binary operation on GS defined
as follows. If last x = first y, then the fusion product xy exists and is equal to the string
obtained by concatenating x and y, but writing the common atom last x = first y only once
between them.

For example, if B = {b,c} and P = {p, ¢}, then
bepbe - begbe = bepbeglbe.
Iflastx # firsty, then the fusion product xy is undefined. We usually omit the - in expressions.
If A, B C GS, define
AB “ {zy|x € A, ye B, xy exists}.

Thus AB consists of all existing fusion products of quarded strings in A with quarded strings
in B. For example, if B ={b,c}, P ={p,q}, and

A = {bcpbe, be, begbe}

B = {bepbc, be, begbe),

then

AB = {bcpbepbe, bepbe, bepbe, be, begbegbe}.

Whereas the operation - is partial when applied to guarded strings, it is total when
applied to sets of guarded strings. Note that if there are no existing fusion products of
strings from A and B, then AB = @. It is not difficult to show that - is associative, that it
distributes over union, and that it has two-sided identity Atomsg.

We now define a language-theoretic model Regp g based on guarded strings. The elements
of Regp g will be the regular sets of guarded strings over P and B (although we have not
yet defined regular in this context). We will also give a standard interpretation of terms
in RExpp g over Regp g analogous to the standard interpretation of regular expressions as
regular sets.

For A C GS, define inductively
A° < Atomsg AT g g
The asterate operation for sets of guarded strings is defined by

A= A

n>0



Let ~ denote set complementation in Atomsg. That is, if A C Atomsg, then A = Atomsg — A.
Consider the structure

(QGSa 2AtomSB7 U7 ) *7 _7 4, AtomsB),

which we denote briefly by 295, It is quite straightforward to verify that this is a star-
continuous Kleene algebra with tests; that is, it is a model of KAT*. The Boolean algebra
axioms hold for 2A*™ss hecause it is a set-theoretic Boolean algebra.

The star-continuity condition follows immediately from the definition of * and the dis-
tributivity of fusion product over infinite union. Since

B* = JB",

n>0

we have that

AB*C = A-(|JB"-Cc=|]AB"C

n>0 n>0

Both of these expressions denote the set
{zyz |z €A, z€ C, Iny e B"}.
For p € P and b € B, define

G(p) o {apf | a, B € Atomsg} (13.1)

Gb) ¥ {a e Atomsg | o < bl (13.2)
The structure Regp g is defined to be the subalgebra of 265 generated by the elements G(p)
for p € P and G(b) for b € B. Elements of Regp g are called regular sets.

Standard Interpretation

The map G defined on primitive actions and primitive tests in (13.1) and (13.2) extends
uniquely by induction to a homomorphism G : RExpp g — Regp g:

Glp+q) = G({p)UG(g) Glpg) = G(p)-Glq)
G(1) < Atomsg G(b) & Atomsg — G(b)
GO) € o Gp*) = G

The map G is called the standard interpretation over Regp g.



Relational Models

Relational Kleene algebras with tests are interesting because they closely model our intuition
about programs. In a relational model, the elements of K are binary relations and - is
interpreted as relational composition. Elements of the Boolean subalgebra are subsets of the
identity relation.

Formally, a relational Kleene algebra with tests on a set X is any structure
(K7 B7 U7 07 *7 _7 ®7 L)
such that
(K, U, 0, %, &, 1)

is a relational Kleene algebra, i.e. K is a family of binary relations on X, o is ordinary
relational composition, * is reflexive transitive closure, and ¢ is the identity relation on X;
and

(B, U, 0,7, &, 1)

is a Boolean algebra of subsets of ¢ (not necessarily the whole powerset).

All relational Kleene algebras with tests are star-continuous. We write REL = ¢ if the
formula ¢ holds in all relational Kleene algebras in the usual sense of first-order logic.

Completeness of KAT* over Regp g

Now we show that an equation p = ¢ is a theorem of star-continuous Kleene algebra with
tests iff it holds under the standard interpretation G over Regp g, where P and B contain
all primitive action and test symbols, respectively, appearing in p and g. Thus Regp g is the
free Kleene algebra with tests on generators P and B. In the next lecture, we will strengthen
these results by removing the assumption of star-continuity:.

Theorem 13.3 Let p,q € RExppg. Then
KAT" Ep=q & G(p)=Glq)

Equivalently, Regp g is the free star-continuous Kleene algebra with tests on generators P
and B.

The forward implication is easy, since Regp g is a star-continuous Kleene algebra. The
converse is a consequence of the following lemma.



Lemma 13.4 For any star-continuous Kleene algebra with tests K, interpretation I : RExpp g —
K7 and p,q,r € REXpP,B;

I(pgr) = sup I(par)
z€G(q)

where the supremum is with respect to the natural order in K. In particular,

I(q) = sup I(z).
z€G(q)

This result is analogous to the same result for Kleene algebras proved in Lecture 77 and
the proof is similar. Note that the star-continuity axiom is a special case.

We are most interested in the second statement, but there is a slight subtlety that requires
the stronger first statement as the induction hypothesis. In addition to the existence of the
supremum, the more general statement provides a kind of infinite distributivity law over
existing suprema. The need for this arises mainly in the induction case for -.

Proof of Lemma 13.4. We proceed by induction on the structure of q. The basis consists
of cases for primitive tests, primitive actions, 0 and 1. We argue the case for primitive actions
and primitive tests explicitly.

For a primitive action ¢ € P, recall that

G(q) = {aqf|a,p € Atomsg}.
Then
I(pgr) = I(p)I(1)I(q)I(1)I(r)
= sup{Il(p)I(a)l(q)I(B)I(r) | o, 3 € Atomsg}

= sup{/(pagpPr) | a, f € Atomsg}
= sup{/(par) |z € G(q)}.

Finite distributivity was used in the second step.

For a primitive test b € B, recall that
GOb) = {a|a<b}.
Then

I(pbr) = I(p)I(b)I(r)
= sup{I(p)I(a)I(r) | a < b}
= sup{I(par) | a < b}
= sup{I(pzr) |z € G(b)}.
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Again, finite distributivity was used in the second step.

The induction step consists of cases for +, -, *, and ~. The cases other than - and ~ are
the same as in the proof of Theorem 77 of Lecture ?77.

For the case -, recall that

Glqqd) = G(q)-G(d) ={yaz|ya € G(q), az € G(¢)}.

Applying the induction hypothesis twice,

I(pqq'r) = sup{I(pqur) |ve G(d)}
= sup{sup{I(puvr) |u € G(q)} | v € G(¢)}
= sup{/(puvr) |u € G(q), ve G(d)}.

The last step follows from a purely lattice-theoretic argument: if all the suprema in question
on the left hand side exist, then the supremum on the right hand side exists and the two
sides are equal.

Now

sup{](pum“ lue G(q), veG(d)}

)
sup{I(pyapzr) | ya € G(q), Bz € G(¢)
sup{I(pyaazr) | ya € G(q), az € G(¢
( ')
(px

}
}

) (13.3)
}

sup{I(pyazr) | ya € G(q), az € G(q
sup{/(par) | x € G(qq)}-

The justification for step (13.3) is that if a # 3, then the product in K is 0 and does not
contribute to the supremum.

For the case 7, recall that
G(b) = Atomsg —G(b) ={a|a b} ={a|a<b}.
Then
I(pbr) = sup{l(par)|a < b} =sup{I(par)|ac G(b)}.
O
Proof of Theorem 13.3. If KAT* = p = ¢ then G(p) = G(q), since Regp g is a star-
continuous Kleene algebra with tests. Conversely, if G(p) = G(q), then by Lemma 13.4, for

any star-continuous Kleene algebra with tests K and any interpretation I over K, I(p) =
I(q). Therefore KAT* |= p = q. O



Completeness over Relational Models

Finally we show completeness of KAT™® over relational interpretations. It will suffice to con-
struct a relational model isomorphic to Regp g. This construction is similar to a construction
we have seen before for Kleene algebra in Lecture 77 for regular sets.

For A any set of guarded strings, define

hA) € {(z,2y) |z €GS, ye A},

Lemma 13.5 The language-theoretic model 255 and its submodel Regp g are isomorphic to
relational models.

Proof. We show that the function h : 295 — 295%GS defined above embeds 295 isomor-
phically onto a subalgebra of the Kleene algebra of all binary relations on GS.

It is straightforward to verify that h is a homomorphism:

h(AUB) = h(A)U h(B)

(
h(AB) = {(z,2r)|z€GS, r € AB}
= {(z,2pq) | 2 € GS, pe A, q € B}
= {(z,2p) | z€GS, pe A}
o{(2p,2pq) | z € GS, p€ A, q € B}
= {(2,2p) | 2 €GS, pe A} o{(y,yq) | y € GS, ¢ € B}
= h(A) o h(B).
h(A*) = n({J A"
= [JrW)
= h(a)"
h(Atomsg) = {(z,za) |z € GS,a € Atomsg}
= {(z,z) |z € GS}
h(0) : %)

hB) = h({a|ag B})
{(z,2a) | a ¢ B}
{(yo,ya) | o & B}

= —{(ya,ya) |« € B}
= 1— h(B).



The function h is injective, since A can be uniquely recovered from h(A):

A = {y]3a (a.y) € h(A)).

The submodel Regp g is perforce isomorphic to a relational model on GS, namely the
image of Regp g under h. |

Combining Theorem 13.3, Lemma 13.5, and the fact that all relational models are star-
continuous Kleene algebras with tests, we have

Theorem 13.6 Let REL denote the class of all relational Kleene algebras with tests. Let
p,q € RExppg. The following are equivalent:

(i) KAT*Ep=gq

(i) G(p) = G(q)
(i) RELFE p=gq.

In the next lecture we will remove the assumption of star-continuity and show that the
statement KAT F p = ¢ can be added to this list. Thus KAT is complete for the equational
theory of relational models and Regp g forms the free KAT on generators P and B. This
result is analogous to the completeness result of Lecture 7?7, which states that the regular
sets over a finite alphabet P form the free Kleene algebra on generators P.
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