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Models of KAT

In this lecture we show that the equational theories of KAT, KAT∗ (the star-continuous
Kleene algebras with tests), and relational Kleene algebras with tests coincide. We also
introduce a family of language-theoretic models consisting of regular sets of guarded strings,
which play the same role in KAT that the regular sets play in Kleene algebra. These results
are from [2].

The Language of Kleene Algebra with Tests

Let P and B be disjoint finite sets of symbols. Elements of P are called primitive actions and
elements of B are called primitive tests. Terms and Boolean terms are defined inductively:

• any primitive action p is a term

• any primitive test b is a Boolean term

• 0 and 1 are Boolean terms

• if p and q are terms, then so are p + q, pq, and p∗ (suitably parenthesized if necessary)

• if b and c are Boolean terms, then so are b + c, bc, and b (suitably parenthesized if
necessary)

• any Boolean term is a term.

The set of all terms over P and B is denoted RExpP,B. The set of all Boolean terms over B
is denoted RExpB.

An interpretation over a Kleene algebra with tests K is any homomorphism (function
commuting with the distinguished operations and constants) defined on RExpP,B and taking
values in K such that the Boolean terms are mapped to elements of the distinguished Boolean
subalgebra.

If K is a Kleene algebra with tests and I is an interpretation over K, we write K, I � ϕ
if the formula ϕ holds in K under the interpretation I according to the usual semantics of
first-order logic. We write KAT � ϕ (respectively, KAT∗ � ϕ) if the formula ϕ is a logical
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consequence of the axioms of KAT (respectively, KAT∗). The only formulas we consider are
equations or equational implications (universal Horn formulas).

We write KAT � ϕ if the formula ϕ is a logical consequence of KAT, i.e. if ϕ holds under
all interpretations over Kleene algebras with tests. We write KAT∗ � ϕ if ϕ holds under all
interpretations over star-continuous Kleene algebras with tests.

Guarded Strings

Let P and B be disjoint finite sets of symbols. Our language-theoretic model of Kleene
algebras with tests is based on the idea of guarded strings over P and B. Guarded strings
were introduced in [1].

We obtain a guarded string from a string x ∈ P∗ by inserting atoms interstitially among
the symbols of x. An atom is a Boolean expression representing an atom (minimal nonzero
element) of the free Boolean algebra on generators B.

Formally, an atom of B = {b1, . . . , bk} is a string of literals c1c2 · · · ck, where each ci ∈
{bi, bi}. This assumes an arbitrary but fixed order b1 < b2 < · · · < bk on B; for technical
reasons, we require the literals in an atom to occur in this order. There are exactly 2k atoms,
and they are in one-to-one correspondence with the truth assignmens to B. We denote atoms
of B by α, β, α0, . . . . The set of all atoms of B is denoted AtomsB. The set AtomsB will turn
out to be the multiplicative identity of our language-theoretic model RegP,B.

If b ∈ B and α is an atom of B, we write α ≤ b if b occurs positively in α and α ≤ b if b
occurs negatively in α. This notation is consistent with the natural order in the free Boolean
algebra generated by B.

Intuitively, the symbols of P can be thought of as instructions and atoms as conditions
that must be satisfied at some point in the computation. If α ≤ ci, then α asserts that ci

holds (and ci fails) at that point in the computation.

Definition 13.1 A guarded string over P and B is any element of (AtomsBP)∗AtomsB; that
is, any string

α0p1α1p2 · · · pnαn, n ≥ 0,

where each αi is an atom of B and each pi ∈ P. Note that a guarded string begins and ends

with an atom. If x is the guarded string above, we define first x
def
= α0 and last x

def
= αn. In

the case n = 0, x is just a single atom, and first x = last x.

The set of all guarded strings over P and B is denoted GSP,B, or just GS when P and B
are understood.

Let B = {b | b ∈ B}. We denote strings in (P ∪ B ∪ B)∗, including guarded strings, by
the letters x, y, z, x1, . . . .
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The analog of concatenation for guarded strings is fusion product.

Definition 13.2 The fusion product operation · is a partial binary operation on GS defined
as follows. If last x = first y, then the fusion product xy exists and is equal to the string
obtained by concatenating x and y, but writing the common atom last x = first y only once
between them.

For example, if B = {b, c} and P = {p, q}, then

bcpbc · bcqbc = bcpbcqbc.

If lastx 6= firsty, then the fusion product xy is undefined. We usually omit the · in expressions.
If A, B ⊆ GS, define

AB
def
= {xy | x ∈ A, y ∈ B, xy exists}.

Thus AB consists of all existing fusion products of guarded strings in A with guarded strings
in B. For example, if B = {b, c}, P = {p, q}, and

A = {bcpbc, bc, bcqbc}
B = {bcpbc, bc, bcqbc},

then

AB = {bcpbcpbc, bcpbc, bcpbc, bc, bcqbcqbc}.

Whereas the operation · is partial when applied to guarded strings, it is total when
applied to sets of guarded strings. Note that if there are no existing fusion products of
strings from A and B, then AB = ∅. It is not difficult to show that · is associative, that it
distributes over union, and that it has two-sided identity AtomsB.

We now define a language-theoretic model RegP,B based on guarded strings. The elements
of RegP,B will be the regular sets of guarded strings over P and B (although we have not
yet defined regular in this context). We will also give a standard interpretation of terms
in RExpP,B over RegP,B analogous to the standard interpretation of regular expressions as
regular sets.

For A ⊆ GS, define inductively

A0 def
= AtomsB An+1 def

= A · An.

The asterate operation for sets of guarded strings is defined by

A∗ def
=

⋃
n≥0

An.
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Let denote set complementation in AtomsB. That is, if A ⊆ AtomsB, then A = AtomsB−A.
Consider the structure

(2GS, 2AtomsB , ∪, ·, ∗, , ∅, AtomsB),

which we denote briefly by 2GS. It is quite straightforward to verify that this is a star-
continuous Kleene algebra with tests; that is, it is a model of KAT∗. The Boolean algebra
axioms hold for 2AtomsB because it is a set-theoretic Boolean algebra.

The star-continuity condition follows immediately from the definition of ∗ and the dis-
tributivity of fusion product over infinite union. Since

B∗ =
⋃
n≥0

Bn,

we have that

AB∗C = A · (
⋃
n≥0

Bn) · C =
⋃
n≥0

ABnC.

Both of these expressions denote the set

{xyz | x ∈ A, z ∈ C, ∃n y ∈ Bn}.

For p ∈ P and b ∈ B, define

G(p)
def
= {αpβ | α, β ∈ AtomsB} (13.1)

G(b)
def
= {α ∈ AtomsB | α ≤ b}. (13.2)

The structure RegP,B is defined to be the subalgebra of 2GS generated by the elements G(p)
for p ∈ P and G(b) for b ∈ B. Elements of RegP,B are called regular sets.

Standard Interpretation

The map G defined on primitive actions and primitive tests in (13.1) and (13.2) extends
uniquely by induction to a homomorphism G : RExpP,B → RegP,B:

G(p + q)
def
= G(p) ∪ G(q) G(pq)

def
= G(p) ·G(q)

G(1)
def
= AtomsB G(b)

def
= AtomsB −G(b)

G(0)
def
= ∅ G(p∗) def

= G(p)∗.

The map G is called the standard interpretation over RegP,B.
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Relational Models

Relational Kleene algebras with tests are interesting because they closely model our intuition
about programs. In a relational model, the elements of K are binary relations and · is
interpreted as relational composition. Elements of the Boolean subalgebra are subsets of the
identity relation.

Formally, a relational Kleene algebra with tests on a set X is any structure

(K, B, ∪, ◦, ∗, , ∅, ι)

such that
(K, ∪, ◦, ∗, ∅, ι)

is a relational Kleene algebra, i.e. K is a family of binary relations on X, ◦ is ordinary
relational composition, ∗ is reflexive transitive closure, and ι is the identity relation on X;
and

(B, ∪, ◦, , ∅, ι)

is a Boolean algebra of subsets of ι (not necessarily the whole powerset).

All relational Kleene algebras with tests are star-continuous. We write REL |= ϕ if the
formula ϕ holds in all relational Kleene algebras in the usual sense of first-order logic.

Completeness of KAT∗ over RegP,B

Now we show that an equation p = q is a theorem of star-continuous Kleene algebra with
tests iff it holds under the standard interpretation G over RegP,B, where P and B contain
all primitive action and test symbols, respectively, appearing in p and q. Thus RegP,B is the
free Kleene algebra with tests on generators P and B. In the next lecture, we will strengthen
these results by removing the assumption of star-continuity.

Theorem 13.3 Let p, q ∈ RExpP,B. Then

KAT∗ |= p = q ⇔ G(p) = G(q).

Equivalently, RegP,B is the free star-continuous Kleene algebra with tests on generators P
and B.

The forward implication is easy, since RegP,B is a star-continuous Kleene algebra. The
converse is a consequence of the following lemma.
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Lemma 13.4 For any star-continuous Kleene algebra with tests K, interpretation I : RExpP,B →
K, and p, q, r ∈ RExpP,B,

I(pqr) = sup
x∈G(q)

I(pxr)

where the supremum is with respect to the natural order in K. In particular,

I(q) = sup
x∈G(q)

I(x).

This result is analogous to the same result for Kleene algebras proved in Lecture ?? and
the proof is similar. Note that the star-continuity axiom is a special case.

We are most interested in the second statement, but there is a slight subtlety that requires
the stronger first statement as the induction hypothesis. In addition to the existence of the
supremum, the more general statement provides a kind of infinite distributivity law over
existing suprema. The need for this arises mainly in the induction case for ·.

Proof of Lemma 13.4. We proceed by induction on the structure of q. The basis consists
of cases for primitive tests, primitive actions, 0 and 1. We argue the case for primitive actions
and primitive tests explicitly.

For a primitive action q ∈ P, recall that

G(q) = {αqβ | α, β ∈ AtomsB}.

Then

I(pqr) = I(p)I(1)I(q)I(1)I(r)

= sup{I(p)I(α)I(q)I(β)I(r) | α, β ∈ AtomsB}
= sup{I(pαqβr) | α, β ∈ AtomsB}
= sup{I(pxr) | x ∈ G(q)}.

Finite distributivity was used in the second step.

For a primitive test b ∈ B, recall that

G(b) = {α | α ≤ b}.

Then

I(pbr) = I(p)I(b)I(r)

= sup{I(p)I(α)I(r) | α ≤ b}
= sup{I(pαr) | α ≤ b}
= sup{I(pxr) | x ∈ G(b)}.
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Again, finite distributivity was used in the second step.

The induction step consists of cases for +, ·, ∗, and . The cases other than · and are
the same as in the proof of Theorem ?? of Lecture ??.

For the case ·, recall that

G(qq′) = G(q) ·G(q′) = {yαz | yα ∈ G(q), αz ∈ G(q′)}.

Applying the induction hypothesis twice,

I(pqq′r) = sup{I(pqvr) | v ∈ G(q′)}
= sup{sup{I(puvr) | u ∈ G(q)} | v ∈ G(q′)}
= sup{I(puvr) | u ∈ G(q), v ∈ G(q′)}.

The last step follows from a purely lattice-theoretic argument: if all the suprema in question
on the left hand side exist, then the supremum on the right hand side exists and the two
sides are equal.

Now

sup{I(puvr) | u ∈ G(q), v ∈ G(q′)}
= sup{I(pyαβzr) | yα ∈ G(q), βz ∈ G(q′)}
= sup{I(pyααzr) | yα ∈ G(q), αz ∈ G(q′)} (13.3)

= sup{I(pyαzr) | yα ∈ G(q), αz ∈ G(q′)}
= sup{I(pxr) | x ∈ G(qq′)}.

The justification for step (13.3) is that if α 6= β, then the product in K is 0 and does not
contribute to the supremum.

For the case , recall that

G(b) = AtomsB −G(b) = {α | α 6≤ b} = {α | α ≤ b}.

Then

I(pbr) = sup{I(pαr) | α ≤ b} = sup{I(pαr) | α ∈ G(b)}.

2

Proof of Theorem 13.3. If KAT∗ |= p = q then G(p) = G(q), since RegP,B is a star-
continuous Kleene algebra with tests. Conversely, if G(p) = G(q), then by Lemma 13.4, for
any star-continuous Kleene algebra with tests K and any interpretation I over K, I(p) =
I(q). Therefore KAT∗ |= p = q. 2
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Completeness over Relational Models

Finally we show completeness of KAT∗ over relational interpretations. It will suffice to con-
struct a relational model isomorphic to RegP,B. This construction is similar to a construction
we have seen before for Kleene algebra in Lecture ?? for regular sets.

For A any set of guarded strings, define

h(A)
def
= {(x, xy) | x ∈ GS, y ∈ A}.

Lemma 13.5 The language-theoretic model 2GS and its submodel RegP,B are isomorphic to
relational models.

Proof. We show that the function h : 2GS → 2GS×GS defined above embeds 2GS isomor-
phically onto a subalgebra of the Kleene algebra of all binary relations on GS.

It is straightforward to verify that h is a homomorphism:

h(A ∪ B) = h(A) ∪ h(B)

h(AB) = {(z, zr) | z ∈ GS, r ∈ AB}
= {(z, zpq) | z ∈ GS, p ∈ A, q ∈ B}
= {(z, zp) | z ∈ GS, p ∈ A}

◦ {(zp, zpq) | z ∈ GS, p ∈ A, q ∈ B}
= {(z, zp) | z ∈ GS, p ∈ A} ◦ {(y, yq) | y ∈ GS, q ∈ B}
= h(A) ◦ h(B).

h(A∗) = h(
⋃
n≥0

An)

=
⋃
n≥0

h(A)n

= h(A)∗

h(AtomsB) = {(x, xα) | x ∈ GS, α ∈ AtomsB}
= {(x, x) | x ∈ GS}
= ι

h(0) = ∅
h(B) = h({α | α 6∈ B})

= {(x, xα) | α 6∈ B}
= {(yα, yα) | α 6∈ B}
= ι− {(yα, yα) | α ∈ B}
= ι− h(B).

8



The function h is injective, since A can be uniquely recovered from h(A):

A = {y | ∃α (α, y) ∈ h(A)}.

The submodel RegP,B is perforce isomorphic to a relational model on GS, namely the
image of RegP,B under h. 2

Combining Theorem 13.3, Lemma 13.5, and the fact that all relational models are star-
continuous Kleene algebras with tests, we have

Theorem 13.6 Let REL denote the class of all relational Kleene algebras with tests. Let
p, q ∈ RExpP,B. The following are equivalent:

(i) KAT∗ � p = q

(ii) G(p) = G(q)

(iii) REL � p = q.

In the next lecture we will remove the assumption of star-continuity and show that the
statement KAT � p = q can be added to this list. Thus KAT is complete for the equational
theory of relational models and RegP,B forms the free KAT on generators P and B. This
result is analogous to the completeness result of Lecture ??, which states that the regular
sets over a finite alphabet P form the free Kleene algebra on generators P.
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