
Introduction to Kleene Algebra Lecture 10
CS786 Spring 2004 March 1, 2004

Complexity of the Equational Theory

In this lecture we show that the equational theory of Kleene algebra is PSPACE -complete.

Theorem 10.1 (Stockmeyer and Meyer [2]) The problem of deciding whether RΣ(s) =
RΣ(t) for given regular expressions s and t is PSPACE-complete. The problem is PSPACE-
hard even if one of the expressions is a trivial expression representing Σ∗.

Proof. To show that the problem is in PSPACE, we first convert the expressions to finite
automata M and N using the construction of Kleene’s theorem and ask whether the two
automata accept the same set. The conversion of Kleene’s theorem is linear. We will actually
give a nondeterministic PSPACE algorithm for determining whether the two automata are
different—that is, whether there exists a string accepted by one and not by the other. The
nondeterminism will be used to guess the string in the symmetric difference of the two sets.
By Savitch’s theorem [1], nondeterministic and deterministic PSPACE are equivalent, so
this is sufficient.

The algorithm starts with a pebble on each start state. It then guesses an input string x
symbol by symbol, moving pebbles on the states of M and N to mark all states reachable
from the start state under the string guessed so far. We do not need to remember the
guessed string, just the states that M and N could currently be in. The procedure accepts
if it ever sees a pebble configuration in which an accept state of M is occupied by a pebble,
but no accept state of N is occupied by a pebble, which indicates that the string x guessed
so far is accepted by M but not by N , or vice versa. Since the pebble configurations can be
represented in polynomial space, this is a nondeterministic PSPACE computation.

We remark that in general the procedure may have to run for an exponential length of
time before the acceptance situation described above occurs, if at all. This is because the
shortest string not accepted by one of the machines may be exponential in the size of the
machine. This may be surprising in light of the fact that the shortest string accepted is
linear in the size of the machine, if any string at all is accepted. But consider for example
an automaton over a single letter alphabet with a start state going to n disjoint loops with
pairwise relatively prime lengths p1, . . . , pn. Make every state an accept state except for the
one in each loop farthest from the start state. There are 1+p1 +p2 + · · ·+pn states, but the
shortest string not accepted is of length p1p2 · · · pn, which is exponential in 1+p1+p2+· · ·+pn.

1

To show that the problem is hard for PSPACE, we will encode computation histories
of an arbitrary one-tape polynomial-space-bounded deterministic Turing machine. Let N
be such a machine, and let nc be its space bound. Assume without loss of generality that
N always erases its tape and moves its tape head all the way to the left end of the tape
before accepting. Given an input x, |x | = n, we build a regular expression s of length O(nc)
over a finite alphabet ∆ such that R∆(s) consists of all strings that are not valid accepting
computation histories of N on input x. Then R∆(s) = ∆∗ iff there is no such valid accepting
computation history, which occurs iff N does not accept x. Thus we are reducing the set
accepted by N to the set {s | R∆(s) 6= ∆∗}. The alphabet ∆, the constant c, and the
constant of proportionality in the O(nc) may depend on N but are independent of x.

Formally, an accepting computation history of N on input x, |x | = n, is a string of the
form

#α0#α1#α2# · · · #αm−1#αm# (10.1)

where each αi is a string of length nc over a fixed finite alphabet ∆ encoding a configuration
of N on input x, such that:

1. α0 represents the start configuration of N on x

2. αm represents the accept configuration of N on x

3. each αi+1 follows from αi according to the transition rules of N .

If a string is not an accepting computation history, then either it is not of the form (10.1),
or one of the three conditions (i), (ii), (iii) fails. The regular expression s will thus consist
of a sum of four subexpressions s0, s1, s2, and s3, where s0 describes those strings in ∆∗
that are not of the form (10.1), and si represents the set of strings that violate condition i,
1 ≤ i ≤ 3.

To be of the form (10.1), a string must be a member of the regular set denoted by
(#∆nc

)∗#, plus a few other simple conditions on the format: exactly one state of N in each
configuration, each configuration begins and ends with endmarkers, etc. This requires O(nc)
states of M . Checking (i) or (ii) involves just checking whether the input begins or ends
with a certain fixed string of length nk. These strings are encoded in the finite control of M .

Finally, to check (iii), observe that there is a finite set of local conditions involving the
j − 1st, jth, and j + 1st symbols αi and the jth symbol of αi+1 such that (iii) holds iff these
local conditions are satisfied for all 1 ≤ j ≤ nk and all 0 ≤ i < m. The local conditions
describe all the valid transitions and depend only on the description of N . To check that
(iii) is violated, M scans across the input, and at some point guesses nondeterministically
where the violation occurs. It remembers the next three symbols in its finite control, skips
over the next nk symbols, and accepts if the next symbol is not correct. 2

2

References

[1] W. Savitch. Relationship between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2):177–192, 1970.

[2] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proc.
5th Symp. Theory of Computing, pages 1–9, New York, 1973. ACM.

3

