
Introduction to Kleene Algebra Lecture 8
CS786 Spring 2004 February 16, 2004

Finite Automata

Regular expressions and finite automata have traditionally been used as syntactic represen-
tations of the regular languages over an alphabet Σ. The relationship between these two
formalisms forms the basis of a well-developed classical theory. Classical developments range
from the more combinatorial [9, 5, 7] to the more algebraic [11, 4, 1, 3, 10].

In this lecture we define the notion of an automaton over an arbitrary Kleene algebra. In
subsequent sections, we will use this formalism to derive the classical results of the theory
of finite automata (equivalence with regular expressions, determinization via the subset
construction, elimination of ε-transitions, and state minimization) as consequences of the
axioms of Kleene algebra.

Although we consider regular expressions and automata as syntactic objects, as a matter
of convenience we will be reasoning modulo the axioms of Kleene algebra. Officially, regular
expressions will denote elements of FΣ, the free Kleene algebra over Σ. The Kleene algebra
FΣ is constructed by taking the quotient of the regular expressions modulo the congruence
generated by the axioms of Kleene algebra. The associated canonical map assigns to each
regular expression its equivalence class in FΣ. Since we will be interpreting expressions only
over Kleene algebras, and all interpretations factor through FΣ via the canonical map, this
usage is without loss of generality.

We recall the following basic theorems of Kleene algebra that were proved in Exercise ??
of Homework ??, of which we will make extensive use:

xy = yz → x∗y = yz∗ (8.1)

(xy)∗x = x(yx)∗ (8.2)

(x + y)∗ = x∗(yx∗)∗. (8.3)

These are called the bisimulation rule, the sliding rule, and the denesting rule, respectively.

Algebraic Definition of Finite Automata

Definition 8.1 A finite automaton over K is a triple A = (u, A, v), where u, v ∈ {0, 1}n

and A ∈ Mat(n, K) for some n.

1



The states are the row and column indices. The vector u determines the start states and
the vector v determines the final states; a start state is an index i for which u(i) = 1 and a
final state is one for which v(i) = 1. The n× n matrix A is called the transition matrix.

The language accepted by A is the element uT A∗v ∈ K.

For automata over FΣ, the free Kleene algebra on free generators Σ, this definition is
essentially equivalent to the classical combinatorial definition of an automaton over the
alphabet Σ as found in [9, 5]. A similar definition can be found in [2].

Example 8.2 Consider the two-state automaton in the sense of [9, 5] with states {p, q},
start state p, final state q, and transitions

p
a→ p q

a→ q p
b→ q q

b→ q.

Classically, this automaton accepts the set of strings over Σ = {a, b} containing at least one
occurrence of b. In our formalism, this automaton is specified by the triple([

1
0

]
,

[
a b
0 a + b

]
,

[
0
1

])
.

Modulo the axioms of Kleene algebra, we have

[
1 0

]
·
[

a b
0 a + b

]∗
·
[

0
1

]

=
[

1 0
]
·
[

a∗ a∗b(a + b)∗
0 (a + b)∗

]
·
[

0
1

]

= a∗b(a + b)∗. (8.4)

The language in RegΣ accepted by this automaton is the image under RΣ of the expression
(8.4). 2

Definition 8.3 Let A = (u, A, v) be an automaton over FΣ, the free Kleene algebra on free
generators Σ. The automaton A is said to be simple if A can be expressed as a sum

A = J +
∑
a∈Σ

a · Aa (8.5)

where J and the Aa are 0-1 matrices. In addition, A is said to be ε-free if J is the zero
matrix. Finally, A is said to be deterministic if it is simple and ε-free, and u and all rows
of Aa have exactly one 1.

2



In Definition 8.3, ε refers to the null string. The matrix Aa in (8.5) corresponds to the
adjacency matrix of the graph consisting of edges labeled a in the combinatorial model of
automata [5, 9] or the image of a under a linear representation map in the algebraic approach
of [11, 1]. An automaton is deterministic according to this definition iff it is deterministic in
the sense of [9, 5].

The automaton of Example 8.2 is simple, ε-free, and deterministic.

Completeness

In this section we prove the completeness of the axioms of Kleene algebra for the algebra of
regular events. Another way of stating this is that RegΣ is isomorphic to FΣ, the free Kleene
algebra on free generators Σ, and the standard interpretation RΣ : FΣ → RegΣ collapses to
an isomorphism of Kleene algebras.

The first lemma asserts that Kleene’s representation theorem [6, 1, 3, 10] is a theorem of
Kleene algebra.

Lemma 8.4 For every regular expression α over Σ (or more accurately, its image in FΣ

under the canonical map), there is a simple automaton (u, A, v) over FΣ such that

α = uT A∗v.

Proof. The proof is by induction on the structure of the regular expression. We essentially
implement the combinatorial constructions as found for example in [5, 9]. The ideas behind
this construction are well known and can be found for example in [2].

For a ∈ Σ, the automaton ([
1
0

]
,

[
0 a
0 0

]
,

[
0
1

])
suffices, since [

1 0
]
·
[

0 a
0 0

]∗
·
[

0
1

]

=
[

1 0
]
·
[

1 a
0 1

]
·
[

0
1

]
= a.

For the expression α + β, let A = (u, A, v) and B = (s, B, t) be automata such that

α = uT A∗v β = sT B∗t.

3



Consider the automaton with transition matrix[
A 0
0 B

]
and start and final state vectors [

u
s

]
and

[
v
t

]
,

respectively. This construction corresponds to the combinatorial construction of forming the
disjoint union of the two sets of states, taking the start states to be the union of the start
states of A and B, and the final states to be the union of the final states of A and B. Then[

A 0
0 B

]∗
=

[
A∗ 0
0 B∗

]
,

and [
uT sT

]
·
[

A∗ 0
0 B∗

]
·
[

v
t

]
= uT A∗v + sT B∗t

= α + β.

For the expression αβ, let A = (u, A, v) and B = (s, B, t) be automata such that

α = uT A∗v β = sT B∗t.

Consider the automaton with transition matrix[
A vsT

0 B

]
and start and final state vectors [

u
0

]
and

[
0
t

]
,

respectively. This construction corresponds to the combinatorial construction of forming the
disjoint union of the two sets of states, taking the start states to be the start states of A,
the final states to be the final states of B, and connecting the final states of A with the start
states of B by ε-transitions (this is the purpose of the vsT in the upper right corner of the
matrix). Then [

A vsT

0 B

]∗
=

[
A∗ A∗vsT B∗
0 B∗

]
,

4



and [
uT 0

]
·
[

A∗ A∗vsT B∗
0 B∗

]
·
[

0
t

]
= uT A∗vsT B∗t

= αβ.

For the expression α∗, let A = (u, A, v) be an automaton such that α = uT A∗v. We first
produce an automaton equivalent to the expression αα∗. Consider the automaton

(u, A + vuT , v).

This construction corresponds to the combinatorial construction of adding ε-transitions from
the final states of A back to the start states. Using (8.3) and (8.2),

uT (A + vuT )∗v = uT A∗(vuT A∗)∗v
= uT A∗v(uT A∗v)∗

= αα∗.

Once we have an automaton for αα∗, we can get an automaton for α∗ = 1 + αα∗ by the
construction for + given above, using a trivial one-state automaton for 1. 2

Now we get rid of ε-transitions. This construction is also folklore and can be found
for example in [8, 10]. This construction models algebraically the combinatorial idea of
computing the ε-closure of a state; see [5, 9].

Lemma 8.5 For every simple automaton (u, A, v) over FΣ, there is a simple ε-free automa-
ton (s, B, t) such that

uT A∗v = sT B∗t.

Proof. By Definition 8.3, the matrix A can be written as a sum A = J + A′ where J is a
0-1 matrix and A′ is ε-free. Then

uT A∗v = uT (A′ + J)∗v
= uT J∗(A′J∗)∗v

by (8.3), so we can take

sT = uT J∗

B = A′J∗

t = v.

Note that J∗ is 0-1 and therefore B is ε-free. 2

5



The next step in the proof will be to give algebraic analogs of the determinization of
finite automata via the subset construction and the minimization of deterministic automata
via the collapsing of equivalent states under a Myhill-Nerode equivalence relation. We will
do this next time.

References

[1] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages.
Springer-Verlag, Berlin, 1984.

[2] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, Lon-
don, 1971.

[3] S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press, New
York, 1974.

[4] F. Gécseg and I. Peák. Algebraic Theory of Automata. Akadémiai Kiadó, Budapest,
1972.

[5] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[6] Stephen C. Kleene. Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University
Press, Princeton, N.J., 1956.

[7] Dexter Kozen. Automata and Computability. Springer-Verlag, New York, 1997.

[8] Werner Kuich and Arto Salomaa. Semirings, Automata, and Languages. Springer-
Verlag, Berlin, 1986.

[9] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, 1981.

[10] Jacques Sakarovitch. Kleene’s theorem revisited: A formal path from Kleene to Chom-
sky. In A. Kelemenova and J. Keleman, editors, Trends, Techniques, and Problems in
Theoretical Computer Science, volume 281 of Lecture Notes in Computer Science, pages
39–50, New York, 1987. Springer-Verlag.

[11] Arto Salomaa and Matti Soittola. Automata Theoretic Aspects of Formal Power Series.
Springer-Verlag, New York, 1978.

6


