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Characterizing the Equational Theory

Most of the early work on Kleene algebra was directed toward characterizing the equational
theory of the regular sets. These are equations such as (x + y)∗ = x∗(yx∗)∗ and x(yx)∗ =
(xy)∗x that hold under the standard interpretation of regular expressions as regular sets of
strings.

It turns out that this theory is quite robust and can be characterized in many different
ways. We have defined several different but related classes of algebras: Kleene algebras,
star-continuous Kleene algebras, closed semirings, and Conway’s S-algebras, N-algebras, and
R-algebras, all defined axiomatically, as well as relational and language-theoretic algebras
defined model-theoretically. All these classes of models have the same equational theory over
the signature +, ·, ∗, 0, 1 of Kleene algebra, and it is the same as the equational theory of
the regular sets.

Let us say more carefully what we are talking about. Let σ denote the signature +, ·, ∗, 0, 1
of Kleene algebra. A σ-algebra is any structure of signature σ. This just means that there are
distinguished binary operations + and ·, a distinguished unary operation ∗, and distinguished
constants 0 and 1 defined on C. The structure need not satisfy the axioms of Kleene algebra.

The set of regular expressions RExpΣ over an alphabet Σ can be regarded as a σ-
algebra. The elements of RExpΣ are just the well-formed terms over variables Σ and op-
erators +, ·, ∗, 0, 1. The distinguished operations are the syntactic ones; for example, +
in RExpΣ is the binary operation that takes regular expressions s and t and produces the
regular expression s + t.

For any two σ-algebras C and C ′, a homomorphism from C to C ′ is a map h : C → C ′

that commutes with all the distinguished operations and constants of σ; that is, for all
x, y ∈ C,

h(x + y) = h(x) + h(y)

h(xy) = h(x) · h(y)

h(x∗) = h(x)∗

h(0) = 0

h(1) = 1.

Here the operators and constants on the left-hand side are interpreted in C and on the
right-hand side in C ′. A homomorphism h is
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• an epimorphism if it is onto; that is, if for all y ∈ C ′, there is an x ∈ C such that
h(x) = y;

• a monomorphism if it is one-to-one; that is, if for all x, y ∈ C, if h(x) = h(y) then
x = y;

• an isomorphism if it is both an epimorphism and a monomorphism.

An interpretation is just a homomorphism whose domain is RExpΣ. For example, let RegΣ

denote the Kleene algebra of regular sets over alphabet Σ. The canonical interpretation over
RegΣ is the unique homomorphism RΣ : RExpΣ → RegΣ such that RΣ(a) = {a}, a ∈ Σ.
We will show that this interpretation alone characterizes the equational theory of Kleene
algebras, as well as all the other classes of algebras mentioned above (Theorem 4.1).

In general, for any σ-algebra C and any function h : Σ → C defined on Σ, h extends
uniquely to a homomorphism ĥ : RExpΣ → C; that is, h and ĥ agree on Σ. Because of this
property, the structure RExpΣ is called the free σ-algebra on generators Σ. We say the free
σ-algebra because it is unique up to isomorphism. Intuitively, once we know how to interpret
the letters in Σ, that uniquely determines the interpretation of any regular expression over
Σ.

Let s, t be regular expressions and let I : RExpΣ → C be an interpretation. We say that
the equation s = t holds under interpretation I if I(s) = I(t). We say that s = t holds in
C or that C satisfies s = t if s = t holds under all interpretations I : RExpΣ → C. If A is
a class of algebras or a class of interpretations, we say that s = t holds in A if it holds in
all members of A. The equational theory of A is the set of equations that hold in A. The
equational theory of A is denoted E(A).

Theorem 4.1 The following classes of algebras all have the same equational theory: Kleene
algebras, star-continuous Kleene algebras, closed semirings, S-algebras, N-algebras, R-algebras,
language models, and relational models. Moreover, an equation s = t over alphabet Σ is a
member of this theory iff it holds under the canonical interpretation RΣ : RExpΣ → RegΣ.

One can see from this theorem that the equational theory of Kleene algebras is quite robust
indeed. If the equational theory were all that we were interested in, there would not be much
more to say.

Some Constructions

We will not be able to complete the proof of Theorem 4.1 today. Some parts of the theorem
follow immediately from inclusion relationships among the classes of interpretations, but
others are more difficult.
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First we note that if A and B are two classes of algebras or classes of interpretations
and A ⊆ B, then E(B) ⊆ E(A), since any equation that holds in all members of B must
perforce hold in all members of A. We have already established the following inclusions
among the classes mentioned in Theorem 4.1:

Kleene algebras

star-continuous Kleene algebras

closed semirings

S-algebras

N-algebras

relational models

language models

RegΣ

RegΣ, RΣ

����
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If class A occurs above B in this diagram and there is a path from A down to B, then
E(A) ⊆ E(B). Note that for the two lowest entries in this diagram, the upper one RegΣ

refers to the equations that hold under any interpretation in RegΣ, whereas the lower one
RegΣ, RΣ refers to the equations that hold under the canonical interpretation only.

First we observe that the equational theories of the S-algebras and the N-algebras co-
incide. Recall that the N-algebras are the subsets of S-algebras closed under the Kleene
algebra operations considered as σ-algebras. We have E(N) ⊆ E(S), since every S-algebra
is a subalgebra of itself, therefore is an N-algebra. Conversely, since equations are universal
sentences, any equation holding in an S-algebra A holds in any subalgebra of A; therefore
E(S) ⊆ E(N).

This observation says that the equational theories of the following classes of interpreta-
tions are linearly ordered by inclusion as follows: Kleene algebras, star-continuous Kleene
algebras, closed semirings, S-algebras, N-algebras, relational models, language models, RegΣ,
and RegΣ, RΣ.

We might also add R-algebras to this list. Recall that R-algebras are those algebras that
satisfy all the same equations as N-algebras, thus E(R) = E(N). It will turn out that all
the algebras in the diagram above are R-algebras, since they all share the same equational
theory, so the class of R-algebras sits at the very top of the diagram above and at the head
of the list in the previous paragraph.

However, the concept of R-algebra is not very interesting or useful for axiomatic purposes.
Conway [1, p. 102] gives a four-element R-algebra R4 that is not a star-continuous Kleene
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algebra. The elements of R4 are {0, 1, 2, 3}, and the operations are given by the following
tables:

+ 0 1 2 3

0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 3
3 0 3 3 3

*

0 1
1 1
2 3
3 3

To show that R4 is an R-algebra, it suffices to construct an epimorphism h : RegΣ → R4,
since any equation that holds in a σ-algebra also holds in all its homomorphic images. Take

h(0)
def
= 0, h(1)

def
= 1, and for any other set A,

h(A)
def
=

{
2, if A is finite,
3, otherwise.

One can verify easily that this is an epimorphism, therefore R4 is an R-algebra. It is not a
star-continuous Kleene algebra, since 2n = 2 for all n, but 2∗ = 3. It is also easily shown that
all finite Kleene algebras are star-continuous, therefore R4 is not a Kleene algebra either.

The family RegΣ of regular events over an alphabet Σ gives an example of a star-
continuous Kleene algebra that is not a closed semiring. If A is nonregular, the countable set
{{x} | x ∈ A} has no supremum. However, the power set of Σ∗ does form a closed semiring.

To construct a closed semiring that is not an S-algebra, we might take the countable and
co-countable subsets of ω1 (the first uncoutable ordinal) with operations of set union for

∑
,

set intersection for ·, ∅ for 0, ω1 for 1, and A∗ = ω1.

To complete the picture, we should construct a Kleene algebra that is not star-continuous.
Let ω2 denote the set of ordered pairs of natural numbers and let ⊥ and > be new elements.
Order these elements such that ⊥ is the minimum element, > is the maximum element, and
ω2 is ordered lexicographically in between. Define + to give the supremum in this order.
Define · according to the following table:

x · ⊥ = ⊥ · x = ⊥
x · > = > · x = >, x 6= ⊥

(a, b) · (c, d) = (a + c, b + d).

Then ⊥ is the additive identity and (0, 0) is the multiplicative identity. Finally, define

a∗ =

{
(0, 0), if a = ⊥ or a = (0, 0)
>, otherwise.

It is easily checked that this is a Kleene algebra. We verify the axiom

ax ≤ x → a∗x ≤ x
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explicitly. Assuming ax ≤ x, we wish to show a∗x ≤ x. If a = ⊥ or a = (0, 0), then
a∗ = (0, 0) and we are done, since (0, 0) is the multiplicative identity. If x = ⊥ or x = >,
we are done. Otherwise, a > (0, 0) and x = (u, v), in which case ax > x, contradicting the
assumption.

This Kleene algebra is not star-continuous, since (0, 1)∗ = >, but∑
n

(0, 1)n =
∑

n

(0, n) = (1, 0).
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