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Alternative Axiomatizations

There has been some dissent regarding the proper axiomatization of Kleene algebra. Many
inequivalent axiomatizations have been proposed [5, 16, 17, 7, 8], all serving roughly the
same purpose. It is important to understand the relationships between these classes in order
to extract the axiomatic essence of Kleene algebra. In this lecture we present some of these
alternative axiomatizations and discuss some of the relationships among them.

Recall that our official definition is that a Kleene algebra is an idempotent semiring
satisfying

1 + xx∗ ≤ x∗ (3.1)

1 + x∗x ≤ x∗ (3.2)

b + ax ≤ x → a∗b ≤ x (3.3)

b + xa ≤ x → ba∗ ≤ x. (3.4)

Star-Continuity

A Kleene algebra is called star-continuous (or sometimes star-complete) if it satisfies the
axiom

xy∗z = sup
n≥0

xynz, (3.5)

where y0 = 1, yn+1 = yyn, and sup refers to the supremum or least upper bound with
respect to the natural order ≤. This property says that any possibly infinite set of the form
{xynz | n ≥ 0} has a least upper bound, and that least upper bound is xy∗z. The property
(3.5) is called star-continuity. Star-continuous Kleene algebras have been used to model
programs in Dynamic Logic [7].

Every star-continuous idempotent semiring is a Kleene algebra, since one can easily show
that in any idempotent semiring, the star-continuity condition (3.5) implies the axioms
(3.1)–(3.4) of Kleene algebra. However, as we shall see later, not every Kleene algebra is
star-continuous, although all naturally occurring ones are.

The property (3.5) is actually an infinitary condition. It is equivalent to infinitely many
inequalities

xynz ≤ xy∗z, n ≥ 0, (3.6)
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which together say that xy∗z is an upper bound for all xynz, n ≥ 0, along with the infinitary
Horn formula

(
∧
n≥0

xynz ≤ w) → xy∗z ≤ w, (3.7)

which says that it is the least such upper bound.

Another way to view (3.5) is as a combination of the statement that y∗ is the supremum
of yn, n ≥ 0, along with two infinitary distributivity properties, one on the left and one on
the right.

To show that every star-continuous idempotent semiring is a Kleene algebra, we first
show that (3.1) holds.

1 + xx∗ = 1 + sup
n

xxn

= x0 + sup
n

xn+1

= sup
n

xn

= x∗.

The general property we have used in the third step is that if A and B are any subsets of
an upper semilattice such that sup A and sup B exist, then sup A ∪ B exists and is equal to
sup A + sup B. The proof of (3.2) is symmetric.

To show (3.3), assume that b + ax ≤ x. We would like to show that a∗b ≤ x. By star-
continuity, it suffices to show that for all n ≥ 0, anb ≤ x. This is easily shown by induction
on n. For the basis n = 0, we have a0b = b ≤ x from our assumption. Now assuming
anb ≤ x, we have an+1b = aanb ≤ ax by monotonicity, and ax ≤ x by our assumption.
Again, the proof of (3.4) is symmetric.

Closed Semirings

In the design and analysis of algorithms, a related family of structures called closed semirings
form an important algebraic abstraction. They give a unified framework for deriving efficient
algorithms for transitive closure and all-pairs shortest paths in graphs and constructing reg-
ular expressions from finite automata [19, 1, 11]. Very fast algorithms for all these problems
can be derived as special cases of a single general algorithm over an arbitrary closed semiring.
Closed semirings are defined in terms of a countable summation operator

∑
as well as ·, 0,

and 1; the operator ∗ is defined in terms of
∑

. Under the operations of (finite) +, ·, ∗, 0,
and 1, any closed semiring is a star-continuous Kleene algebra. In fact, in the treatment of
[1, 11], the sole purpose of

∑
seems to be to define ∗. A more descriptive name for closed

semirings might be ω-complete idempotent semirings.
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Formally, a closed semiring is an idempotent semiring in which every countable set A
has a supremum

∑
A with respect to the natural order ≤, and such that for any countable

set A,

x · (
∑

A) · z =
∑
y∈A

xyz. (3.8)

The presence of x and z in (3.8) ensure a kind of infinite distributivity property on the left
and right.

In any closed semiring, one can define ∗ by

x∗ def
=

∑
n≥0

xn,

where x0 = 1 and xn+1 = xxn. By infinite distributivity,

xy∗z =
∑

n

xynz,

thus any closed semiring is a star-continuous Kleene algebra.

The regular sets RegΣ do not form a closed semiring: if A is nonregular, the countable set
{{x} | x ∈ A} has no supremum. However, the power set of Σ∗ does form a closed semiring.

Similarly, the family of all binary relations on a set forms a closed semiring under the
relational operations described in Lecture ?? and set union for

∑
.

The definition of closed semiring given above is somewhat stronger than those found in the
literature on design and analysis of algorithms [1, 11]. According to [1], a closed semiring is an
idempotent semiring equipped with a summation operator

∑
defined on countable sequences

(not sets) that satisfies infinitary associativity and distributivity. Infinitary idempotence
and commutativity are not assumed. Also, the relation between the between finitary + and
infinitary

∑
is not explicitly mentioned in [1], but can be inferred from the use of the notation

x0 + x1 + x2 + · · · for the infinitary sum. The element x∗ is defined to be 1 + x + x2 + · · ·.

Infinitary associativity is defined as follows. If (xn | n ≥ 0) is any countable sequence
of elements, then for any way of partitioning the index set N into intervals, the sum

∑
i xi

is the same as the sum of the sums of the intervals. If an interval is finite, then its sum is
computed with +. If an interval is infinite, then its sum is computed with

∑
. Note that

any such partition must consist either of

• infinitely many finite intervals, or

• finitely many intervals, all of which are finite except the last, which is infinite.
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Infinitary distributivity says that

x · (
∑

i

yi) · z =
∑

xyiz.

This is not the same as (3.8), since it says nothing about suprema.

The axiomatization in [11] postulates infinitary commutativity as well. Infinitary com-
mutativity says that for any partition of the index set (not necessarily into intervals), the
sum of the sums of the partition elements is the same as the sum of the original sequence.

Infinitary idempotence says that if all xi = x, then
∑

i xi = x. This does not follow from
the axiomatizations of [1, 11], nor does the equation x∗∗ = x∗. It can be shown that 0∗ = 1,
but not that 1∗ = 1.

To see this, consider an idempotent semiring with elements N ∪ {∞}. Define finitary
addition + to be max in the natural order on N, with ∞ being the largest element. Multi-
plication is ordinary multiplication in N, extended to ∞ as follows:

∞ · x = x · ∞ def
=

{
0, if x = 0
∞, otherwise.

The constants 0 and 1 in the semiring are the natural numbers 0 and 1, respectively.

To define
∑

in this algebra, define the support of an infinite sequence x = (xn | n ≥ 0)
to be the set

supp x
def
= {n | xn 6= 0}.

We define ∑
n

xn
def
=

{ ∑
n∈supp x xn, if supp x is finite

∞, otherwise.

One can show that infinitary associativity, commutativity, and distributivity are satisfied,
and 0∗ = 1. However, 0∗∗ = 1∗ = ∞, so

∑
is not idempotent (since 1∗ = 1 + 1 + 1 + · · ·)

and 0∗∗ 6= 0∗.

It is conjectured that the axiomatization of [1] does not imply infinitary commutativity.
In particular, it is conjectured that

x0 + x1 + x2 + · · · = (x0 + x2 + x4 + · · ·) + (x1 + x3 + x5 + · · ·)

is not provable.

One can show that our official definition of closed semirings is equivalent to a countable
summation operator

∑
satisfying infinitary associativity, commutativity, idempotence, and

distributivity. Surely supremum is associative, commutative, and idempotent, and the axiom
(3.8) gives distributivity as well.

4



Conversely, if
∑

is infinitely associative, commutative, and idempotent, then its value
on a given sequence is independent of the order and multiplicity of elements occurring in
the sequence. Thus we might as well define

∑
on finite or countable subsets instead of

sequences. In this view,
∑

gives the supremum with respect to the natural order ≤. To see
this, let A be a nonempty finite or countable set of elements. If x ∈ A, then

x +
∑

A =
∑

(A ∪ {x})

=
∑

A ,

thus x ≤
∑

A; and if x ≤ y for all x ∈ A, then x + y = y for all x ∈ A, thus

(
∑

A) + y = (
∑
x∈A

x) + (
∑
x∈A

y)

=
∑
x∈A

(x + y)

=
∑
x∈A

y

= y ,

therefore ∑
A ≤ y.

Thus
∑

gives the supremum of countable sets.

Conway’s Hierarchy

Closed semirings and star-continuous Kleene algebras are strongly related to several classes
of algebras defined by Conway in his 1971 monograph [5]. Conway’s S-algebras are similar
to closed semirings, except that arbitrary sums, not just countable ones, are permitted. A
better name for S-algebras might be complete idempotent semirings. The operation ∗ is
defined as in closed semirings in terms of

∑
, and again this seems to be the main purpose

of
∑

.

Conway’s N-algebras are algebras of signature (+, ·, ∗, 0, 1) that are subsets of S-algebras
containing 0 and 1 and closed under (finite) +, ·, and ∗. We will show later that the classes
of N-algebras and star-continuous Kleene algebras coincide.

An R-algebra is any algebra of signature (+, ·, ∗, 0, 1) satisfying the equational theory
of the N-algebras.

According to the definition in [5], an S-algebra

(S,
∑

, ·, 0, 1)
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is similar to a closed semiring, except that
∑

is defined not on sequences but on multisets
of elements of S. A multiset is a set whose elements have multiplicity; equivalently, it is
an equivalence class of sequences, where two sequences are considered equivalent if one is a
permutation of the other. In other words, a multiset is like a sequence, except that we ignore
the order of the elements. However, there is no cardinality restriction on the multiset. One
consequence of this approach is that

∑
is too big to be represented in Zermelo-Fraenkel set

theory! Since
∑

is a function that must be defined on multisets of arbitrary cardinality, it
cannot be a set itself. However, as with closed semirings, the value that

∑
takes on a given

multiset is independent of the multiplicity of the elements, so
∑

might as well be defined
on subsets of S instead of multisets. So defined,

∑
A gives the supremum of A with respect

to the order ≤. (We assume the axiom
∑
{a} = a, which is omitted in [5].)

Thus, the only essential difference between S-algebras and closed semirings is that closed
semirings are only required to contain suprema of countable sets, whereas S-algebras must
contain suprema of all sets. Thus every S-algebra is automatically a closed semiring and every
continuous semiring morphism (semiring morphism preserving all suprema) is automatically
ω-continuous (preserves all countable suprema), and these notions coincide on countable
algebras.

In a subsequent lecture we will show some very strong relationships among these classes
of algebras. We will eventually show that the R-algebras, Kleene algebras, star-continuous
Kleene algebras (a.k.a. N-algebras), closed semirings, and S-algebras each contain the next in
the list, and all inclusions are strict. Moreover, each star-continuous Kleene algebra extends
in a canonical way to a closed semiring, and each closed semiring to an S-algebra, by a
construction known as ideal completion.

Other Approaches

There are many other approaches besides these, which we will not consider in this course.

Many authors consider Kleene algebra as synonymous with relation algebra and are
not opposed to adding other relational operators such as residuation and complementation.
Relation algebras were first studied by Tarski and his students and colleagues [20, 15, 14, 6];
see also [12, 13, 18, 9]. Bloom and Ésik [4, 2, 3] study a related structure called iteration
theories.

In [16, 17], Pratt gives two definitions of Kleene algebras in the context of dynamic
algebra. In [16], Kleene algebras are defined to be the Kleenean component of separable
dynamic algebras; in [17], this class is enlarged to contain all subalgebras of such algebras.

Generalizations of Kleene’s and Parikh’s Theorems have been given by Kuich [10] in `-
complete semirings, which are similar to S-algebras in all respects except that idempotence
of

∑
is replaced by a weaker condition called `-completeness.
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