Maximum Entropy Markov Models

Nikos Karampatziakis

September 19th 2006

Background

- Preliminary CRF work. Published in 2000.
- Authors: McCallum, Freitag and Pereira.
- Key concepts: Maximum entropy / "Overlapping" features.
- MEMMs as (non deterministic) probabilistic finite automata: We have to estimate a probability distribution for transitions from a state to other states given an input.

Limitations of HMMs

"US official questions regulatory scrutiny of Apple"

- Problem 1: HMMs only use word identity.
- Cannot use richer representations. Apple is capitalized.
- MEMM Solution: Use more descriptive features (b_0 : Is-capitalized, b_1 : Is-in-plural, b_2 : Has-wordnet-antonym, b_3 : Is-"the" etc)
- Real valued features can also be handled.
- Here features are pairs $\langle b, s \rangle$: b is feature of observation and s is destination state e.g. \langle Is-capitalized, Company \rangle
- Feature function: $f_{\langle b,s \rangle}(o_t, s_t) = \begin{cases} 1 & \text{if } b(o_t) \text{ is true and } s = s_t \\ 0 & \text{otherwise} \end{cases}$ e.g. $f_{\langle \text{Is-capitalized, Company} \rangle}(\text{``Apple''}, \text{Company}) = 1.$

HMMs vs. MEMMs (I)

HMMs **MEMMs** P(s|s'), P(o|s) $P(s|s',o) \Leftrightarrow |S|$ distributions: $P_{s'}(s|o)$ $State_i$ State, States Observation, State_i States Observations

HMMs vs. MEMMs (II)

HMMs	MEMMs
$\alpha_t(s)$ the probability of producing	$\alpha_t(s)$ the probability of being in
o_1, \ldots, o_t and being in s at time t.	s at time t given o_1, \ldots, o_t .
$\alpha_{t+1}(s) = \sum_{s' \in S} \alpha_t(s') P(s s') P(o_{t+1} s)$	$\alpha_{t+1}(s) = \sum_{s' \in S} \alpha_t(s') P_{s'}(s o_{t+1})$
$\delta_t(s)$ the probability of the best path	$\delta_t(s)$ the probability of the best
for producing o_1, \ldots, o_t and being in s	path that reaches s at time t
at time t .	given o_1, \ldots, o_t .
$\delta_{t+1}(s) = \max_{s' \in S} \delta_t(s') P(s s') P(o_{t+1} s)$	$\delta_{t+1}(s) = \max_{s' \in S} \delta_t(s') P_{s'}(s o_{t+1})$

"Matt saw the cat"

D

 \bigcirc

(D)

 \bigcirc

(I)

(v)

 $\widehat{\mathrm{v}}$

 $\overline{(v)}$

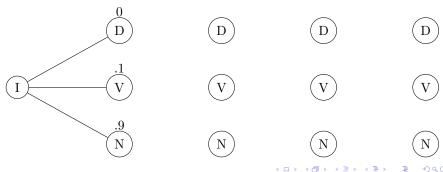
(v)

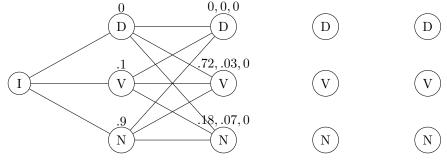
(N)

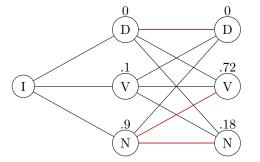
 \widehat{N}

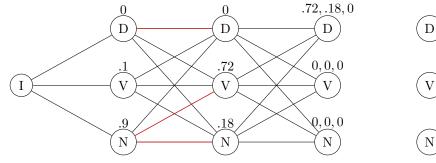
 \widehat{N}

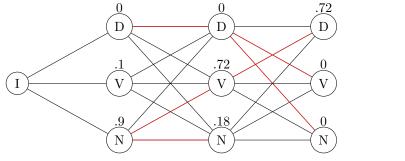
N

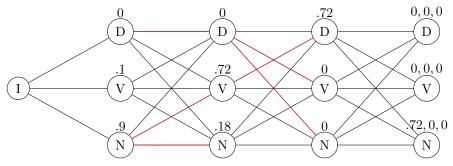


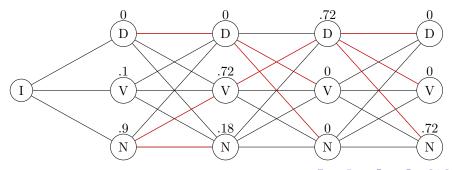


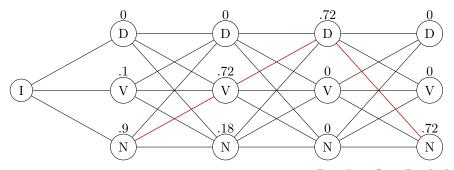












- Problem 2: HMMs are trained to maximize the likelihood of the training set. Generative, joint distribution.
- But they solve conditional problems (observations are given).
- MEMM Solution: Maximum Entropy (duh).
- Idea: Use the least biased hypothesis, subject to what is known.
- Constraints: The expectation E_i of feature i in the learned distribution should be the same as its mean F_i on the training set. For every state s' and feature i:

$$F_i = \frac{1}{n_{s'}} \sum_{\substack{k=1\\s_k=s'}}^{n} f_i(o_k, s')$$

$$E_i = \frac{1}{n_{s'}} \sum_{\substack{k=1\\s_k = s'}}^{n} \sum_{s \in S} P_{s'}(s|o_k) f_i(o_k, s)$$

More on MEMMs

• It turns out that the maximum entropy distribution is unique and has an exponential form:

$$P_{s'}(s|o) = \frac{1}{Z(o,s')} \exp\left(\sum_{i \in \text{features}} \lambda_i f_i(o,s)\right)$$

- We can estimate λ_i with Generalized Iterative Scaling.
- Adding a feature $x: f_x(o, s) = C \sum_i f_i(o, s)$ does not affect the solution.
- Compute F_i . Set $\lambda_i^{(0)} = 0$.
- Compute current expectation $E_i^{(j)}$ of feature i from model.
- $\lambda_i^{(j+1)} = \lambda_i^{(j)} + \frac{1}{C} \log \left(\frac{F_i}{E_i^{(j)}} \right)$

Extensions

- We can train even when the labels are not known using EM.
- E step: determine most probable state sequence and compute F_i . M step: GIS.
- We can reduce the number of parameters to estimate by moving the previous state in the features: "Subject-is-female", "Previous-was-question", "Is-verb-and-no-noun-yet".
- We can even add features regarding actions in a reinforcement learning setting: "Slow-vehicle-encountered-and-steer-left".
- We can mitigate data sparseness problems by simplifying the model:

$$P(s|s',o) = P(s|s') \frac{1}{Z(o,s')} \exp\left(\sum_{i} \lambda_i f_i(o,s)\right)$$

Experiments

- Task: Label each line in a FAQ with either "H", "Q", "A", "T".
- Train on one part of a multi part FAQ; test on the rest.
- Formatting consistent across parts but can be different across FAQs.
- Metrics: Co-occurrence agreement probability, Segmentation Precision, Segmentation Recall.
- Models: Maxent Stateless, Token HMM, Feature HMM, MEMM.
- Conclusions: Features help both maximum entropy and maximum likelihood models, states help maxent models, MEMMs outperform other models most notably in Segmentation Precision.