CS778 Seminar
Learning to Predict Structured Objects

Fall 2006
Thorsten Joachims
Cornell University
Department of Computer Science

Supervised Learning
- Find function from input space X to output space Y
 \[h : X \rightarrow Y \]
such that the prediction error is low.

Examples of Complex Output Spaces
- **Natural Language Parsing**
 - Given a sequence of words x, predict the parse tree y.
 - Dependencies from structural constraints, since y has to be a tree.

Examples of Complex Output Spaces
- **Part-of-Speech Tagging**
 - Given a sequence of words x, predict sequence of tags y.
 - Dependencies from tag-tag transitions in Markov model.

Examples of Complex Output Spaces
- **Sequence to Structure Alignment**
 - Given a sequence/structure pair $x=(x_1, x_2)$, predict the correct sequence of alignment operations y.
 - Dependencies because operations are applied sequentially.

Examples of Complex Output Spaces
- **Multi-Label Classification**
 - Given a (bag-of-words) document x, predict a set of labels y.
 - Dependencies between labels from correlations between labels (“iraq” and “oil” in newswire corpus)

Microsoft announced today that they acquired Apple for the amount equal to the gross national product of Switzerland. Microsoft officials stated that they first wanted to buy Switzerland, but eventually were turned off by the mountains and the snowy winters…

```
GATACAACCTATCCCCGTATATATATTCT
ATGGGTATAGTATTAAATCAATACAACC
TATCCCCGTATATATATTCTATGGGTATAGTATTAAATCACATTTA
CAGATACAACCTATCCCCGTATATATATTCTATGGGTATAGTATTAAATCACATTTA
```

Due to the continued violence in Baghdad, the oil price is expected to further increase. OPEC officials met with…

```
antarctica
+1 benelux
+1 germany
+1 iraq
+1 oil
+1 coal
+1 trade
-1 acquisitions
```
Examples of Complex Output Spaces

• Information Retrieval
 – Given a query x, predict a ranking y.
 – Dependencies between results (e.g. avoid redundant hits)
 – Loss function over rankings (e.g. AvgPrec)

SVM

1. Kernel-Machines
2. SVM-Light
3. Learning with Kernels
4. SV Meppen Fan Club
5. Service Master & Co.
6. School of Volunteer Management
7. SV Mattersburg Online

Examples of Complex Output Spaces

• Noun-Phrase Co-reference
 – Given a set of noun phrases x, predict a clustering y.
 – Structural dependencies, since prediction has to be an equivalence relation.
 – Correlation dependencies from interactions.

The policeman fed the cat. He did not know that he was late.
The cat is called Peter.

Examples of Complex Output Spaces

• Non-Standard Performance Measures (e.g. F_1-score, Lift)
 – F_1-score: harmonic average of precision and recall
 – New example vector \mathbf{z}_8. Predict $y_8=1$, if $P(y_8=1|\mathbf{z}_8)=0.4$?
 Depends on other examples!

Examples of Complex Output Spaces

• Generative Models
 – Hidden Markov models
 – Probabilistic context-free grammars
 – Pair HMM alignment models
 – Bayesian networks
 – Etc.

• Discriminative Models
 – Perceptron training of HMM
 – Conditional random fields
 – Structure SVMs
 – Maximum-margin Markov networks
 – Kernel dependency estimation
 – Conditional pseudo-likelihood
 – Transformer networks
 – Etc.

(Recent) Developments

What will we do in this class?

• Overview of discriminative methods for structured outputs
• Understand strengths and weaknesses compared to conventional methods
• Relationship between methods
• Directions for research

Course Overview

• Meetings (Tuesdays, 1:25pm – 2:40pm)
 – Background lectures:
 – Few lectures to provide background
 – Discussion of research papers:
 – Student presents paper in class
 – Student leads discussion of paper

• Homework Assignments
 – Read papers for next week
 – Prepare questions and discussion for

• Project
 – Optional

• Exams
 – None

Paper Presentations

• Selection
 – Vote for papers you like

• Content
 – Self-contained explanation of paper
 – Might need to add background
 – Add examples to make paper more clear
 – Prepare slides

• Preparation / Feedback
 – I am happy to help with making sense of the material
 – By Friday before presentation, go over slides with me
 – I will give feedback after the presentation
Ways to Take the Class

- Enrolling for “Pass/Fail”:
 - Present (multiple) papers in class
 - Lead the discussion during this class
 - Participate in discussion of other papers
 - Take in-class quizzes
 - Grading: presentation, participation, quizzes

- Enrolling for “Letter Grade”:
 - All of the above
 - Do self-defined project
 - Grading: project, presentation, participation, quizzes

- Enrolling as “Audit”:
 - No

Project (Optional)

- Topic of project is self-defined
 - Related to your research interests
 - Related to predicting structured outputs
 - Can be an application to a particular problem, comparison of methods, development of new methods, etc.

- Schedule
 - Project proposal (draft within 2 weeks)
 - Regular status reports
 - Final project report (due during week of finals)

Prerequisites

- Basic understanding of machine learning
 - CS 478 or CS 578 or other machine learning class
 - CS 472 or other general AI introduction (borderline)

- Basic linear algebra

- Basic probability

- Related courses you might consider instead of CS778
 - CS472: Foundations of Artificial Intelligence
 - CS578: Empirical Methods in Machine Learning

Selecting Your Papers

- Today:
 - Look at handout or “reference” section on course homepage
 - Find papers that you are interested in presenting
 - Did I forget any interesting papers you would like to read?

- Tomorrow (Wednesday, Aug. 30) by 8pm:
 - Send me via email the paper you would be interested in presenting
 - at least four papers marked with "***" (ranked, if you want)
 - as many other papers as you like (ranked, if you want)

- Thursday, Aug. 31:
 - I will send around the paper assignments and schedule

How to Get in Touch

- Lecture
 - Tuesdays, 1:25pm - 2:40pm, Upson 5126

- WWW Page

- Email
 - Thorsten Joachims: tj@cs.cornell.edu
 - Mailing list: TBA

- Office Hours
 - Thorsten Joachims: Mondays at 1:00pm – 2:00pm, 4153 Upson Hall

- Prerequisites
- Selecting Your Papers
- How to Get in Touch