
Designing Transactional
Memory Systems

Part III: Lock-based STMs

Pascal Pascal FelberFelber
University of Neuchatel
Pascal.Felber@unine.ch

Based on joint work with Christof Fetzer & Torvald Riegel
with slides borrowed from several other people

3/17/2008 Transactional Memory: Part III — P. Felber 2

AgendaAgenda

Part I: Introduction

Part II: Obstruction-free STMs

Part III: Lock-based STMs

WSTM: a lock-based STM design

TINYSTM: a time-based lock-based STM design

3/17/2008 Transactional Memory: Part III — P. Felber 3

Why not obstructionWhy not obstruction--free? free? [[EnnalsEnnals]]

OF prevents a long-running transaction
blocking others

Not true: neither OF nor LF guarantee that!

OF prevents the system locking up if a thread
is switched part-way through a transaction

But this is rare and temporary event…

OF prevents the system locking up if a thread
fails

But failure would break the original, non-STM
program as well…

3/17/2008 Transactional Memory: Part III — P. Felber 4

Why lockWhy lock--based? based? [[EnnalsEnnals]]

More efficient implementation
No extra indirections for data accesses
Better cache locality
Simpler (and often faster) algorithm

Typical implementation
Revocable two phase locking for writes (blocking)

Preventive abort to avoid deadlocks

Optimistic concurrency control for reads
Lazy conflict detection (if data has changed)

3/17/2008 Transactional Memory: Part III — P. Felber 5

WSTM WSTM [Harris & Fraser, 2003][Harris & Fraser, 2003]

Word-based STM
Granularity of conflict detection is (roughly)
memory location

Basic principle
For every word, there exists a version number
Transactions don’t update memory or version
numbers (i.e., no synchronization) until commit

They update (and consult) thread-local log
Modified words are only “locked” during commit

Parallel reads don’t cause aborts

3/17/2008 Transactional Memory: Part III — P. Felber 6

WSTM: data structuresWSTM: data structures

Ownership records

Version

Owner

Application heap

7

100

200

a1

a2

…

…

Status
Entries

…

TX descriptor

a3

a4

a5

500

600

ACTIVE
ASLEEP
ABORTED
COMMITTED

Several addresses
may map to the same
ownership records

Several addresses
may map to the same
ownership records

An address has either
an owner or a
version number

An address has either
an owner or a
version number

Reads not visible to
other transactions
Reads not visible to
other transactions

3/17/2008 Transactional Memory: Part III — P. Felber 7

WSTM: load and storeWSTM: load and store

Ownership records

#15

#7

Application heap

a1

a2

…

…

ACTIVE
a2: (10,#7)→(30,#8)

a1: (7,#15)→(7,#15)

TX descriptor

a3

a4

a5

7

10

20

50

60

#12

#3
ACTIVE

a3: (20,#7)→(25,#8)

a5: (60,#3)→(60,#3)

• Overwrite a2
• Read a1
• Still active

• Overwrite a2
• Read a1
• Still active

• Overwrite a3
• Read a5
• Still active

• Overwrite a3
• Read a5
• Still active

Conflict
(invisible)

3/17/2008 Transactional Memory: Part III — P. Felber 8

Conflict
(invisible)

WSTM: commitWSTM: commit

Ownership records

#15

Application heap

a1

a2

…

…

ACTIVE
a2: (10,#7)→(30,#8)

a1: (7,#15)→(7,#15)

TX descriptor

a3

a4

a5

7

10

20

50

60

#12

#3
ACTIVE

a3: (20,#7)→(25,#8)

a5: (60,#3)→(60,#3)

• Overwrite a2
• Read a1
• Committing

• Overwrite a2
• Read a1
• Committing

• Overwrite a3
• Read a5
• Still active

• Overwrite a3
• Read a5
• Still active

Conflict
(visible)

• Acquire records of updated locations
• If successful, change status, update heap,

release locks (writing new versions)
• If unsuccessful, abort (or wait)

• Acquire records of updated locations
• If successful, change status, update heap,

release locks (writing new versions)
• If unsuccessful, abort (or wait)

#7

30

#8

COMMITTED

Other transaction must abort (false sharing!)Other transaction must abort (false sharing!)

3/17/2008 Transactional Memory: Part III — P. Felber 9

STM design choicesSTM design choices

We have already seen a number of designs

There are many more design choices:
Obstruction-free vs. lock-based (blocking)
Object-based vs. word-based
Visible vs. invisible reads
Encounter-time vs. commit-time locking
Write-through vs. write-back
Etc.

3/17/2008 Transactional Memory: Part III — P. Felber 10

STM design choicesSTM design choices

The “right” design depends on the workload
E.g., ratio of update to read-only transactions,
number of locations read or written, contention
on shared memory locations, etc.

There is no “one-size-fits-all” STM

3/17/2008 Transactional Memory: Part III — P. Felber 11

ObjectObject--based vs. wordbased vs. word--basedbased

Object-based
Granularity of conflict
detection is object
Store metadata in
object (or proxy)
Need language support

Word-based
Granularity of conflict
detection is memory
location
Separate metadata
Load/store API

• Good with small
objects (cloning cost)

• Coarse-grained “lock”

• Good with small
objects (cloning cost)

• Coarse-grained “lock”

• Good for low-level,
unmanaged languages

• Fine-grained “lock”

• Good for low-level,
unmanaged languages

• Fine-grained “lock”

3/17/2008 Transactional Memory: Part III — P. Felber 12

Visible vs. invisible readsVisible vs. invisible reads

Visible reads
Let writers detect
conflicts with readers
Need to maintain
shared reader lists
Pessimistic design

Invisible reads
Writers do not detect
read-write conflicts
Incremental validation
costly (use time-based)
Optimistic design

• Abort early may save
useless processing

• Better progress upon
high contention

• Abort early may save
useless processing

• Better progress upon
high contention

• Much faster when
there is no conflict

• No (costly) reader list
• May fall back to visible

• Much faster when
there is no conflict

• No (costly) reader list
• May fall back to visible

3/17/2008 Transactional Memory: Part III — P. Felber 13

ETL vs. CTLETL vs. CTL

Encounter-time locking
Acquire locks when
memory is written
Detect conflicts early

Commit-time locking
Acquire locks at
commit time
Detects conflicts late

• Avoids executing
doomed transactions

• Fast RW-after-write

• Avoids executing
doomed transactions

• Fast RW-after-write

• May reduce conflicts
with some workloads

• May reduce conflicts
with some workloads

3/17/2008 Transactional Memory: Part III — P. Felber 14

WriteWrite--through vs. writethrough vs. write--backback

Write-through (ETL)
Writes to memory
(undo log)
Upon abort, copy back
old values

Write-back (ETL)
Buffered writes
(redo log)
Upon commit, copy
new values

• Faster commit
• Faster RW-after-write,

enables compiler
optimizations

• Faster commit
• Faster RW-after-write,

enables compiler
optimizations

• Faster abort
• Version numbers don’t

change on abort (no
ABA problem)

• Faster abort
• Version numbers don’t

change on abort (no
ABA problem)

3/17/2008 Transactional Memory: Part III — P. Felber 15

TTINYINYSTM: a lightweight designSTM: a lightweight design

Word-based lock-based STM implementation
Written in portable C, 32/64-bit
Small code base (<1,000 LOC), GPL
Memory management operations

Time-based algorithm like LSA & TL2
Versioned locks used to build consistent snapshot

“Classical” word-based STM design
Per-stripe locks, encounter-time locking (ETL)
Write-through and write-back versions

Used as underlying STM in TANGER

3/17/2008 Transactional Memory: Part III — P. Felber 16

Lock array
0

L-1

Lock bit

Word size

version 0

Memory

&p->next

&n->val

…

…

…

Timestamp
Read set
Write set

…

TX descriptor

Shared clock

One-to-many
mapping

locks[(addr >> #shifts) % L]

TTINYINYSTM: basic data structuresSTM: basic data structures

stm_start(tx);
…
n = stm_load(tx, &p->next);
v = stm_load(tx, &n->val);
…
stm_store(tx, &p->next, n);
…
stm_commit(tx);

address 1

3/17/2008 Transactional Memory: Part III — P. Felber 17

Lock array
0

L-1

Lock bit

Memory

…

…

…

120
Read set
Write set

…

TX descriptor

120

TTINYINYSTM: startSTM: start

stm_start(tx);
…
n = stm_load(tx, &p->next);
v = stm_load(tx, &n->val);
…
stm_store(tx, &p->next, n);
…
stm_commit(tx);

START by transaction tx
• Set tx.ts to current time
START by transaction tx
• Set tx.ts to current time

3/17/2008 Transactional Memory: Part III — P. Felber 18

Lock array
0

L-1

Lock bit

112 0

Memory

&n->val

…

…

…

120
Read set
Write set

…

TX descriptor

122

TTINYINYSTM: loadSTM: load

stm_start(tx);
…
n = stm_load(tx, &p->next);
v = stm_load(tx, &n->val);
…
stm_store(tx, &p->next, n);
…
stm_commit(tx);

LOAD(addr) by transaction tx
• Find lock for addr and read lock, value, lock
• If lock is owned by tx, return latest value
• If lock is free and version ≤ tx.ts, return

latest value
• If lock is free and version > tx.ts, can try to

“extend” snapshot (requires validation)
• Otherwise, abort (or defer to CM)

LOAD(addr) by transaction tx
• Find lock for addr and read lock, value, lock
• If lock is owned by tx, return latest value
• If lock is free and version ≤ tx.ts, return

latest value
• If lock is free and version > tx.ts, can try to

“extend” snapshot (requires validation)
• Otherwise, abort (or defer to CM)

3/17/2008 Transactional Memory: Part III — P. Felber 19

Lock array
0

L-1

Lock bit

Memory

…

…

…

120
Read set
Write set

…

TX descriptor

122

TTINYINYSTM: storeSTM: store

stm_start(tx);
…
n = stm_load(tx, &p->next);
v = stm_load(tx, &n->val);
…
stm_store(tx, &p->next, n);
…
stm_commit(tx);

STORE(addr) by transaction tx
• Find lock for addr and read lock
• If lock is owned by tx, write new value
• If lock is free, try to acquire it atomically

(CAS)
• Otherwise, abort (or defer to CM)

STORE(addr) by transaction tx
• Find lock for addr and read lock
• If lock is owned by tx, write new value
• If lock is free, try to acquire it atomically

(CAS)
• Otherwise, abort (or defer to CM)

&p->next

116 0address 1

3/17/2008 Transactional Memory: Part III — P. Felber 20

Lock array
0

L-1

Lock bit

Memory

…

…

…

120
Read set
Write set

…

TX descriptor

122

TTINYINYSTM: commitSTM: commit

stm_start(tx);
…
n = stm_load(tx, &p->next);
v = stm_load(tx, &n->val);
…
stm_store(tx, &p->next, n);
…
stm_commit(tx);

COMMIT by transaction tx
• Acquire unique timestamp from clock
• If tx is not read-only and time has

advanced, validate read set
• Write values and release locks

COMMIT by transaction tx
• Acquire unique timestamp from clock
• If tx is not read-only and time has

advanced, validate read set
• Write values and release locks

&p->next

123 0address 1

123
123

3/17/2008 Transactional Memory: Part III — P. Felber 21

Implementation notes Implementation notes

Implementing concurrent algorithms
efficiently is challenging

Need to understand how MP systems and
multicore processors work
Need to use the cheapest primitives that are
sufficient (for safety)
Need to understand the memory models (when
defined!)

If this scares you,
leave it to “experts” and use STM!

3/17/2008 Transactional Memory: Part III — P. Felber 22

Memory modelsMemory models

x = 1;
j = y;

y = 1;
i = x;

int x, y, i, j;
x = y = 0;

Initially

Thread 1 Thread 2

Value of i and j?Value of i and j?

Can we have?
i == 0 && j == 0
Can we have?
i == 0 && j == 0

3/17/2008 Transactional Memory: Part III — P. Felber 23

This is not wrong!This is not wrong!

We are assuming sequentially consistent
behavior

But time is a relative dimension!
Computers don’t care about your intuition
regarding time across multiple threads

Compilers, processors, caches can reorder
instructions

Preventing reordering must be explicitly
requested

Using synchronization operations (lock/unlock)
Using memory barriers

3/17/2008 Transactional Memory: Part III — P. Felber 24

Where things fitWhere things fit

Shared memory

Cache Cache
Cache

Cache Cache
Cache

Bus

Based on slide by Herlihy & Shavit

i

class SharedObject {
int s;
void f() {

int i;
…

}
}

i i

i
Local

variables

Shared
variables

s

s

3/17/2008 Transactional Memory: Part III — P. Felber 25

Memory barriersMemory barriers

A processor can execute hundreds of
instructions during a memory access

Why delay on every memory write?
Instead, keep value in register or cache

Memory barrier instruction (expensive)
Flush unwritten caches
Bring caches up to date
Added by compiler (synchronization, volatile)

for (i = 0; i < 10000; i++)
x += i;

Typically: x and i not written to
memory at each iteration
Typically: x and i not written to
memory at each iteration

3/17/2008 Transactional Memory: Part III — P. Felber 26

Memory barriersMemory barriers

LD1 L/L LD2
LD1's data loaded before data accessed by LD2 and all
subsequent loads are loaded

ST1 S/S ST2
ST1's data visible to other processors before data
associated with ST2

LD1 L/S ST2
LD1's data loaded before data associated with ST2 and
all subsequent store instructions are flushed

ST1 S/L LD2
ST1's data visible to other processors before data
accessed by LD2 and all subsequent loads are loaded

Based on documentation by Doug Lea

3/17/2008 Transactional Memory: Part III — P. Felber 27

Memory barriers example (Java)Memory barriers example (Java)

Based on documentation by Doug Lea

class X {
int a, b;
volatile int v, u;
void f() {

int i, j;
i = a;
j = b;
i = v;
// L/L
j = u;
// L/S
a = i;
b = j;
// S/S
v = i;
// S/S
u = j;
// S/L
i = u;
j = b;
a = i;

}
}

The keyword volatile asks
compiler to keep variable up-to-
date and inhibits reordering &
other optimizations

The keyword volatile asks
compiler to keep variable up-to-
date and inhibits reordering &
other optimizations

The compiler inserts memory
barriers where necessary
The compiler inserts memory
barriers where necessary

3/17/2008 Transactional Memory: Part III — P. Felber 28

Memory barriers in TMemory barriers in TINYINYSTMSTM

Based on documentation by Doug Lea

stm_word_t stm_load(stm_tx_t *tx, stm_word_t *addr)
{

stm_word_t l1, l2, val;
…
// Read lock status and value
l1 = *lock;
L/L;
val = *addr;
L/L;
l2 = *lock;
…

}
int stm_commit(stm_tx_t *tx)
{

stm_write_entry_t *w;
…
// Write value and release lock
*w->addr = w->val;
S/S;
*w->lock = tx->timestamp;
S/L;
…

}

Memory barriers must be
inserted explicitly
Memory barriers must be
inserted explicitly

3/17/2008 Transactional Memory: Part III — P. Felber 29

An ABA problem in TAn ABA problem in TINYINYSTMSTM

Consider write-through implementation
Is “read lock, read address, read lock” safe?

// Read lock status and value
l1 = *lock;
val = *addr;
l2 = *lock;
if (l1 == l2) {

// OK…

// Read lock status and value
l1 = *lock;

// WRITE
// Acquire lock
CAS(lock, …);
// Write value
*addr = val;

val = *addr;
// ABORT
// Write back old value
*w->addr = w->val;
// Release lock
*w->lock = w->l;

l2 = *lock;
if (l1 == l2) {

// OK…

Requires changing the lock
each time the value is updated!
Requires changing the lock
each time the value is updated!

We can increment the clock
upon abort (costly)
We can increment the clock
upon abort (costly)

We use “incarnation numbers”
in timestamps (updated locally)
We use “incarnation numbers”
in timestamps (updated locally)

3/17/2008 Transactional Memory: Part III — P. Felber 30

TTINYINYSTM: programming exampleSTM: programming example

MIN 14 18 25 MAX
Node Node Node Node NodeList

typedef struct node {
int val;
struct node *next;

} node_t;
typedef struct intset {

node_t *head;
} intset_t;

typedef struct node {
int val;
struct node *next;

} node_t;
typedef struct intset {

node_t *head;
} intset_t;

Non-transactional Transactional

3/17/2008 Transactional Memory: Part III — P. Felber 31

TTINYINYSTM: programming exampleSTM: programming example

int set_add(intset_t *set, int val) {
int result;
node_t *prev, *next;
prev = set->head;
next = prev->next;
while (next->val < val) {
prev = next;
next = prev->next;

}
result = (next->val != val);
if (result)
prev->next = new_node(val, next);

return result;
}

int set_add(intset_t *set, int val) {
int result, v;
node_t *prev, *next;
START;
prev = (node_t *)LOAD(&set->head);
next = (node_t *)LOAD(&prev->next);
while ((v = (int)LOAD(&next->val)) < val) {
prev = next;
next = (node_t *)LOAD(&prev->next);

}
result = (v != val);
if (result)
STORE(&prev->next, new_node(val, next));

COMMIT;
return result;

}

Non-transactional

Transactional

14 18
Node Node

15
add(15)

3/17/2008 Transactional Memory: Part III — P. Felber 32

TTINYINYSTM: programming exampleSTM: programming example

Some useful macros to save a few keystrokes
(ah… the joy of C!)
/* Transactional helpers */
#define START { \\

stm_tx_t *tx = stm_new(NULL); \\
sigjmp_buf *_e = stm_get_env(tx); \\
sigsetjmp(*_e, 0); \\
stm_start(tx, _e, NULL)

#define START_RO /* Read-only variant (omitted) */
#define LOAD(addr) stm_load(tx, (stm_word_t *)addr)
#define STORE(addr, value) stm_store(tx, (stm_word_t *)addr, (stm_word_t)value)
#define COMMIT stm_commit(tx); \\

stm_delete(tx); \\
}

#define MALLOC(size) stm_malloc(tx, size)
#define FREE(addr, size) stm_free(tx, addr, size)

3/17/2008 Transactional Memory: Part III — P. Felber 33

ThroughputThroughput
(red(red--black tree)black tree)

All designs scale well.
64-bit version noticeably faster.
Performance of CTL and ETL is
comparable (little contention).

All designs scale well.
64-bit version noticeably faster.
Performance of CTL and ETL is
comparable (little contention).

8-core Intel Xeon at 2 GHz, Linux 2.6.18-4 (64-bit)

3/17/2008 Transactional Memory: Part III — P. Felber 34

ThroughputThroughput
(linked list)(linked list)

All designs scale well.
64-bit version noticeably faster.

CTL suffers more from long
transaction (no CM).

All designs scale well.
64-bit version noticeably faster.

CTL suffers more from long
transaction (no CM).

8-core Intel Xeon at 2 GHz, Linux 2.6.18-4 (64-bit)

3/17/2008 Transactional Memory: Part III — P. Felber 35

Size andSize and
update ratesupdate rates Linked list more sensitive to

size than red-black tree (linear
vs. logarithmic).

Read-only much faster.

Linked list more sensitive to
size than red-black tree (linear

vs. logarithmic).
Read-only much faster.

8-core Intel Xeon at 2 GHz, Linux 2.6.18-4 (64-bit)

3/17/2008 Transactional Memory: Part III — P. Felber 36

Abort ratesAbort rates Abort rates increase upon
contention, as expected.

64-bit has higher abort rate.
CTL has slightly less aborts.

Abort rates increase upon
contention, as expected.

64-bit has higher abort rate.
CTL has slightly less aborts.

8-core Intel Xeon at 2 GHz, Linux 2.6.18-4 (64-bit)

3/17/2008 Transactional Memory: Part III — P. Felber 37

TTANGERANGER: transactional C compiler: transactional C compiler

Problem: explicit load/store instructions are
cumbersome and error-prone
TANGER: open source transactional compiler

Application code with transaction boundaries
transformed into STM transactional code
Uses LLVM’s open-source compiler framework

Intermediate representation for a load/store
architecture (no stack)
Supports aggressive optimizations at compile-, link-,
or run-time
Easily extensible by “compiler passes”

3/17/2008 Transactional Memory: Part III — P. Felber 38

What TWhat TANGERANGER doesdoes

Application code uses minimal API
TX begin/commit
Language syntax unchanged

Transform code to use word-based STM API
Create transactional version of functions
Within TX begin/commit, redirect:

(Heap) memory accesses to STM load/store
Calls to transactional versions of functions
Dynamic memory management (malloc, free)

3/17/2008 Transactional Memory: Part III — P. Felber 39

TTANGERANGER: build cycle: build cycle

Application
(source)

Uses

Library
(source)

LLVM code LLVM code

Transacted
LLVM code

Transacted
LLVM code

Transacted
binary

STM library
(TINYSTM)

Optimize &
generate code

Compile
(LLVM)

Instrument
(TANGER)

.c

.cpp

.bc

.tbc

llvm-gcc

llvm-ld

llvm-ld & llc

3/17/2008 Transactional Memory: Part III — P. Felber 40

TTANGERANGER: build cycle: build cycle

Application
(source)

Library
(source)

LLVM code LLVM code

Transacted
LLVM code

Transacted
LLVM code

Transacted
binary

Optimize &
generate code

Compile
(LLVM)

Instrument
(TANGER)

.c

.cpp

.bc

.tbc

llvm-gcc

llvm-ld

llvm-ld & llc

TINYSTM
(source)

LLVM code

Transacted
LLVM code

3/17/2008 Transactional Memory: Part III — P. Felber 41

TTANGERANGER: performance: performance

Red-black treeRed-black tree

3/17/2008 Transactional Memory: Part III — P. Felber 42

Compiler: overhead Compiler: overhead [Intel][Intel]

3/17/2008 Transactional Memory: Part III — P. Felber 43

Compiler: scalability Compiler: scalability [Intel][Intel]

3/17/2008 Transactional Memory: Part III — P. Felber 44

Conclusion (Part III)Conclusion (Part III)

Lock-based STM designs are very efficient
No progress guarantee, but sufficient from a
pragmatic perspective

Word-based designs good for OS, low-level
languages, and compiler integration

Fine conflict detection granularity
Can be used to build object-based STMs

The design space is very large
No “one-size-fits-all” STM
The right design depends on the workload!

3/17/2008 Transactional Memory: Part III — P. Felber 45

The one slide to rememberThe one slide to remember

Concurrent programming is hard
… but necessary to exploit multicore CPUs

TM is a simple programming paradigm
… safe and scalable

You can (usually) trust TM designers

Our TM implementations: www.tinystm.org
3/17/2008 Transactional Memory: Part III — P. Felber 46

Thank you!Thank you!

